Положительный тангаж. Поворот вектора на угол: что такое кватернион. Основные динамические силы

17.06.2020 История 

Раздел очень прост в использовании. В предложенное поле достаточно ввести нужное слово, и мы вам выдадим список его значений. Хочется отметить, что наш сайт предоставляет данные из разных источников – энциклопедического, толкового, словообразовательного словарей. Также здесь можно познакомиться с примерами употребления введенного вами слова.

Значение слова тангаж

тангаж в словаре кроссвордиста

Энциклопедический словарь, 1998 г.

тангаж

ТАНГАЖ (франц. tangage - килевая качка) угловое движение летательного аппарата или судна относительно поперечной (горизонтальной) оси.

Тангаж

(франц. tangage ≈ килевая качка), угловое движение летательного аппарата или судна относительно главной поперечной оси инерции. Угол Т. ≈ угол между продольной осью летательного аппарата или судна и горизонтальной плоскостью. В авиации различают Т. с увеличением угла (кабрирование) и с уменьшением угла (пикирование); вызывается отклонением руля высоты.

Википедия

Тангаж

Танга́ж - угловое движение летательного аппарата или судна относительно главной поперечной оси инерции. Угол тангажа - угол между продольной осью летательного аппарата или судна и горизонтальной плоскостью. Угол тангажа обозначается буквой θ . В авиации различают:

  • положительный тангаж, с увеличением угла - кабрирование , штурвал на себя;
  • отрицательный, с уменьшением угла - пикирование , штурвал от себя.

Вызывается отклонением руля высоты.

Это один из трёх углов (крена, тангажа и рыскания), которые задают наклон летательного средства относительно его центра инерции по трём осям. По отношению к морским судам используется термин « дифферент » с таким же значением. Примечательно, что дифферент имеет обратные представления о положительности/отрицательности.

Примеры употребления слова тангаж в литературе.

Причем, если выдерживание курса выполняется практически без особого труда, то выдерживание глиссады связано с решением сложной задачи продольной балансировки самолета по скорости, режиму работы двигателей и тангажу , однако, ввиду меньшего отвлечения на подбор и выдерживание курса, задача эта решается легче.

Если при этом не берется во внимание вертикальная скорость, а также обычно сопутствующие ее скачкам размахи тангажа , то, при формальном выдерживании курса и глиссады, при постоянстве приборной скорости - все же перед торцом вполне возможна нерасчетно большая вертикальная скорость, исправление которой вносит корректив в выдерживание глиссады, а исправление ошибки выдерживания глиссады может сложиться с и так уже нерасчетной вертикальной скоростью.

По мере накопления опыта я понял, что основа мягкой посадки -- строгое выдерживание курса, а значит, освобождение мыслительных способностей для анализа поведения машины по продольному каналу: тангаж , глиссада, тяга, вертикальная скорость.

Чуткие гироскопические датчики улавливают колебания самолета вокруг трех условных осей и подают сигналы на отклонение тех или иных рулей для исправления крена, тангажа или курса.

Пока идут все эти манипуляции, я по авиагоризонту фиксирую угол тангажа , слежу за скоростью и вариометром и краем глаза замечаю погасание красных лампочек сигнализации шасси.

При этом будет весьма проблематично разогнать машину до такой скорости, на которой можно снять режим двигателей с номинального, а самолет уменьшит тангаж до приемлемого лобового сопротивления.

Очень низкое и очень четкое выравнивание, с четкой фиксацией посадочного тангажа , притирает к бетону неслышно.

Внезапное отключение автопилота с накопившейся ошибкой несбалансированных усилий по крену и тангажу может привести к энергичному броску самолета в сторону стремления освободившихся рулей.

Если же увеличение вертикальной скорости связано с подсосом под глиссаду, то директорная стрелка энергично уйдет вверх при том же тангаже и на той же скорости.

Уверенность эта - в том, что тяжелая машина приближается к бетону с небольшой, обеспечивающее мягкое приземление вертикальной скоростью и что уменьшение этой вертикальной на выравнивании обеспечивается достаточной управляемостью по тангажу .

По достижении скорости 550 устанавливается постоянная скороподъемность, самолет триммируется по тангажу , и дальше приборная скорость выдерживается легкими нажатиями триммера.

