Угловая скорость. Кинематика вращательного движения твердого тела Что характеризует вектор угла поворота

Направл. величина искаженной кристаллич. решетки, обусловл. дисклинацией: кручения — угол поворота части кристалла относительно другой; клиновой изменение угла поворота а при изменении порядка оси симметрии. … Справочник технического переводчика

вектор Франка - направленная величина искаженности кристаллической решетки, обусловленная дисклинацией: кручения угол поворота части кристалла относительно другой; клиновой изменение угла поворота а при изменении порядка оси симметрии. Смотри… … Энциклопедический словарь по металлургии

Матрица поворота - Проверить информацию. Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье. На странице обсуждения должны быть пояснения … Википедия

Управляемый вектор тяги - Управление вектором тяги (УВТ) реактивного двигателя отклонение реактивной струи двигателя от направления, соответствующего крейсерскому режиму. В настоящее время управление вектором тяги обеспечивается, в основном, за счет поворота всего сопла… … Википедия

ГИРОСКОП - навигационный прибор, основным элементом которого является быстро вращающийся ротор, закрепленный так, что ось его вращения может поворачиваться. Три степени свободы (оси возможного вращения) ротора гироскопа обеспечиваются двумя рамками… … Энциклопедия Кольера

ФАРАДЕЯ ЭФФЕКТ - один из эффектов магнитооптики. Заключается во вращении плоскости поляризации линейно поляризов. света, распространяющегося в в ве вдоль пост. магн. поля, в к ром находится это в во. Открыт М. Фарадеем в 1845 и явился первым доказательством… … Физическая энциклопедия

Графический конвейер - Графический конвейер аппаратно программный комплекс визуализации трёхмерной графики. Содержание 1 Элементы трехмерной сцены 1.1 Аппаратные средства 1.2 Программные интерфейсы … Википедия

Магнетизм - Классическая электродинамика … Википедия

ГОСТ 22268-76: Геодезия. Термины и определения - Терминология ГОСТ 22268 76: Геодезия. Термины и определения оригинал документа: 114. Абрис Ндп. Кроки D. Gelandeskizze Gelandekroki E. Outline Field sketch F. Croquis Схематический чертеж участка местности Определения термина из разных документов … Словарь-справочник терминов нормативно-технической документации

Система ориентации солнечных батарей - Стиль этой статьи неэнциклопедичен или нарушает нормы русского языка. Статью следует исправить согласно стилистическим правилам Википедии … Википедия

УГЛОВАЯ СКОРОСТЬ - векторная величина, характеризующая быстроту вращения твёрдого тела. При равномерном вращении тела вокруг неподвижной оси численно его У. с. w=Dj/Dt, где Dj приращение угла поворота j за промежуток времени Dt, а в общем случае w=dj/dt. Вектор У.… … Физическая энциклопедия

С линейными величинами.

Угловое перемещение - векторная величина, характеризующая изменение угловой координаты в процессе её движения.

Углова́я ско́рость - векторная физическая величина, характеризующая скорость вращения тела. Вектор угловой скорости по величине равен углу поворота тела в единицу времени:

а направлен по оси вращения согласно правилу буравчика, то есть, в ту сторону, в которую ввинчивался бы буравчик с правой резьбой, если бы вращался в ту же сторону.

Единица измерения угловой скорости, принятая в системах СИ и СГС) - радианы в секунду. (Примечание: радиан, как и любые единицы измерения угла, - физически безразмерен, поэтому физическая размерность угловой скорости - просто ). В технике также используются обороты в секунду, намного реже - градусы в секунду, грады в секунду. Пожалуй, чаще всего в технике используют обороты в минуту - это идёт с тех времён, когда частоту вращения тихоходных паровых машин определяли, просто «вручную» подсчитывая число оборотов за единицу времени.

Вектор (мгновенной) скорости любой точки (абсолютно) твердого тела, вращающегося с угловой скоростью определяется формулой:

где - радиус-вектор к данной точке из начала координат, расположенного на оси вращения тела, а квадратными скобками обозначено векторное произведение. Линейную скорость (совпадающую с модулем вектора скорости) точки на определенном расстоянии (радиусе) r от оси вращения можно считать так: v = rω. Если вместо радианов применять другие единицы углов, то в двух последних формулах появится множитель, не равный единице.

