Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей. Определение скоростей точек плоской фигуры

24.04.2020 Здроровье

3.5.1. Метод полюса

Поскольку движение плоской фигуры можно рассматривать как составное из поступательного, когда все точки фигуры движутся так же, как полюс А со скоростью , и вращательного движения вокруг полюса, то скорость любой точки В фигуры определим векторной суммой скоростей (рис.23).

, (65)

где - скорость полюса точки А ;

Скорость точки В при вращении фигуры вокруг полюса точки А (если считать его неподвижным) численно равна

В перпендикулярно ВА в сторону вращения угловой скорости (рис.23).

Численное значение скорости точки В определим по теореме косинусов

где – угол между векторами и , Î .

Равенство проекций является следствием неизменности расстояния между точками А и В , принадлежащими твердому телу, поэтому равенство будет справедливо для любого движения твердого тела.

3.5.2. Метод мгновенного центра скоростей (МЦС)

Мгновенным центром скоростей называется точка Р плоской фигуры, скорость которой в данный момент времени равна нулю. Скорости всех других точек плоской фигуры в данный момент времени определяются так, как если бы движение фигуры было вращательным относительно точки Р (рис.25).

Рис.25.

Согласно метода полюса скорость точки В будет равна

. (69)

Так как скорость полюса (МЦС) точки Р равна нулю (), то

Вектор скорости направлен из точки В перпендикулярно ВР в сторону вращения угловой скорости w.

Аналогичное равенство можно представить для всех точек плоской фигуры, таким образом, скорости точек плоской фигуры пропорциональны их расстояниям до МЦС.

Для определения положения (МЦС) плоской фигуры, требуется знать направление линий, вдоль которых действуют вектора скоростей точек А и В ( и ). МЦС для данной фигуры будет находиться в точке пересечения перпендикуляров восстановленных к данным линиям.

Для нахождения скорости точки В , согласно рис.25, требуется знать скорость точки А . Тогда угловая скорость движения фигуры в данный момент времени составит

где АР – расстояние точки А до точки Р , определяется согласно исходным данным.

Угловая скорость под действием скорости относительно полюса точки Р направлена по часовой стрелке.

Скорость точки В в данный момент времени составит

Вектор скорости точки В () направлен перпендикулярно линии РВ в сторону вращения угловой скорости w (рис.25).

3.5.2.1. Понятие о центроидах

Траектория, которую описывает МЦС вместе с подвижной фигурой, называется подвижной центроидой (пример, при движении колеса по поверхности без скольжения (табл.2) подвижной центроидой является внешняя окружность колеса).

Геометрическое место МЦС, положений точки Р на неподвижной плоскости, называют неподвижной центроидой (при движении колеса по поверхности без скольжения (см. табл.2) неподвижной центроидой является неподвижная поверхность, по которой катится колесо).

3.5.2.2. Частные случаи МЦС

Таблица 2.

Мгновенно-поступательное движение звена АВ Движение колеса по поверхности (без скольжения) Движение подвижного блока
Точка В движется по прямой х-х , следовательно, скорость V B направлена вдоль оси, проводим перпендикуляр к оси х-х . Поскольку перпендикулярные линии не пересекаются, то звено АВ находится в мгновенно-поступательном движении, скорости всех точек этого звена равны, МЦС находится в бесконечности, . МЦС находится в точке касания колеса с неподвижной поверхностью, по- которой катится колесо, точке Р . Угловая скорость колеса, составит . Скорости точек В , С МЦС (точка Р ) находится в точке пересечения отрезка АВ и прямой, проходящей через концы векторов и . Определение положения точки Р . Угловая скорость блока

Просмотр: эта статья прочитана 11766 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Плоскопараллельным или плоским движением твердого тела называется движение, при котором все точки тела движутся в плоскостях, которые параллельны некоторой недвижимой плоскости (базовой).

Изучение плоского движения абсолютно твердого тела сведится к изучению одного сечения плоской фигуры, которое определяется движением трех точек, которые не лежат на одной прямой.

Задав угол поворота тела вокруг прямой, которая проходит через полюс А перпендикулярно к плоскости сечения, получим закон плоскопаралельного движения

Плоскопараллельное движение твердого тела состоит из поступательного,при котором точки тела движутся вместе с полюсом, и вращательного вокруг полюса.