Так вдолби же, вдобавок, ученику, что лучше уж самому повеситься и раскачиваться в петле, чем раскачивать тангаж перед землей.

Едва убрались предкрылки, скорость скакнула за 500, и дальнейший набор, с сотней пассажиров в салоне, производился лежа на спине: тангаж 20 градусов, вариометр, прокрутив стрелкой круг, застыл на 33.

Убрал интерцепторы, снова стал балансировать триммерами: тангаж , крен.

Именно взлетный тангаж и - краем глаза - вариометр определяют прекращение взятия штурвала на себя.

ПОСТРОЕНИЕ ВЕРТИКАЛИ С ПОМОЩЬЮ ФИЗИЧЕСКОГО МАЯТНИКА НА САМОЛЕТЕ

При пилотировании самолета необходимо знать его по­ложение относительно плоскости земного горизонта. Положение самолета относительно плоскости горизонта определяется двумя углами: углом тангажа и углом кре­на. Угол тангажа - угол между продольной осью самолета и плос­костью горизонта, отсчитываемый в вертикальной плоскости. Угол кре­на - угол поворота самолета во­круг его продольной оси, отсчиты­ваемый от вертикальной плоскости, проходящей через продольную ось самолета

Рис 4.1 фзический маятник – определитель вертикали на самолёте.

Таким образом, положение само­лета относительно плоскости гори­зонта можно определить, если на са­молете знать направление истинной вертикали, т. е. направление линии, проходящей через центр Земли и самолет, и замерять отклонение са­молета от этого направления.

Отклонение от вертикали на земле определяют обычным отве­сом, т. е. физическим маятником.

Предположим, что физический маятник установлен на самоле­те, который совершает горизонтальный полет с ускорением а (рис. 4.1). На массу маятника т будут действовать силы от ускорения силы тяжести g и инерционная сила от ускорения а. Сумма мо­ментов от этих сил относительно точки подвеса маятника равна нулю и выражается уравнением

где l - длина маятника;

α - угол отклонения маятника

Из уравнения (4.1) имеем

(4.2)

Следовательно, маятник, установленный на объекте, движущемся с ускорением, отклоняется в сторону, противоположную действию ускорения, и показывает так называемую «кажущуюся вертикаль». Современные транспортные самолеты могут иметь ускорения, соизмеримые по величине с ускорением силы тяжести, поэтому угол α отклонения маятника от вертикали может достигать значи­тельных величин. Таким образом, физический маятник не приго­ден для определения направления вертикали места, т. е. для изме­рения углов крена и тангажа, если самолет совершает полет с ус­корением.


АВИАГОРИЗОНТЫ

Ранее было отмечено, что маятник может быть исполь­зован для определения вертикали только при полете без ускорений, а свободный трехстепенный гироскоп может выдерживать задан­ное пространственное положение вне зависимости от действующих ускорений только небольшое время.

Поэтому эти два устройства соединяют вместе, используя положительные свойства каждого. При отсутствии ускорений с помощью маятника главная ось гироскопа выставляется вертикально. В те моменты, когда на маятник действуют ускорения, его отключают и гироскоп работает в режиме «памяти».



Устройство, с помощью которого маятник действует на гиро­скоп, называется системой маятниковой коррекции. Гироскоп с та­кой коррекцией называют гировертикалью. Гировертикаль, визу­ально показывающая положение самолета относительно земного горизонта, называется авиагоризонтом.

В авиагоризонтах используется электролитический маятник (рис. 4.2), представляющий собой плоскую медную чашу 3, заполненную токопроводящей жидкостью 1 с большим удельным электрическим сопротивлением. Жидкости в чаше столько, что остается место для воздушного пузырька 2 . Чаша закрыта крышкой из изоляционного материала, в которую вмонтировано четыре контакта 4, пя­тым контактом является сама чаша. Если маятник расположен горизонтально, то все четыре контак­та равномерно перекрываются жидкостью и электрическое сопро­тивление участков между ними и чашей одинаково. Если же чаша наклонится, то пузырек воздуха, занимая верхнее положение в чаше, оголит один из контактов и тем самым изменит электрическое сопротивление участка, которое при малых углах (до 30") про­порционально углу наклона чаши.