В случае плоского вращения, то есть когда все векторы скоростей точек тела лежат (всегда) в одной плоскости («плоскости вращения»), угловая скорость тела всегда перпендикулярна этой плоскости, и по сути - если плоскость вращения заведомо известна - может быть заменена скаляром - проекцией на ось, ортогональную плоскости вращения. В этом случае кинематика вращения сильно упрощается, однако в общем случае угловая скорость может менять со временем направление в трехмерном пространстве, и такая упрощенная картина не работает.

Производная угловой скорости по времени есть угловое ускорение.

Движение с постоянным вектором угловой скорости называется равномерным вращательным движением (в этом случае угловое ускорение равно нулю).

Угловая скорость (рассматриваемая как свободный вектор) одинакова во всех инерциальных системах отсчета, однако в разных инерциальных системах отсчета может различаться ось или центр вращения одного и того же конкретного тела в один и тот же момент времени (то есть будет различной «точка приложения» угловой скорости).

В случае движения одной единственной точки в трехмерном пространстве можно написать выражение для угловой скорости этой точки относительно выбранного начала координат:

Где - радиус-вектор точки (из начала координат), - скорость этой точки. - векторное произведение, - скалярное произведение векторов. Однако эта формула не определяет угловую скорость однозначно (в случае единственной точки можно подобрать и другие векторы , подходящие по определению, по другому - произвольно - выбрав направление оси вращения), а для общего случая (когда тело включает более одной материальной точки) - эта формула не верна для угловой скорости всего тела (так как дает разные для каждой точки, а при вращении абсолютно твёрдого тела по определению угловая скорость его вращения - единственный вектор). При всём при этом, в двумерном случае (случае плоского вращения) эта формула вполне достаточна, однозначна и корректна, так как в этом частном случае направление оси вращения заведомо однозначно определено.

В случае равномерного вращательного движения (то есть движения с постоянным вектором угловой скорости) декартовы координаты точек вращающегося так тела совершают гармонические колебания с угловой (циклической) частотой, равной модулю вектора угловой скорости.

При измерении угловой скорости в оборотах в секунду (об/с), модуль угловой скорости равномерного вращательного движения совпадает с частотой вращения f, измеренной в герцах (Гц)

(то есть в таких единицах ).

В случае использования обычной физической единицы угловой скорости - радианов в секунду - модуль угловой скорости связан с частотой вращения так:

Наконец, при использовании градусов в секунду связь с частотой вращения будет:

Углово́е ускоре́ние - псевдовекторная физическая величина, характеризующая быстроту изменения угловой скорости твёрдого тела.

При вращении тела вокруг неподвижной оси, угловое ускорение по модулю равно:

Вектор углового ускорения α направлен вдоль оси вращения (в сторону при ускоренном вращении и противоположно - при замедленном).

При вращении вокруг неподвижной точки вектор углового ускорения определяется как первая производная от вектора угловой скорости ω по времени, то есть

и направлен по касательной к годографу вектора в соответствующей его точке.

Существует связь между тангенциальным и угловым ускорениями:

где R - радиус кривизны траектории точки в данный момент времени. Итак, угловое ускорении равно второй производной от угла поворота по времени или первой производной от угловой скорости по времени. Угловое ускорение измеряется в рад/сек2 .

Угловая скорость и угловое ускорение

Рассмотрим твердое тело, которое вращается вокруг неподвижной оси. Тогда отдель­ные точки этого тела будут описывать окружности разных радиусов, центры которых лежат на оси вращения. Пусть некоторая точка движется по окружности радиуса R (рис. 6). Ее положение через промежуток времени Dt зададим углом D . Элементар­ные (бесконечно малые) повороты можно рассматривать как векторы (они обозначают­ся или ). Модуль вектора равен углу поворота, а его направление совпадает с направлением поступательного движения острия винта, головка которого вращается в направлении движения точки по окружности, т.е. подчиняетсяправилу правого винта (рис.6). Векторы, направления которых связываются с направлением вращения, назы­ваютсяпсевдовекторами илиаксиальными векторами. Эти векторы не имеют опреде­ленных точек приложения: они могут откладываться из любой точки оси вращения.

