Скорости точек тела плоской фигуры. Определение скорости любой точки плоской фигуры. Разложение движения на поступательное и вращательное

29.03.2020 История 

Напомним, что движение плоской фигуры можно рассматривать как слагающееся из поступательного движения вместе с полюсом и вращательного движения вокруг полюса.

В соответствии с этим скорость произвольной точки М плоской фигуры геометрически складывается из скорости какой-нибудь точки А, принятой за полюс, и скорости, которую точка М получает при вращении фигуры вокруг этого полюса, т. е.

При этом скорость V MA определяется как скорость точки М при вращении тела вокруг неподвижной оси, проходящей через точку А перпендикулярно плоскости движения (см. § 7.2), т. е.

Таким образом, если известны скорость полюса V А и угловая скорость тела со, то

скорость любой точки М тела определяется в соответствии с равенством (8.2), диагональю параллелсгграмма, построенного на векторах V A и V MA , как на сторонах (рис. 8.3), а модуль скорости V M вычисляется по формуле

где у - угол между векторами V A и V MA

Задача 8.1. Колесо катится по неподвижной поверхности без скольжения (рис. 8.4, а). Найти скорость точек К и D колеса, если известны скорость V c центра С колеса, радиус R колеса, расстояние КС = b и угол а.

Решение. 1. Рассматриваемое движение колеса является плоскопараллельным. Приняв точку С за полюс (так как ее скорость известна), в соответствии с общим равенством (8.2), для точки К можем записать

Однако нет возможности определить значение V KC , так как неизвестна угловая скорость со.

Для определения со рассмотрим скорость другой точки, а именно точки Р касания колеса о неподвижную поверхность (рис. 8.4, б). Для этой точки можно написать равенство

Особенностью точки Р является то обстоятельство, что в данный момент времени V p - 0, так как колесо катится без скольжения. Тогда равенство (б) принимает вид


откуда получим

Отсюда следует: 1) векторы скоростей V PC и V c должны быть направлены в противоположные стороны; 2) из равенства модулей V PC - V c получаем ыРС= V c , отсюда найдем со = V c /PC= V c /R. В соответствии с направлением вектора V PC определяем направление дуговой стрелки со и показываем ее на чертеже (рис. 8.4, б).

Теперь возвращаемся к определению V K по равенству (а). Находим

Vкс = о КС - V^b/R. Зная направление угловой скорости со, изображаем вектор V KC перпендикулярно отрезку КС и выполняем построение параллелограмма на векторах V c и V KC (рис. 8.4, в). Так как в данном случае V c и V KC взаимно перпендикулярны, окончательно находим

2. Скорость точки D на ободе колеса определим из равенства V D = V C + V DC . Так как численно V DC - соR - V c , то параллелограмм, построенный на векторах V c и V DC , будет ромбом. Угол между V c и V DC равен 2а. Определив V D как длину соответствующей диагонали ромба, получим

Теорема о проекциях скоростей двух точек твердого тела

Согласно равенству (8.2) для двух_ произвольных точек А и В твердого тела справедливо равенство V B =V A +V BA , в соответствии с которым выполним построение, показанное на рис. 8.5. Проецируя это равенство на ось Az, направленную по А В, получим Ум + V BAz . Учитывая, что вектор V BA перпендикулярен прямой

А В, находим

Этот результат и выражает теорему: проекции скоростей двух точек твердого тела на ось, проходящую через эти точки, равны друг другу.


Отметим, что равенство (8.5) математически отражает то обстоятельство, что тело рассматривается как абсолютно твердое и расстояние между точками А и В не изменяется. Поэтому равенство (8.5) выполняется не только при плоскопараллельном, но и при любом движении твердого тела.

Задача 8.2. Ползуны А и В, соединенные стержнем с шарнирами на концах, перемешаются по взаимно перпендикулярным направляющим в плоскости чертежа (рис. 8.6, а). Определить при данном угле а скорость точки В, если известна скорость V A .

Решение. Проведем ось х через точки А и В. Зная направление V A ,

находим проекцию этого вектора на прямую АВ: V Ax - V A cos а (на рис. 8.6, б это будет отрезок Аа). Далее на чертеже от точки В откладываем ВЬ - Аа (так как отрезок Аа расположен на оси х вправо от точки А, то и отрезок ВЬ откладываем от точки В по оси х вправо). Восставляя в точке Ь перпендикуляр к прямой АВ, находим точку конца вектора V B .

Согласно теореме о проекциях V A cos а = K^cosp. Отсюда (учтя, что Р = 90° - а) окончательно получим V B = V A cos a/cos(90° - a) или V B = = V A ctg a.

Определение скоростей точек с помощью мгновенного центра скоростей

Для определения скоростей точек плоской фигуры выберем в качестве полюса какую-либо точку Р. Тогда, согласно формуле

(8.2), скорость произвольной точки М определяется как сумма двух векторов:

Если бы скорость полюса Р в данный момент времени была равна нулю, то правая часть этого равенства была бы представлена одним слагаемым У МР и скорость любой точки определялась бы как скорость точки М тела при вращении его вокруг неподвижного полюса Р.

Следовательно, если выбрать в качестве полюса точку Р, скорость которой в данный момент времени равна нулю, то модули скоростей всех точек фигуры будут пропорциональны их расстояниям до полюса Р, а направления векторов скоростей всех точек будут перпендикулярны прямым, соединяющим рассматриваемую точку и полюс Р. Естественно, что расчет по формулам (8.6) значительно проще расчета по общей формуле (8.2).