Основные кинематические характеристики плоского движения тела:

  • скорость и ускорение поступательного движения полюса,
  • угловая скорость и угловое ускорение вращательного движения вокруг полюса.

Траектория произвольной точки плоской фигуры определяется расстоянием от точки до полюса А и углом вращения вокруг полюса.

Определение скоростей точек плоской фигуры

Скорость произвольной точки равна геометрической сумме скорости точки, которая принята за полюс, и вращательной скорости данной точки в ее вращательном движении вместе с телом вокруг полюса.

Модуль и направление скорости находится построением соответствующего параллелограмма.

Мгновенный центр скоростей (МЦС)

Мгновенный центр скоростей (МЦС) - точка, скорость которой в данный момент времени равна нулю. МЦС рассматривают в качестве полюса.

  1. Скорость произвольной точки тела, которая принадлежит плоской фигуре, равняется ее вращательной скорости вокруг мгновенного центра скоростей. Модуль скорости произвольной точки А равняется произведению угловой скорости тела на длину отрезка от точки до МЦС. Вектор направлен перпендикулярно к отрезку от точки до МЦС в направлении вращения тела
  2. Модули скоростей точек тела пропорциональны их расстояниям до МЦС

Случаи определения мгновенного центра скоростей

  1. Если известны скорость одной точки тела, угловая скорость вращения тела, то для нахождения МЦС (Р) необходимо повернуть вектор скорости точки в сторону вращения на 90 0 и на найденном луче отложить отрезок АР
  2. Если скорости двух точек тела параллельны и перпендикулярны прямой, которая проходит через эти точки, то МЦС находится в точке пересечения этой прямой и прямой, которая соединяет концы векторов скоростей
  3. Если известны направления скоростей двух точек тела и их направления не параллельны, то МЦС находится в точке Р пересечения перпендикуляров, проведенных к скоростям в этих точках
  4. Если колесо катится по недвижимой поверхности без скольжения, то МЦС (Р) находится в точке соприкосновения колеса с недвижимой поверхностью

В случаях 2 и 3 возможные исключения (мгновенно поступательное движение или мгновенный покой).

Сложное движение точки

Сложное движение точки - движение, при котором точка одновременно принимает участие в нескольких движениях.

Относительное движение - движение относительно подвижной системы отсчета.

Переносное движение - движениет подвижной системы отчета (переносящей среды) вместе с точкой относительно неподвижной системы отсчета.

Абсолютное движение - движение точки относительно недвижимой системы отсчета
Абсолютное движение точки является сложным движением, т.к. состоит из относительного и переносного движений.

При сложном движении абсолютная скорость точки равняется геометрической сумме ее относительной и переносной скоростей

Определение ускорений точки

Абсолютное ускорение точки равняется геометрической сумме трех векторов: относительного ускорения, характеризующего изменение относительной скорости в относительном движении; переносного ускорения, характеризующего изменение переносной скорости точки в переносном движении, и ускорения Кориолиса, характеризующего изменение относительной скорости точки в переносном движении и переносной скорости в относительном движении.

Ускорением Кориолиса точки называется двойное векторное произведение угловой скорости переносящей среды и относительной скорости точки.

Формат: pdf

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении


Определение усилий в стержнях плоской фермы
Пример решения задачи на определение усилий в стержнях плоской фермы методом Риттера и методом вырезания узлов

Другой простой и наглядный метод определения скоростей точек плоской фигуры (или тела при плоском движении) основан на понятии о мгновенном центре скоростей.

Мгновенным центром скоростей (МЦС) называется точка плоской фигуры, скорость которой в данный момент времени равна нулю.

Если фигура движется непоступательно, то такая точка в каждый момент времени t существует и притом единственная. Пусть в момент времени t точки А и В плоскости фигуры имеют скорости и , непараллельные друг другу (рис. 2.21.). Тогда точка Р , лежащая на пересечении перпендикуляров Аа к вектору и Вb к вектору , и будет мгновенным центром скоростей, так как .

Рисунок 2.21

В самом деле, если , то по теореме о проекциях скоростей вектор должен быть одновременно перпендикулярен и АР (так как ), и ВР (так как ), что невозможно. Из этой же теоремы видно, что никакая другая точка фигуры в этот момент времени не может иметь скорость, равную нулю.