Угловой скоростью называется векторная величина, равная первой производной угла поворота тела по времени:

Вектор направлен вдоль оси вращения по правилу правого винта, т.е. так же, как и вектор (рис.7). Размерность угловой скорости dim w=T – 1 , а ее единица - ради­ан в секунду (рад/с).

Линейная скорость точки (см. рис. 6)

В векторном виде формулу для линейной скорости можно написать как векторное произведение:

При этом модуль векторного произведения, по определению, равен , а направление совпадает с направлением поступательного движения правого винта при его вращении от к R .

Если ( = const, то вращение равномерное и его можно характеризовать периодом вращения T - временем, за которое точка совершает один полный оборот, т.е. поворачивается на угол 2p. Так как промежутку времени Dt = T соответствует = 2p, то = 2p/T , откуда

Число полных оборотов, совершаемых телом при равномерном его движении по окружности, в единицу времени называется частотой вращения:

Угловым ускорением называется векторная величина, равная первой производной угловой скорости по времени:

При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости. При ускоренном движении вектор сонаправлен вектору (рис.8), при замедлен­ном - противонаправлен ему (рис.9).

Тангенциальная составляющая ускорения

Нормальная составляющая ускорения

Таким образом, связь между линейными (длина пути s , пройденного точкой по дуге окружности радиуса R , линейная скорость v, тангенциальное ускорение , нормальное ускорение ) и угловыми величинами (угол поворота j, угловая скорость w, угловое ускорение e) выражается следующими формулами:

В случае равнопеременного движения точки по окружности (e=const)

где w 0 - начальная угловая скорость.

Законы Ньютона.

Первый закон Ньютона. Масса. Сила

Динамика является основным разделом механики, в ее основе лежат три закона Ньютона, сформулированные им в 1687 г. Законы Ньютона играют исключительную роль в механике и являются (как и все физические законы) обобщением результатов огромного человеческого опыта. Их рассматривают как систему взаимосвязанных законов и опытной проверке подвергают не каждый отдельный закон, а всю систему в целом.

Первый закон Ньютона : всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние . Стремление тела сохранять состояние покоя или равномерного прямолинейного движения называется инертностью . Поэтому первый закон Ньютона называют также законом инерции .

Механическое движение относительно, и его характер зависит от системы отсчета. Первый закон Ньютона выполняется не во всякой системе отсчета, а те системы, по отношению к которым он выполняется, называются инерциальными системами отсчета . Инерциальной системой отсчета является такая система отсчета, относительно которой материальная точка, свободная от внешних воздействий, либо покоится, либо движется равномерно и прямолинейно. Первый закон Ньютона утверждает существование инерциальных систем отсчета.

Опытным путем установлено, что инерциальной можно считать гелиоцентрическую (звездную) систему отсчета (начало координат находится в центре Солнца, а оси проведаны в направлении определенных звезд). Система отсчета, связанная с Землей, строго говоря, неинерциальна, однако эффекты, обусловленные ее неинерциальностью (Земля вращается вокруг собственной оси и вокруг Солнца), при решении многих задач пренебрежимо малы, и в этих случаях ее можно считать инерциальной.

Из опыта известно, что при одинаковых воздействиях различные тела неодинаково изменяют скорость своего движения, т.е., иными словами, приобретают различные ускорения. Ускорение зависит не только от величины воздействия, но и от свойств самого тела (от его массы).

Масса тела - физическая величина, являющаяся одной из основных характеристик материи, определяющая ее инерционные (инертная масса ) и гравитационные (гравитационная масса ) свойства. В настоящее время можно считать доказанным, что инертная и гравитационная массы равны друг другу (с точностью, не меньшей 10 –12 их значения).

Чтобы описывать воздействия, упоминаемые в первом законе Ньютона, вводят понятие силы. Под действием сил тела либо изменяют скорость движения, т. е. приобретают ускорения (динамическое проявление сил), либо деформируются, т. е. изменяют свою форму и размеры (статическое проявление сил). В каждый момент времени сила характеризуется числовым значением, направлением в пространстве и точкой приложения. Итак, сила - это векторная величина, являющаяся мерой механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.

Второй закон Ньютона

Второй закон Ньютона - основной закон динамики поступательного движения - от­вечает на вопрос, как изменяется механическое движение материальной точки (тела) под действием приложенных к ней сил.