Точка плоской фигуры, скорость которой в данный момент времени равна нулю, называется мгновенным центром скоростей (МЦС). Легко убедиться, что если фигура движется непоступательно, то такая точка в каждый момент времени существует и при том единственная. Отметим, что мгновенный центр скоростей может быть расположен как на самой фигуре, так и на ее мысленном продолжении.

Рассмотрим способы определения положения мгновенного центра скоростей.

1. Пусть в момент времени t jum плоской фигуры известны ее угловая скорость со и скорость V A какой-нибудь ее точки А (рис. 8.7, а). Тогда, выбирая точку А в качестве полюса,_скорость_иско- мой нами точки Р можно определить по формуле V p = V A + Vp A -

Задача состоит в том^чтобы найти такую точку Р, у которой V P =0, значит, для нее V A +У РЛ =0 и отсюда У РА = -У А. Следовательно, для точки Р скорость У РА, которую точка Р получает при вращении фигуры вокруг полюса А, и скорость У А полюса А равны по модулю (У РА = У А) или озАР= У А и противоположны по направлению. Кроме того, точка Р должна лежать на перпендикуляре к вектору У А. Определение положения точки Р осуществляется таким построением: из точки А (рис. 8.7, б) восставим перпендикуляр к вектору У А и отложим на нем расстояние АР = У А /со в ту сторону от точки А, куда «покажет» вектор У А, если его повернуть на 90° в направлении дуговой стрелки со.

Мгновенный центр скоростей является единственной точкой плоской фигуры, скорость которой в данный момент времени равна нулю.

В другой момент времени мгновенным центром скоростей может быть уже другая точка плоской фигуры.

2. Пусть известны направления скоростей V A и У в (рис. 8.8, а) двух точек А и В плоской фигуры (причем векторы скоростей этих точек непараллельны), или известны элементарные перемещения этих точек. Мгновенный центр скоростей будет находиться в точке пересечения перпендикуляров, восставленных из точек А и В к скоростям этих точек (или к элементарным перемещениям точек). Такое построение выполнено на рис. 8.8, б. Оно основано на том, что для любых точек А и В фигуры применимы положения (8.6):

Из этих равенств следует, что

Зная положение МЦС и угловую скорость тела, применив формулы (8.6), легко определить скорость любой точки этого тела. На- пример^для точки К (см. рис. 8.8, б) модуль скорость V K =coКР, вектор У к направлен перпендикулярно прямой КР в соответствии с

направлением дуговой стрелки ю.

Следовательно, скорости точек плоской фигуры определяются в данный момент времени так, как будто эта фигура вращается вокруг мгновенного центра скоростей.

3. Если скорости точек А и В плоской фигуры параллельны друг другу, то возможны три варианта, которые изображены на рис. 8.9. Для случаев, когда прямая АВ перпендикулярна векторам V А и V B (рис. 8.9, а, б), построения основываются на пропорции (8.7).


Если скорости точек Ли В параллельны, а прямая AB_nt перпендикулярна V А (рис. 8.9, в), то перпендикуляры к У А и V B параллельны и мгновенный центр скоростей находится в бесконечности (АР= оо); угловая скорость вращения фигуры со = VJAP = V A /cc = 0. В этом случае скорости всех точек фигуры в данный момент времени равны друг другу, т. е. фигура имеет распределение скоростей как при поступательном движении. Такое состояние движения тела называют мгновенно поступательным. Отметим, что в этом состоянии ускорения всех точек тела не будут одинаковыми.

4. Если плоское движение тела осуществляется путем его качения без скольжения по неподвижной поверхности (рис. 8.10), то точка касания Р будет являться мгновенным центром скоростей (см. задачу 8.1).

Задача 8.3. Плоский механизм состоит из стержней 7, 2, 3, 4 и ползуна В (рис. 8.11), соединенных друг с другом и с неподвижными опорами 0 { и 0 2 шарнирами; точка D находится в середине стержня АВ. Длины стержней: / 2 =0,4 м, / 2 = 1,2 м, / 3 = 0,7 м, / 4 = 0,3 м. Угловая скорость стержня 7 в заданном положении механизма со, = 2 с -1 и направлена против хода часовой стрелки. Определить V A , V B , V D , V E , oo 2 , co 3 , to 4 и скорость точки К в середине стержня DE (DK = КЕ).

Решение. В рассматриваемом механизме стержни 7, 4 совершают вращательное движение, ползун В - поступательное, а стержни 2, 3 -

плоскопараллельное движение.

Скорость точки А определим как принадлежащую стержню 7, совершающему вращательное движение:

Рассмотрим движение стержня 2. Скорость точки А определена, а направление скорости точки В обусловлено тем, что она принадлежит одновременно стержню 2 и пол-


зуну, движущемуся вдоль направляющих. Теперь, восставляя из точек А и В перпендикуляры к У А и направлению движения ползуна В, находим положение точки С 2 - МЦС стержня 2.

По направлению вектора У А, учитывая, что в рассматриваемом положении механизма стержень 2 вращается вокруг точки С 2 , определяем направление угловой скорости со 2 стержня 2 и находим ее числовое значение (о 2 = V a /AC 2 = 0,8/1,04 = 0,77 с -1 , где АС 2 - АВ sin 60° = 1,04 м (получим при рассмотрении ААС~,В).