Если теперь в момент времени t взять точку Р за полюс. То скорость точки А будет

и так для любой точки фигуры.

Из этого следует еще, что и , тогда

= , (2.54)

т.е. что скорости точек плоской фигуры пропорциональны их расстоянию от мгновенного центра скоростей.

Полученные результаты приводят к следующим выводам:

1. Для определения мгновенного центра скоростей надо знать только направления скоростей, например, и каких-нибудь двух точек А и В плоской фигуры.

2. Для определения скорости любой точки плоской фигуры надо знать модуль и направление скорости какой-нибудь одной точки А фигуры и направление скорости другой её точки В.

3. Угловая скорость плоской фигуры равна в каждой момент времени отношению скорости какой-нибудь точки фигуры к её расстоянию от мгновенного центра скоростей Р:

Рассмотрим некоторые частные случаи определения МЦС, которые помогут решать теоретической механики.

1. Если плоскопараллельное движение осуществляется путем качения без скольжения одного цилиндрического тела по поверхности другого неподвижного, то точка Р катящегося тела, касающаяся неподвижной поверхности (рис. 2.22), имеет в данный момент времени вследствие отсутствия скольжения скорость, равную нулю (), и следовательно, является мгновенным центром скоростей.



Рисунок 2.22

2. Если скорости точек А и В плоской фигуры параллельны друг другу, причем линия АВ не перпендикулярна (рис.2.23,а), то мгновенный центр скоростей лежит в бесконечности и скорости всех точек // . При этом из теоремы о проекциях скоростей следует, что , т.е. , в этом случае фигура имеет мгновенное поступательное движение. , которое дает .

5)Поступательное движение. Примеры.

Определение вращательного движения тела вокруг неподвижной оси.

Уравнение вращательного движения.

– такое движение, при котором все его точки движутся в плоскостях, перпендикулярных некоторой неподвижной прямой, и описывают окружности с центрами, лежащими на этой прямой, называемой осью вращения.

Движение задается законом изменения двугранного угла φ (угла поворота), образованного неподвижной плоскостью P, проходящей через ось вращения, и плоскостью Q, жестко связанной с телом:



Угловая скорость – величина, характеризующая быстроту изменения угла поворота.

Угловое ускорение – величина, характеризующая быстроту изменения угловой скорости.

Определение скорости любой точки плоской фигуры.

1 способ определения скоростей – через векторы. Скорость любой точки плоской фигуры равна геометрической сумме скоростей полюса и вращательной скорости этой точки вокруг полюса. Таким образом, скорость точки B равна геометрической сумме скорости полюса A и вращательной скорости точки B вокруг полюса:

2 способ определения скоростей – через проекции. (теорема о проекциях скоростей) Проекции скоростей точек плоской фигуры на ось, проходящую через эти точки равны.

3)Формулы вычисления скорости и ускорения точки при естественном способе задания её движения.

Вектор скорости; - Проекция скорости на касательную;

Составляющие вектора ускорения; -проекции ускорения на оси t и n;

Таким образом полное ускорение точки есть векторная сумма двух ускорений:

касательного, направленного по касательной к траектории в сторону увеличения дуговой координаты, если (в противном случае – в противоположную) и

нормального ускорения, направленного по нормали к касательной в сторону центра кривизны (вогнутости траектории): Модуль полного ускорения:

4) Формулы вычисления скорости и ускорения точки при координатном способе задания её движения в декартовых координатах.

Составляющие вектора скорости: -Проекции скорости на оси координат:

-составляющие вектора ускорения; -проекции ускорения на оси коодинат;

5)Поступательное движение. Примеры.

(ползун, поршень насоса, спарник колес паровоза, движущегося по прямолинейному пути, кабина лифта, дверь купе, кабина колеса обозрения).- это такое движение, при котором любая прямая, жестко связанная с телом, остается параллельной самой себе. Обычно поступательное движение отождествляется с прямолинейным движением его точек, однако это не так. Точки и само тело (центр масс тела) могут двигаться по криволинейным траекториям, см. например, движение кабины колеса обозрения. Другими словами - это движение без поворотов.