Если рассмотреть действие различных сил на одно и то же тело, то оказывается, что ускорение, приобретаемое телом, всегда прямо пропорционально равнодействующей приложенных сил:

а ~ F (т = const) . (6.1)

При действии одной и той же силы на тела с разными массами их ускорения оказываются различными, а именно

а ~ 1/т (F = const) . (6.2)

Используя выражения (6.1) и (6.2) и учитывая, что сила и ускорение-величины векторные, можем записать

а = kF/m. (6.3)

Соотношение (6.3) выражает второй закон Ньютона: ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе, совпадает с нею по направлению и обратно пропорционально массе материальной точки (тела).

В СИ коэффициент пропорциональности k= 1. Тогда

(6.4)

Учитывая, что масса материальной точки (тела) в классической механике есть величина постоянная, в выражении (6.4) ее можно внести под знак производной:

Векторная величина

численно равная произведению массы материальной точки на ее скорость и имеющая направление скорости, называется импульсом (количеством движения) этой материаль­ной точки.

Подставляя (6.6) в (6.5), получим

Это выражение - более общая формулировка второго закона Ньютона : скорость изме­нения импульса материальной точки равна действующей на нее силе. Выражение (6.7) называется уравнением движения материальной точки .

Единица силы в СИ - ньютон (Н): 1 Н - сила, которая массе 1 кг сообщает ускорение 1 м/с 2 в направлении действия силы:

1 Н = 1 кг×м/с 2 .

Второй закон Ньютона справедлив только в инерциальных системах отсчета. Первый закон Ньютона можно получить из второго. Действительно, в случае равенст­ва нулю равнодействующей сил (при отсутствии воздействия на тело со стороны других тел) ускорение (см. (6.3)) также равно нулю. Однако первый закон Ньютона рассматривается как самостоятельный закон (а не как следствие второго закона), так как именно он утверждает существование инерциальных систем отсчета, в которых только и выполняется уравнение (6.7).

В механике большое значение имеет принцип независимости действия сил : если на материальную точку действует одновременно несколько сил, то каждая из этих сил сообщает материальной точке ускорение согласно второму закону Ньютона, как будто других сил не было. Согласно этому принципу, силы и ускорения можно разлагать на составляющие, использование которых приводит к существенному упрощению решения задач. Например, на рис. 10 действующая сила F=m a разложена на два компонен­та: тангенциальную силу F t , (направлена по касательной к траектории) и нормальную силу F n (направлена по нормали к центру кривизны). Используя выражения и , а также , можно записать:

Если на материальную точку действует одновременно несколько сил, то, согласно принципу независимости действия сил, под F во втором законе Ньютона понимают результирующую силу.

Третий закон Ньютона

Взаимодействие между материальными точками (телами) определяется третьим зако­ном Ньютона : всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки:

F 12 = – F 21 , (7.1)

где F 12 - сила, действующая на первую материальную точку со стороны второй;

F 21 - сила, действующая на вторую материальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и явля­ются силами одной природы.

Третий закон Ньютона позволяет осуществить переход от динамики отдельной материальной точки к динамике системы материальных точек. Это следует из того, что и для системы материальных точек взаимодействие сводится к силам парного взаимодействия между материальными точками.

Углы Эйлера, самолетные (корабельные) углы.

Традиционно углы Эйлера вводятся следующим образом. Переход из отсчетного положения в актуальное осуществляется тремя поворотами (рис.4.3):

1. Поворот вокруг на угол прецессии При этом переходит в положение, (в).

2. Поворот вокруг на угол нутации . При этом, . (4.10)

4. Поворот вокруг на угол собственного (чистого) вращения

Для лучшего понимания на рис.4.4 изображен волчок и углы Эйлера, описывающие его


Переход из отсчетного положения в актуальное можно осуществить тремя поворотами (повернуть самостоятельно!) (рис.4.5):

1. Поворот вокруг на угол рысканья , при этом

2. Поворот вокруг на угол тангажа, при этом (4.12)

3.Поворот на угол крена вокруг

Выражение «можно осуществить» неслучайное; нетрудно понять, что возможны и другие варианты, например, повороты вокруг фиксированных осей

1. Поворот вокруг на угол крена (рискуя сломать крылья)

2. Поворот вокруг на угол тангажа (подъем «носа») (4.13)

3. Поворот вокруг на угол рысканья

Впрочем, тождественность (4.12) и (4.13) также необходимо доказать.