Теперь определяем числовые значения и направления скоростей точек В и D стержня 2 (так как ABDC 2 равносторонний, то ВС 2 - DC 2 - - 0,6 м):

Рассмотрим движение стержня 3. Скорость точки D известна. Так как точка Е принадлежит одновременно и стержню 4, вращающемуся вокруг оси 0 4 , то У е 10 4 Е. Тогда, проводя через точки D и Е прямые, перпендикулярные скоростям V D wV E , находим положение точки С 3 - МЦС стержня

3. По направлению вектора V D , глядя из неподвижной точки С 3 , определяем направление угловой скорости со 3 , а ее числовое значение находим (предварительно определив из AZ)C 3 ? отрезок Z)C 3 = DEsin 30° = 0,35 м): со 3 = V d /C 3 D= 1,32 с -1 .

Для определения скорости точки К проведем прямую КС 3 и, учитывая, что АР КС 3 равносторонний (КС 3 = 0,35 м), вычислим У к = = 0,462 м/с, У к АКС 3 .

Рассмотрим движение стержня_4, вращающегося вокруг оси 0 4 . Зная направление и числовое значение V E , находим направление и значение угловой скорости со 4: со 4 = V e /0 4 E - 2,67 с.

Ответ: V A = 0,8 м/с, V B = V D = 0,462 м/с, V E = 0,8 м/с, со 2 = 0,77 с" 1 , со 3 = 1,32 с -1 , (о 4 = 2,67 с -1 , направления этих величин показаны на рис. 8.11.

Примечание. В механизме, состоящем из нескольких тел, каждое непоступательно движущееся тело имеет в данный момент времени свой мгновенный центр скоростей и свою угловую скорость.

Задача 8.4. Плоский механизм состоит из стержней 1, 2, 3 и катка, катящегося без скольжения по неподвижной плоскости (рис. 8.12, а). Соединения стержней между собой и стержня 3 к катку в точке D - шарнирные. Длины стержней: 1 { - 0,4 м, / 2 = 0,6 м, / 3 = 0,8 м. При данных углах а = 60°, В = 30° известны значения и направления угловой скорости со, = = 2 с и скорости центра О катка V 0 = 0,346 м/с, ZABD = 90°. Определить скорость точки В и угловую скорость со 2 .

Решение. Механизм имеет две степени свободы (его положение определяется двумя углами а и р, не зависящими друг от друга) и скорость точки В (общей точки стержней 2 и 3) зависит от скоростей точек А и D.

Рассматривая движение стержня /, находим направление и значение скорости точки A: V A = coj/j = 0,8 м/с, V a AjO { A.

Рассмотрим движение катка. Его мгновенный центр скоростей расположен в точке Р; тогда V D найдем из пропорции

Так как ADOP равнобедренный и острые углы в нем равны 30°, то DP- 2 OP cos 30° = ОРл/ 3. Из равенства (а) находим V D - 0,6 м/с. Вектор V D направлен перпендикулярно DP.

Так как точка В принадлежит одновременно стержням АВ и BD, то по теореме о проекциях скоростей должно быть: 1) проекция вектора У в на прямую А В У А (отрезок Аа на рис. 8.12, а), т. е. У А cos а = 0,4 м/с; 2) проекция вектора У в на прямую DB равна проекции на эту прямую вектора У 0 (отрезок Dd на рис. 8.12, а), т. е. У 0 cos у = 0,3 м/с (у = 60°).

Далее решаем графически. Откладываем от точки В в соответствующих направлениях отрезки ВЬ { = Аа и Bb 2 = Dd. Скорость точки В равна сумме векторов V B = Bb+ Bbj. Восставляем из точки Ь { перпендикуляр к ВЬ Х, а из


точки b 2 - перпендикуляр к ВЬ 2 . Точка пересечения этих перпендикуляров определяет конец искомого вектора V B .

Так как направления отрезков ВЬ и ВЬ 2 взаимно перпендикулярны, то

Определяем со 2 . На рис. 8.12, б показан так называемый план скоростей, который графически изображает векторное равенство

где векторы V A и V B определены (см. рис. 8.12, а), а направление V BA перпендикулярно стержню АВ. Из чертежа (рис. 8.12, б) находим

Теперь определяем со 2 = V ba /AB- 1,66 с -1 (направление со 2 - против хода часовой стрелки).

Ответ: V B - 0,5 м/с, со 2 = 1,66 с -1 .

Уравнения плоского движения.

Основная теорема

Движение плоской фигуры в своей плоскости складывается из двух движений: поступательного вместе с произвольно выбранной точкой (полюсом), и вращательного вокруг этого полюса.

Положение плоской фигуры на плоскости определяется положением выбранного полюса и углом поворота вокруг этого полюса, поэтому плоское движение описывается тремя уравнениями:

Первые два уравнения (рис.5) определяют то движение, которое фигура совершала бы при φ = const, очевидно, что это движение будет поступательным, при котором все точки фигуры будут двигаться так же, как полюс А .

Третье уравнение определяет движение, которое фигура совершала бы при х А = const и у А = const, т.е. когда полюс А будет неподвижен; это движение будет вращением фигуры вокруг полюса А.

При этом вращательное движение не зависит от выбора полюса, а поступательное движение характеризуется движением полюса.

Зависимость между скоростями двух точек плоской фигуры.

Рассмотрим две точки А и В плоской фигуры. Положение точкиВ относительно неподвижной системы координат Оху определяется радиусом-вектором r B (рис.5):

r B = r A + ρ,

где r A - радиус-вектор точки А , ρ = АВ

вектор, определяющий положение точки В

относительно подвижных осей Ах 1 у 1 , перемещающихся поступательно вместе с полюсом А параллельно неподвижным осям Оху .

Тогда скорость точки В будет равна

.

В полученном равенстве величина является скоростью полюса А.

Величина равна скорости, которую точка В получает при = соnst, т.е. относительно осей Ах 1 у 1 при вращении фигуры вокруг полюса А . Введем для этой скорости обозначение :

Следовательно,

В
Скорость любой точки В плоской фигуры равна геометрической сумме скорости V A выбранного полюса А и скорости V BA точки во вращательном движении вокруг полюса (рис.6):

Скорость вращательного движения точки направлена перпендикулярно отрезку АВ и равна

Модуль и направление скорости точки В находится построением соответствующего параллелограмма (рис.6).

Пример 1. Найти скорости точек А, В и D обода колеса, катящегося по прямолинейному рельсу без скольжения, если скорость центра колеса С равна V C .

Решение. Выбираем точку С, скорость которой известна за полюс. Тогда скорость точки А равна

где и по модулю .

Значение угловой скорости ω найдем из условия того, что точка Р колеса не скользит по рельсу и, следовательно, в данный момент равна нулю V Р = 0 .

В данный момент скорость точки Р равна

Так как в точке Р скорости и направлены по одной прямой противоположные стороны и V Р = 0 , то V PC = V C , откуда получаем, что ω = V C . /R , следовательно, V AC = ω R = V C .



Скорость точки А является диагональю квадрата, построенного на взаимно перпендикулярных векторах и , модули которых равны, следовательно

Аналогично определяется скорость точки D. Скорость точки B равна

При этом скорости и равны по модулю и направлены по одной прямой, поэтому V B = 2V C .

Стержень АВ совершает плоское движение, которое можно представить как падение без начальной скорости под действием силы тяжести и вращение вокруг центра тяжести С с постоянной угловой скоростью .

Определить уравнения движения точки В , если в начальный момент стержень АВ был горизонтален, а точка В была справа. Ускорение силы тяжести q . Длина стержня 2l . Начальное положение точки С взять за начало координат, а оси координат направить, как указано на рисунке.

На основании соотношений (2) и(3) уравнения (1) примут вид:

Производя интегрирование и замечая, что в начальный момент t=0, x B =l и y B =0 ,получим координаты точки В в следующем виде.

Определение скоростей точек плоской фигуры

Было отмечено, что движение плоской фигуры можно рассматривать как слагающееся из поступательного движения, при котором все точки фигуры движутся со скоростью полюса А , и из вращательного движения вокруг этого полюса. Покажем, что скорость любой точки М фигуры складывается геометрическииз скоростей, которые точка получает в каждом из этих движений.

В самом деле, положение любой точки М фигуры определяется по отношению к осям Оху радиусом-вектором (рис.3), где - радиус-вектор полюса А , - вектор, определяю­щий положение точки М относительно осей , перемещающих­ся вместе с полюсом А поступательно (движение фигуры по отноше­нию к этим осям представляет собой вращение вокруг полюса А ). Тогда

В полученном равенстве величина есть скорость полюса А ; величина же равна скорости , которую точка М получает при , т.е. относительно осей , или, иначе говоря, при вращении фигуры вокруг полюса А . Таким образом, из предыдущего равенства действительно следует, что

Скорость , которую точка М получает при вращении фигуры вокруг полюса А :

где ω - угловая скорость фигуры.

Таким образом, скорость любой точки М плоской фигуры геометрически складывается из скорости какой-нибудь другой точки А , принятой за полюс, и скорости, которую точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление скорости находятся построением соответствующего параллело­грамма (рис.4).

Рис.3Рис.4

Теорема о проекциях скоростей двух точек тела

Определение скоростей точек плоской фигуры (или тела, дви­жущегося плоскопараллельно) связано обычно с довольно сложными расчетами. Однако можно получить ряд других, практически более удобных и простых мето­дов определения скоростей точек фигуры (или тела).

Рис.5

Один из таких методов дает тео­рема: проекции скоростей двух точек твердого тела на ось, проходящую через эти точки, равны друг другу. Рассмотрим какие-нибудь две точки А и В плоской фигуры (или тела). Принимая точку А за полюс (рис.5), получаем . Отсюда, проектируя обе части равенства на ось, направленную по АВ , и учитывая, что вектор перпендику­лярен АВ , находим


и теорема доказана.

Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей.

Другой простой и наглядный метод определения скоростей точек плоской фигуры (или тела при плоском движении) основан на поня­тии о мгновенном центре скоростей.

Мгновенным центром скоростей называется точка плоской фигу­ры, скорость которой в данный момент времени равна нулю.