Запишем очевидную векторную формулу для вектора положения какой-либо точки (рис.4.6) в матричном виде. Найдем координаты вектора относительно отсчетного базиса. Разложим вектор по актуальному базису и введем «перенесенный» вектор, координаты которого в отсчетном базисе равны координатам вектора в актуальном; иными словами, - «повернутый» вместе с телом вектор (Рис.4.6).

Рис. 4.6.

Раскладывая векторы по отсчетному базису,получим

Введем матрицу поворота и столбцы,

Векторная формула в матричной записи имеет вид

1. Матрица поворота является ортогональной, т.е.

Доказательство этого утверждения – формула (4.9)

Вычисляя определитель произведения (4.15), получим а так как в отсчетном положении, то (ортогональные матрицы с определителем, равным (+1), называют собственно ортогональными или матрицами поворота). Матрица поворота при умножении на векторы не изменяет ни длин векторов, ни углов между ними, т.е. действительно их поворачивает.

2. Матрица поворота имеет один собственный (неподвижный) вектор, который задает ось поворота. Иными словами, надо показать, что система уравнений, где имеет единственное решение. Запишем систему в виде (. Определитель этой однородной системы равен нулю, так как

следовательно, система имеет ненулевое решение. Предположив, что имеется два решения, тут же придем к выводу, что перпендикулярный к ним также является решением (углы между векторами не изменяются), а это значит, что т.е. поворота нет..

Рис.4.7
В дальнейшем будем считать неподвижный вектор оси поворота единичным, а положительное направление отсчета угла поворота согласованным с направлением в соответствии с принятой ориентацией пространства (т.е. с конца положительный поворот виден против часовой стрелки) (рис.4.7). Матрицу поворота будем обозначать

Матрица в ортонормированном базисе

имеет вид.

2. Дифференцируя (4.15), получим или, обозначив – матрица спна (англ. to spin - вертеть) . Таким образом, матрица спина кососимметрическая: . Умножая справа на, получим формулу Пуассона для матрицы поворота:

Мы подошли к самому трудному в рамках матричного описания моменту – определению вектора угловой скорости.

Можно, разумеется, поступить стандартным (см., например, способом и написать: « введем обозначения для элементов кососимметрической матрицы S по формуле

Если составить вектор , то результат умножения матрицына векторможет быть представлен в виде векторного произведения ». В приведенной цитате - вектор угловой скорости.

Дифференцируя (4.14), получим матричную запись основной формулы кинематики твердого тела :

Матричный подход, будучи удобным для вычислений, очень мало подходит для анализа и вывода соотношений; всякую формулу, написанную на векторном и тензорном языке, без труда можно записать в матричном виде, а вот получить компактную и выразительную формулу для описания какого-либо физического явления в матричном виде трудно.

Кроме того, не следует забывать, что элементы матрицы являются координатами (компонентами) тензора в каком-либо базисе. Сам тензор не зависит от выбора базиса, а его компоненты зависят. Для безошибочной записи в матричном виде необходимо, чтобы все векторы и тензоры, входящие в выражение, были записаны в одном базисе, а это не всегда удобно, поскольку разные тензоры имеют «простой» вид в разных базисах, поэтому нужно пересчитывать матрицы с помощью матриц перехода.

Движения протяженного тела, размерами которого в условиях рассматриваемой задачи пренебречь нельзя. Тело будем считать недеформируемым, другими словами, - абсолютно твердым.

Движение, при котором любая прямая, связанная с движущимся телом, остается параллельной самой себе, называется поступательным.

Под прямой «жестко связанной с телом» понимается такая прямая, расстояние от любой точки которой до любой точки тела остается постоянным при его движении.

Поступательное движение абсолютно твердого тела можно охарактеризовать движением какой-либо точки этого тела, так как при поступательном движении все точки тела движутся с одними и теми же скоростями и ускорениями, а траектории их движения конгруэнтны. Определив движение какой-нибудь из точек твердого тела, мы вместе с тем определим движение всех остальных его точек. Поэтому при описании поступательного движения не возникает новых проблем по сравнению с кинематикой материальной точки. Пример поступательного движения показан на рис. 2.20.