Легкоубедиться, что если фигура движется непоступательно , то такая точка в каждый момент времени t существует и притом единственная. Пусть в момент времени t точки А и В плоской фигуры имеют скорости и , не параллельные друг другу (рис.6). Тогда точка Р , лежащая на пересечении перпендикуляров Аа к вектору и В b к вектору , и будет мгновенным центром скоростей так как . Всамомделе,еслидопустить, что , то по теореме о проекциях скоростей вектор должен быть одновременно перпендикулярен и АР (так как ) и ВР (так как ), что невозможно. Из той же теоремы видно, что никакая другая точ­ка фигуры в этот момент времени не может иметь скорость, равную нулю.

Рис.6

Если теперь в момент времени взять точку Р за полюс, то скорость точки А будет

так как . Аналогичный результат получается для любой другой точки фигуры. Следовательно, скорости точек плоской фигурыопределяются в данный момент времени так, как если бы движение фигуры было вращением вокруг мгновенного центра скоростей. При этом

Из равенств, следует еще, что точек плоской фигуры пропорциональны их расстоя­ниям от МЦС.

Полученные результаты приводят к следующим выводам.

1. Для определения мгновенного центра скоростей надо знать то­лько направления скоростей и каких-нибудь двух точек А и В плоской фигуры (или траектории этих точек); мгновенный центр скоростей находится в точке пересечения перпендикуляров, вос­ставленных из точек А и В к скоростям этих точек (или к каса­тельным к траекториям).

2. Для определения скорости любой точки плоской фигуры, надо знать модуль и направление скорости какой-нибудь одной точки А фигуры и направление скорости другой ее точки В . Тогда, вос­ставив из точек А и В перпендикуляры к и , построим мгно­венный центр скоростей Р и по направлению определим направ­ление поворота фигуры. После этого, зная , найдем скорость любой точки М плоской фигуры. Направлен век­тор перпендикулярно РМ в сторону поворота фигуры.

3. Угловая скорость плоской фигуры равна в каждый данный момент времени отношению скорости какой-нибудь точки фигуры к ее расстоянию от мгновенного центра скоростей Р :

Рассмотрим некоторые частные случаи определения мгновенного центра скоростей.

а) Если плоскопараллельное движение осуществляется путем качения без скольжения одного цилиндрического тела по поверх­ности другого неподвижного, то точка Р катящегося тела, касаю­щаяся неподвижной поверхности (рис.7), имеет в данный момент времени вследствие отсутствия скольжения скорость, равную нулю ( ), и, следовательно, является мгновенным центром скоростей. Примером служит качение колеса по рельсу.

б) Если скорости точек А и В плоской фигуры параллельны друг другу, причем линия АВ не перпендикулярна (рис.8,а), то мгновенный центр скоростей лежит в бесконечности и скорости всех точек параллельны . При этом из теоремы о проекциях скоростей следует, что т. е. ; аналогичный результат получается для всех других точек. Следовательно, в рас­сматриваемом случае скорости всех точек фигуры в данный момент времени равны друг другу и по модулю, и по направлению, т.е. фигура имеет мгновенное поступательное распределение скоростей (такое состояние движения тела называют еще мгновенно поступа­тельным). Угловая скорость тела в этот момент времени, как видно равна нулю.

Рис.7

Рис.8

в) Если скорости точек А и В плоской фигуры параллельны друг другу и при этом линия АВ перпендикулярна , то мгновен­ный центр скоростей Р определяется построением, показанным на рис.8,б. Справедливость построений следует из пропорции. В этом случае, в отличие от предыдущих, для нахождения центра Р надо кроме направлений знать еще и модули скоростей .

г) Если известны вектор скорости какой-нибудь точки В фигуры и ее угловая скорость , то положение мгновенного центра скоростей Р , лежащего на перпендикуляре к (рис.8,б), можно найти как .

Решение задач на определение скорости.

Для определения искомых кинематических характеристик (угловой скорости тела или скоростей его точек) надо знать модуль и направление скорости какой-нибудь одной точки и направление скорости другой точки сечения этого тела. С определения этих характеристик по данным задачии следует начинать решение.

Механизм, движение которого исследуется, надо изображать на чертеже в том положении, для которого требуется определить соответствующие характеристики. При расчете следует помнить, что понятие о мгновенном центре скоростей имеет место для данного твердого тела. В механизме, состоящем из нескольких тел, каждое непоступательное движущееся тело имеет в данный момент времени свой мгновенный центр скоростей Р и свою угловую скорость.

Пример 1. Тело,имеющееформука­тушки, катится своим средним цилиндром по неподвиж­ной плоскости так, что (см). Радиусы цилин­дров: R = 4 сми r = 2 см (рис.9)..

Рис.9

Решение. ОпределимскороститочекА,В иС .

Мгновенныйцентр скоростей нахо­дится в точке касания катушки с плоско­стью.

Скоростьполюса С.

Угловая скорость катушки

Скорости точекА иВ направленыперпендикулярноотрезкам прямых, соединяющих эти точки с мгновенным центром скоростей. Величина скоростей:

Пример 2. Колесо радиуса R = 0,6 м катится без скольжения по прямолинейному участку пути (рис.9.1); скорость его центра С постоянна и равна v c = 12 м/с. Найти угловую скорость колеса и скорости концов М 1 , М 2 , M 3 , М 4 вертикального и горизонтального диаметров колеса.

Рис.9.1

Решение. Колесо совершает плоскопараллельное движение. Мгно­венный центр скоростей колеса находится в точке М1 контакта с горизонтальной плоскостью, т. е.

Угловая скорость колеса

Находим скорости точек М2 , M3 и М4

Пример 3 . Ведущее колесо автомобиля радиуса R = 0,5 м катится со скольжением (с буксованием) по прямолинейному участку шоссе; скорость его центра С постоянна и равна v c = 4 м/с. Мгновенный центр скоростей колеса находится в точке Р на расстоянии h = 0,3 м от плоскости качения. Найти угловую скорость колеса и скорости точек А и В его вертикального диаметра.

Рис.9.2

Решение. Угловая скорость колеса

Находим скорости точек А и В

Пример 4. Найти угловую скорость шатуна АВ и скорости точек В и С кривошипно-шатунного механизма (рис.9.3,а ). Дана угловая скорость кривошипа OA и размеры: ω ОА = 2 с -1 , OA = АВ = 0,36 м, АС = 0,18 м.

а) б)

Рис.9.3

Решение. Кривошип OA совершает вращательное движение, шатун АВ - плоскопараллельное движение (рис.9.3,б ).

Находим скорость точки А звена OA

Скорость точки В направлена по горизонтали. Зная направление скоростей точек А и В шатуна АВ, определяем положение его мгновенного центра скоростей - точку Р АВ.

Угловая скорость звена АВ и скорости точек В и С:

Пример 5. Стержень АВ скользит концами по взаимно перпендикулярным прямым так, что при угле скорость (рис.10). Длина стержня AB = l . Определим скорость конца А и угловую скорость стержня.

Рис.10

Решение. Нетрудно определить направление век­тораскороститочкиА , скользящей по вер­тикальнойпрямой. Тогда находится на пересечении перпендикуляровк и (рис. 10).

Угловая скорость

Скорость точки А :

А ско­рость центра стержня С , например,направленаперпендикулярно иравна:



План скоростей.

Пусть известны скорости нескольких точек плоского сечения тела (рис.11). Если эти скорости отложить в масштабе из некоторой точки О и соединитьихконцыпрямыми,то получитсякартинка,котораяназывается планом скоростей. (На рисунке ) .

Рис.11

Свойстваплана скоростей.

а)Стороны треугольников на плане скоростей перпендику­лярнысоответствующим прямым на плоскости тела.

Действительно, . Но на плане скоростей . Значит причём перпендикулярнаАВ , по­этому и .Точно так же и .

б) Стороныплана скоростейпропорциональны соответствующим от­резкам прямых на плоскости тела.

Таккак , то отсюдаи следует, что стороныплана скоростей пропорциональны отрезкам прямых на плоскости тела.

Объединивобасвойства,можносделать вывод,что план скоростей подобенсоответствующейфигуренателе и повёрнут относительно её на 90˚ понаправлениювращения.Этисвойстваплана скоростей позволяют определять скорости точек тела графическим способом.

Пример 6. Нарис.12 вмасштабеизображёнмеханизм. Известна угловая скорость звена ОА .

Рис.12

Решение. Чтобы построить план ско­ростейдолжнабытьизвестна скоростькакой-нибудьодной точкиихотябынаправление вектораскорости другой. В на­шем примере можно определить скорость точки А : и направлениееёвектора .

Рис.13

Откладываем (рис.13) из точки о в масштабе Известно направлениевектораскоростиползунаВ – горизонтальное. Проводим на плане скоростей из точки О прямую I понаправлению скорости , на которойдолжнанаходитьсяточка b , определяющая скорость этой точки В . Таккакстороныпланаскоростей перпендикулярны соответствующим звеньяммеханизма,тоизточкиа проводимпрямуюперпендикулярно АВ допересеченияс прямой I . Точка пересечения определит точку b , а значит и скорость точки В : . По второму свойству плана скоростей его стороны подобны звеньяммеханизма. Точка С делит АВ пополам, значит и с должна делить а b пополам. Точка с определит на плане скоростей величину и направление скорости (если с соединить с точкой О ).

СкоростьточкиЕ равнанулю, поэтомуточка е на плане скоростейсовпадает с точкой О .

Далее.Должнобыть и . Проводим эти прямые, находимихточкупересечения d .Отрезоко d определитвекторскорости .

Пример 7. В шарнирном четырехзвеннике ОАВС ведущий кривошип OA см равномерно вращается вокруг оси О с угловой скоростью ω = 4 с -1 и при помощи шатуна АВ = 20 см приводит во вращательное движение кривошип ВС вокруг оси С (рис.13.1,а ). Определить скорости точек А и В, а также угловые скорости шатуна АВ и кривошипа ВС.

а) б)

Рис.13.1

Решение. Скорость точки А кривошипа OA

Взяв точку А за полюс, составим векторное уравнение

где

Графическое решение этого уравнения дано на рис.13.1 (план скоростей).

С помощью плана скоростей получаем

Угловая скорость шатуна АВ

Скорость точки В можно найти с помощью теоремы о проекциях скоростей двух точек тела на соединяющую их прямую

В и угловая скорость кривошипа СВ

Определение ускорений точек плоской фигуры

Покажем, что ускорение любой точки М плоской фигуры (так же, как и скорость) складывается из ускорений, которые точка получает при поступательном и вращательном движениях этой фигуры. Положение точки М по отношению к осям О xy (см.рис.30) определяется радиусом-вектором - угол между вектором и отрезком МА (рис.14).

Таким образом, ускорение любой точки М плоской фигуры геометрически складывается из ускорениякакой-нибудь другой точки А , принятой за полюс, и ускорения, которое точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление ускорения , находятся построением соответствующего параллелограмма (рис.23).