Рис.2.20. Поступательное движение тела

Пример поступательного движения показан на следующем рисунке:

Рис.2.21. Плоское движение тела

Другой важный частный случай движения твердого тела - это движение, при котором две точки тела остаются неподвижными.

Движение, при котором две точки тела остаются неподвижными, называется вращением вокруг неподвижной оси.

Прямая, соединяющая эти точки, также неподвижна и называется осью вращения.

Рис.2.22. Вращение твердого тела

При таком движении все точки тела движутся по окружностям, расположенным в плоскостях, перпендикулярных оси вращения. Центры окружностей лежат на оси вращения. При этом ось вращения может находиться и вне тела.

Видео 2.4. Поступательное и вращательное движения.

Угловая скорость, угловое ускорение. При вращении тела вокруг какой-либо оси все его точки описывают окружности различного радиуса и, следовательно, имеют различные перемещения, скорости и ускорения. Тем не менее, можно описать вращательное движение всех точек тела одинаковым образом. Для этого используют иные (по сравнению с материальной точкой) кинематические характеристики движения - угол поворота , угловую скорость , угловое ускорение .

Рис. 2.23. Вектора ускорения точки, движущейся по окружности

Роль перемещения при вращательном движении играет вектор малого поворота , вокруг оси вращения 00" (рис. 2.24.). Он будет одинаков для любой точки абсолютно твердого тела (например, точек 1, 2, 3 ).

Рис. 2.24. Вращение абсолютно твердого тела вокруг неподвижной оси

Модуль вектора поворота равен величине угла поворота причем угол измеряется в радианах .

Направлен вектор бесконечно малого поворота по оси вращения в сторону движения правого винта (буравчика), вращаемого в том же направлении, что и тело.

Видео 2.5. Конечные угловые перемещения - не векторы, так как не складываются по правилу параллелограмма. Бесконечно малые угловые перемещения – векторы.

Векторы, направления которых связаны с правилом буравчика, называют аксиальными (от англ. axis - ось) в отличие от полярных . векторов, которыми мы пользовались ранее. Полярными векторами являются, например, радиус-вектор, вектор скорости, вектор ускорения и вектор силы. Аксиальные векторы называют также псевдовекторами, так как они отличаются от истинных (полярных) векторов своим поведением при операции отражения в зеркале (инверсии или, что то же самое, переходе от правой системы координат к левой). Можно показать (это будет сделано позже), что сложение векторов бесконечно малых поворотов происходит так же как и сложение истинных векторов, то есть по правилу параллелограмма (треугольника). Поэтому, если операция отражения в зеркале не рассматривается, то отличие псевдовекторов от истинных векторов никак не проявляет себя и обходиться с ними можно и нужно как с обычными (истинными) векторами.

Отношение вектора бесконечно малого поворота ко времени, за которое этот поворот имел место

называется угловой скоростью вращения.

Основной единицей измерения величины угловой скорости является рад/с . В печатных изданиях, по причинам никакого отношения к физике не имеющим, нередко пишут 1/с или с -1 , что, строго говоря, неверно. Угол - величина безразмерная, но единицы его измерения различны (градусы, румбы, грады …) и их необходимо указывать, хотя бы во избежание недоразумений.

Видео 2.6. Стробоскопический эффект и его использование для дистанционного измерения угловой скорости вращения.

Угловая скорость как и вектор , которому она пропорциональна, является аксиальным вектором. При вращении вокруг неподвижной оси угловая скорость не меняет своего направления. При равномерном вращении остается постоянной и ее величина, так что вектор . В случае достаточного постоянства во времени величины угловой скорости вращение удобно охарактеризовать его периодом Т :

Период вращения - это время, за которое тело совершает один оборот (поворот на угол 2π) вокруг оси вращения.

Слова «достаточного постоянства» означают, очевидно, что за период (время одного оборота) модуль угловой скорости меняется несущественно.

Часто используют также число оборотов в единицу времени

При этом в технических приложениях (прежде всего, всякого рода двигатели) в качестве единицы времени общепринято брать не секунду, а минуту. То есть угловая скорость вращения указывается в оборотах в минуту. Как легко видеть, связь между (в радианах в секунду) и (в оборотах в минуту) следующая

Направление вектора угловой скорости показано на рис. 2.25.