Однако вычисление и ускорения какой-нибудь точки А этой фигуры в данный момент; 2) траектория какой-нибудь другой точки В фи­гуры. В ряде случаев вместо траектории второй точки фигуры до­статочно знать положение мгновенного центра скоростей.

Тело (или механизм) при решении задач надо изображать в том положении, для которого требуется определить ускорение соответ­ствующей точки. Расчет начинается с определения по данным задачи скорости и ускорения точки, принимаемой за полюс.

План решения (если заданы скорость и ускорение одной точки плоской фигуры и направления скорости и ускорения другой точки фигуры):

1) Находим мгновенный центр скоростей, восставляя перпендикуляры к скоростям двух точек плоской фигуры.

2) Определяем мгновенную угловую скорость фигуры.

3) Определяем центростремительное ускорение точки вокруг полюса, приравнивая нулю сумму проекций всех слагаемых ускорений на ось, перпендикулярную к известному направлению ускорения.

4) Находим модуль вращательного ускорения, приравнивая нулю сумму проекций всех слагаемых ускорений на ось, перпендикулярную к известному направлению ускорения.

5) Определяем мгновенное угловое ускорение плоской фигуры по найденному вращательному ускорению.

6) Находим ускорение точки плоской фигуры при помощи формулы распределения ускорений.

При решении задач можно применять «теорему о проекциях векторов ускорений двух точек абсолютно твердого тела»:

«Проекции векторов ускорений двух точек абсолютно твердого тела, которое совершает плоскопараллельное движение, на прямую, повернутую относительно прямой, проходящей через эти две точки, в плоскости движения этого тела на угол в сторону углового ускорения, равны».

Эту теорему удобно применять, если известны ускорения только двух точек абсолютно твердого тела как по модулю, так и по направлению, известны только направления векторов ускорений других точек этого тела (геометрические размеры тела не известны), не известны и – соответственно проекции векторов угловой скорости и углового ускоренияэтого тела на ось, перпендикулярную плоскости движения, не известны скорости точек этого тела.

Известны еще 3 способа определения ускорений точек плоской фигуры:

1) Способ основан на дифференцировании дважды по времени законов плоскопараллельного движения абсолютно твердого тела.

2) Способ основан на использовании мгновенного центра ускорений абсолютно твердого тела (о мгновенном центре ускорений абсолютно твердого тела будет рассказано ниже).

3) Способ основан на использовании плана ускорений абсолютно твердого тела.

5)Поступательное движение. Примеры.

Определение вращательного движения тела вокруг неподвижной оси.

Уравнение вращательного движения.

– такое движение, при котором все его точки движутся в плоскостях, перпендикулярных некоторой неподвижной прямой, и описывают окружности с центрами, лежащими на этой прямой, называемой осью вращения.

Движение задается законом изменения двугранного угла φ (угла поворота), образованного неподвижной плоскостью P, проходящей через ось вращения, и плоскостью Q, жестко связанной с телом:



Угловая скорость – величина, характеризующая быстроту изменения угла поворота.

Угловое ускорение – величина, характеризующая быстроту изменения угловой скорости.

Определение скорости любой точки плоской фигуры.

1 способ определения скоростей – через векторы. Скорость любой точки плоской фигуры равна геометрической сумме скоростей полюса и вращательной скорости этой точки вокруг полюса. Таким образом, скорость точки B равна геометрической сумме скорости полюса A и вращательной скорости точки B вокруг полюса:

2 способ определения скоростей – через проекции. (теорема о проекциях скоростей) Проекции скоростей точек плоской фигуры на ось, проходящую через эти точки равны.

3)Формулы вычисления скорости и ускорения точки при естественном способе задания её движения.

Вектор скорости; - Проекция скорости на касательную;

Составляющие вектора ускорения; -проекции ускорения на оси t и n;

Таким образом полное ускорение точки есть векторная сумма двух ускорений:

касательного, направленного по касательной к траектории в сторону увеличения дуговой координаты, если (в противном случае – в противоположную) и

нормального ускорения, направленного по нормали к касательной в сторону центра кривизны (вогнутости траектории): Модуль полного ускорения:

4) Формулы вычисления скорости и ускорения точки при координатном способе задания её движения в декартовых координатах.

Составляющие вектора скорости: -Проекции скорости на оси координат:

-составляющие вектора ускорения; -проекции ускорения на оси коодинат;

5)Поступательное движение. Примеры.

(ползун, поршень насоса, спарник колес паровоза, движущегося по прямолинейному пути, кабина лифта, дверь купе, кабина колеса обозрения).- это такое движение, при котором любая прямая, жестко связанная с телом, остается параллельной самой себе. Обычно поступательное движение отождествляется с прямолинейным движением его точек, однако это не так. Точки и само тело (центр масс тела) могут двигаться по криволинейным траекториям, см. например, движение кабины колеса обозрения. Другими словами - это движение без поворотов.

Было отмечено, что движение плоской фигуры можно рассматривать как слагающееся из поступательного движения, при котором все точки фигуры движутся со скоростью полюсаА , и из вращательного движения вокруг этого полюса. Покажем, что скорость любой точки М фигуры складывается геометрически из скоростей, которые точка получает в каждом из этих движений.