По аналогии с линейным ускорением вводится угловое ускорение как скорость изменения вектора угловой скорости. Угловое ускорение также является аксиальным вектором (псевдовектором).

Угловое ускорение - аксиальный вектор, определяемый как производная по времени от угловой скорости

При вращении вокруг неподвижной оси, в более общем случае при вращении вокруг оси, которая остается параллельной самой себе, вектор угловой скорости также направлен параллельно оси вращения. При возрастании величины угловой скорости || угловое ускорение совпадает с ней по направлению, при убывании - направлено в противоположную сторону. Подчеркнем, что это лишь частный случай неизменности направления оси вращения, в общем случае (вращение вокруг точки) ось вращения сама поворачивается и тогда сказанное выше неверно.

Связь угловых и линейных скоростей и ускорений. Каждая из точек вращающегося тела движется с определенной линейной скоростью , направленной по касательной к соответствующей окружности (см. рис. 19). Пусть материальная точка вращается вокруг оси 00" по окружности радиусом R . За малый промежуток времени она пройдет путь , соответствующий углу поворота . Тогда

Переходя к пределу , получим выражение для модуля линейной скорости точки вращающегося тела.

Напомним, здесь R - расстояние от рассматриваемой точки тела до оси вращения.

Рис. 2.26.

Так как нормальное ускорение равно

то с учетом соотношения для угловой и линейной скорости получаем

Нормальное ускорение точек вращающегося твердого тела часто называют центростремительным ускорением.

Дифференцируя по времени выражение для , находим

где - тангенциальное ускорение точки, движущейся по окружности радиусом R .

Таким образом, как тангенциальное, так и нормальное ускорения растут линейно с ростом радиуса R - расстояния от оси вращения. Полное ускорение также линейно зависит от R :

Пример. Найдем линейную скорость и центростремительное ускорение точек, лежащих на земной поверхности на экваторе и на широте Москвы ( = 56° ). Мы знаем период вращения Земли вокруг собственной оси Т = 24 часа = 24х60х60 = 86 400 с . Отсюда находится угловая скорость вращения

Средний радиус Земли

Расстояние до оси вращения на широте равно

Отсюда находим линейную скорость

и центростремительное ускорение

На экваторе = 0, cos = 1, следовательно,

На широте Москвы cos = cos 56° = 0,559 и получаем:

Мы видим, что влияние вращения Земли не столь велико: отношение центростремительного ускорения на экваторе к ускорению свободного падения равно

Тем не менее, как мы увидим в дальнейшем, эффекты вращения Земли вполне наблюдаемы.

Связь между векторами линейной и угловой скорости. Полученные выше соотношения между угловой и линейной скоростью записаны для модулей векторов и . Чтобы записать эти соотношения в векторном виде, используем понятие векторного произведения.

Пусть 0z - ось вращения абсолютно твердого тела (рис. 2.28).

Рис. 2.28. Связь между векторами линейной и угловой скорости

Точка А вращается по окружности радиусом R . R - расстояние от оси вращения до рассматриваемой точки тела. Примем точку 0 за начало координат. Тогда

и так как

то по определению векторного произведения, для всех точек тела

Здесь - радиус-вектор точки тела, начинающийся в точке О, лежащей в произвольном фиксированном месте, обязательно на оси вращения

Но, с другой стороны

Первое слагаемое равно нулю, так как векторное произведение коллинеарных векторов равно нулю. Следовательно,

где вектор R перпендикулярен оси вращения и направлен от нее, а его модуль равен радиусу окружности, по которой движется материальная точка и начинается этот вектор в центре этой окружности .

Рис. 2.29. К определению мгновенной оси вращения

Нормальное (центростремительное) ускорение также можно записать в векторной форме:

причем знак «–» показывает, что оно направлено к оси вращения. Дифференцируя соотношение для линейной и угловой скорости по времени, находим для полного ускорения выражение

Первое слагаемое направлено по касательной к траектории точки на вращающемся теле и его модуль равен , поскольку

Сравнивая с выражением для тангенциального ускорения, приходим к выводу, что это - вектор тангенциального ускорения

Следовательно, второе слагаемое представляет собой нормальное ускорение этой же точки:

Действительно, оно направлено вдоль радиуса R к оси вращения и его модуль равен

Поэтому данное соотношение для нормального ускорения является другой формой записи ранее полученной формулы.

Дополнительная информация

http://www.plib.ru/library/book/14978.html - Сивухин Д.В. Общий курс физики, том 1, Механика Изд. Наука 1979 г. – стр. 242–243 (§46, п. 7) : обсуждается достаточно трудный для понимания вопрос о векторном характере угловых поворотов твердого тела;

http://www.plib.ru/library/book/14978.html - Сивухин Д.В. Общий курс физики, том 1, Механика Изд. Наука 1979 г. – стр. 233–242 (§45, §46 п.п. 1–6) : мгновенная ось вращения твердого тела, сложение вращений;

http://kvant.mirror1.mccme.ru/1990/02/kinematika_basketbolnogo_brosk.html - журнал «Квант» – кинематика баскетбольного броска (Р. Винокур);

http://kvant.mirror1.mccme.ru/ - журнал «Квант» 2003 г. №6, – стр. 5–11, поле мгновенных скоростей твердого тела (С. Кротов);

Элементарный угол поворота, угловая скорость

Рисунок 9.Элементарный угол поворота ()

Элементарные (бесконечно малые) повороты рассматривают как векторы. Модуль вектора равен углу поворота, а его направление совпадает с направлением поступательного движения острия винта, головка которого вращается в направлении движения точки по окружности, т. е. подчиняется правилу правого винта.

Угловая скорость

Вектор направлен вдоль оси вращения по правилу правого винта, т. е. так же, как и вектор (см. рисунок 10).

Рисунок 10.

Рисунок 11

Векторная величина, определяемая первой производной угла поворота тела по времени.

Связь модулей линейной и угловой скоростей

Рисунок 12

Связь векторов линейной и угловой скоростей

Положение рассматриваемой точки задается радиусом-вектором (проводится из лежащего на оси вращения начала координат 0). Векторное произведение совпадает по направлению с вектором и имеет модуль, равный

Единица угловой скорости - .

Псевдовекторы (аксиальные векторы) - векторы, направления которых связываются с направлением вращения (например,). Эти векторы не имеют определенных точек приложения: они могут откладываться из любой точки на оси вращения.

Равномерное движение материальной точки по окружности

Равномерное движение по окружности - движение, при котором материальная точка (тело) за равные промежутки времени проходит равные по длине дуги окружности.

Угловая скорость

: (-- угол поворота).

Период вращения Т - время, за которое материальная точка совершает один полный оборот по окружности, т. е. поворачивается на угол.

Так как промежутку времени соответствует, то.

Частота вращения - число полных оборотов, совершаемых материальной точкой при равномерном ее движении по окружности, в единицу времени.

Рисунок 13

Характерная особенность равномерного движения по окружности

Равномерное движение по окружности -- частный случай криволинейного движения. Движение по окружности со скоростью, постоянной по модулю (), является ускоренным. Это обусловлено тем, что при постоянном модуле направление скорости все время изменяется.

Ускорение материальной точки, равномерно движущейся по окружности

Тангенциальная составляющая ускорения при равномерном движении точки по окружности равна нулю.

Нормальная составляющая ускорения (центростремительное ускорение) направлена по радиусу к центру окружности (см. рисунок 13). В любой точке окружности вектор нормального ускорения перпендикулярен вектору скорости. Ускорение материальной точки, равномерно движущейся по окружности в любой ее точке, центростремительное.

Угловое ускорение. Связь линейных и угловых величин

Угловое ускорение - векторная величина, определяемая первой производной угловой скорости по времени.

Направление вектора углового ускорения

При вращении тела вокруг неподвижной оси вектор углового ускорения направлен вдоль оси вращения в сторону вектора элементарного приращения угловой скорости.

При ускоренном движении вектор сонаправлен вектору, при замедленном - противонаправлен ему. Вектор -- псевдовектор.

Единица углового ускорения - .

Связь линейных и угловых величин

(-- радиус окружности; -- линейная скорость; -- тангенциальное ускорение; -- нормальное ускорение; -- угловая скорость).