В самом деле, положение любой точки М фигуры определяется по отношению к осям Оху радиусом-вектором (рис.30), где - радиус-вектор полюсаА , - вектор, определяю­щий положение точки М относительно осей , перемещающих­ся вместе с полюсом А поступательно (движение фигуры по отноше­нию к этим осям представляет собой вращение вокруг полюса А ). Тогда

В полученном равенстве величина есть скорость полюсаА ; величина же равна скорости , которую точка М получает при , т.е. относительно осей , или, иначе говоря, при вращении фигуры вокруг полюса А . Таким образом, из предыдущего равенства действительно следует, что

Скорость , которую точка М получает при вращении фигуры вокруг полюсаА :

где - угловая скорость фигуры.

Таким образом, скорость любой точки М плоской фигуры геометрически складывается из скорости какой-нибудь другой точкиА , принятой за полюс, и скорости, которую точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление скорости находятся построением соответствующего параллело­грамма (рис.31).


Рис.30 Рис.31

23. Фактически уравнением поступательного движения твердого тела является уравнение второго закона Ньютона: Используя уравнения:

И получаем .

24.В этом случае составляющие

– момента внешних сил, направленные вдоль x и y , компенсируются моментами сил реакции закрепления .

Вращение вокруг оси z происходит только под действием

6.4 6.5

Пусть некоторое тело вращается вокруг оси z .Получим уравнение динамики для некоторой точки m i этого тела находящегося на расстоянии R i от оси вращения. При этом помним, что и

Направлены всегда вдоль оси вращения z, поэтому в дальнейшем опустим значок z .





Так как у всех точек разная, введем, вектор угловой скорости причем


Так как тело абсолютно твердое, то в процессе вращения m i иR i останутся неизменными. Тогда:

Обозначим I i – момент инерции точки находящейся на расстоянии R от оси вращения:

Так как тело состоит из огромного количества точек и все они находятся на разных расстояниях от оси вращения, то момент инерции тела равен:

где R – расстояние от оси z до dm. Как видно, момент инерции I – величина скалярная.

Просуммировав по всем i- ым точкам,

получим или - Это основное уравнение

динамики тела вращающегося вокруг неподвижной оси .

26) Момент импульса твердого тела.


Момент импульса есть векторная сумма моментов импульсов всех материальных точек тела относительно неподвижной оси.

Если ось вращения твердого тела закреплена, то момент силы перпендикулярный этой оси ()за счет сил трения в подшипниках всегда будет равняться нулю.

Скорость изменения момента импульса твердого тела вдоль оси вращения, которая закреплена, равняется результирующему моменту внешних сил, направленному вдоль этой оси.

– момент инерции.

28)Момент сил трения качения – закон Кулона. Коэффициент трения качения.

Трение качения. Существование трения качения можно установить экспериментально, например, при исследовании качения тяжелого цилиндра радиуса на горизонтальной плоскости.

Если цилиндр и плоскость - твердые тела с шероховатыми поверхностями (рис. 55, a), то их касание будет происходить в точке, сила N уравновешивает силу тяжести P, а горизонтальная сила Q и сила трения F образуют пару сил (Q,F) под действием которой цилиндр должен начинать движение при любых величинах силы Q. В действительности же цилиндр начинает движение после того, как величина силы Q превысит предельное значение Ql.

Этот факт можно объяснить, если предположить, что цилиндр и плоскость деформируются. Тогда их контакт будет происходить по малой площадке или лунке (на рис. 55, b малая площадка изображена своим сечением). При увеличении силы Q центр давления будет перемещаться из середины сечения вправо. В результате образуется пара сил (P,N), которая препятствует началу движения цилиндра. В состоянии предельного равновесия на цилиндр действуют пара сил (Ql,F) с моментом Ql·r и уравновешивающая ее пара (P,N) с моментом N·δ, где δ - значение максимального смещения. Из равенства моментов пар сил находим (6)

Пока Q Ql начинается качение.

Обычно рис. 55, b упрощают, не изображая на нем смещения точки приложения нормальной реакции, добавляя к силам на рис. 55, a пару сил, препятствующую качению цилиндра, как показано на рис. 55, c.

Момент этой пары сил называется моментом трения качения , он равен моменту пары сил (P,N): (7)

Входящая в формулы (6) и (7) величина максимального смещения точки приложения нормальной реакции δ называется коэффициентом трения качения. Он имеет размерность длины и определяется экспериментально. Приведем приближенные значения этого коэффициента (в метрах) для некоторых материалов: дерево по дереву δ = 0,0005-0,0008; мягкая сталь по стали (колесо по рельсу) - 0.00005; закаленная сталь по стали (шарикоподшипник) - 0.00001.

Отношение δ/r в формуле (6) для большинства материалов значительно меньше коэффициента трения покоя f0 . Поэтому в технике, когда это возможно, стремятся скольжение заменить качением (колеса, катки, шарикоподшипники и т.п.).

Закон Амонтона - Кулона

Основная статья: Закон Кулона (механика)

Не путать с законом Кулона!

Основной характеристикой трения является коэффициент трения μ, который определяется материалами, из которых изготовлены поверхности взаимодействующих тел.

В простейших случаях сила трения F и нормальная нагрузка (или сила нормальной реакции) Nnormal связаны неравенством обращающимся в равенство только при наличии относительного движения. Это соотношение называется законом Амонтона - Кулона.