Контакты маятника включаются в электрическую цепь, как по­казано на рис. 4.3. При наклоне маятника сопротивление между контактами 0 и 1 будет больше, чем сопротивление между контак­тами 0 и 3. Тогда ток i 1 который проходит по управляющей обмот­ке OY 1 , будет меньше тока i 2 обмотки OY 2 коррекционного двига­теля. Обмотки OY 1 и OY 2 намотаны встречно, поэтому разностный ток Δi =i 2 -i 1 создает магнитный поток, который, взаимодействуя с магнитным потоком обмотки возбуждения, вызывает вращающий момент. Ротор двигателя закреплен на оси карданова подвеса, следовательно, к оси подвеса приложен момент, под действием ко­торого гироскоп прецессирует. Прецессия гироскопа продолжается до тех пор, пока существует момент по оси карданова подвеса, а этот момент действует до установки маятника в горизонтальное положение, при котором ток i 1 =i 2 . Связав маятник с внутренней, рамой карданова подвеса и расположив по осям подвеса коррек­ционные двигатели, получаем гировертикаль с электромеханичес­кой маятниковой коррекцией (рис. 4.4). Таким образом, электролитический маятник 1 , действуя на ги­роскоп через коррекционные двигатели 2 и 3 , все время будет при­водить главную ось гироскопа к положению вертикали. При отклю­чении коррекции гироскоп будет сохранять свое прежнее положе­ние в пространстве с точностью, определяемой его собственными ошибками, например, за счет прецессии, вызванной моментами трения по осям карданова подвеса.



Коррекционные системы различаются по типам характеристик. Коррекционной характеристикой называется закон изменения мо­мента, развиваемого коррекционным двигателем, в зависимости от отклонения главной оси гироскопа от положения вертикали.

В авиационных приборах наи­большее распространение получила смешанная коррекционная харак­теристика (рис. 4.5). Область ±Δα определяет зону нечувствительности системы. До некоторых предельных значений углов α пр,

β пр момент кор­рекции М к меняется пропорциональ­но углам α и β , а затем становится постоянным.


ПОГРЕШНОСТИ ГИРОВЕРТИКАЛЕЙ

Погрешность от моментов трения в осях к а р д а и о в а п о двеса. В осях карданова подвеса неизбежно существуют моменты трения, поэтому прецессия гироскопа под действием коррекциониых моментов продолжается до тех пор, по­ка коррекционный момент больше момента трения. Движение ги­роскопа прекращается при равенстве этих моментов:

Отсюда следует, что главная ось гироскопа не дойдет до верти­кального положения па углы α * и β *:

Таким образом, из-за трения в осях карданова подвеса гировер­тикаль имеет зону застоя, которая зависит от величины момента трения в осях карданова подвеса и, естественно, от зоны нечувстви­тельности маятниковой коррекции (см. рис. 4.5). Чем больше удельный момент, развиваемый коррекционными двигателями, тем зона застоя меньше. Слишком большой удельный момент приводит к значительным ошибкам на вираже. Для авиагоризонтов зона застоя обычно равна 0,5-1°.

Виражная погрешность. Когда самолет совершает раз­ворот с угловой скоростью ω, то на маятник, кроме силы тяжести mg, еще действует центробежная сила m ω 2 R , и маятник устанав­ливается не по истинной вертикали, а по равнодействующей этих сил (рис. 4.7). На коррекционные двигатели поступают сигналы, и главная ось гироскопа устанавливается в положение кажущейся вертикали. Этот процесс происходит тем быстрее, чем больше удельные моменты k x , k y системы коррекции. Как видно из рис.3.10, на вираже в основном неверно работает система поперечной коррекции. Поэтому в современных гировертикалях и авиагори­зонтах поперечная коррекция на виражах отключается специаль­ным устройством.

Естественно, что и линейные ускорения самолета, например, при увеличении скорости, также приводят к аналогичным ошибкам. Поэтому в таких авиагоризонтах как АГД-1 отключается и про­дольная коррекция. При отключении коррекции гировертикаль работает в режиме «памяти». После окончания самолетом эволю­ции, связанных с ускорениями, система коррекции включается и приводит главную ось гироскопа в вертикальное положение, если за время работы в режиме «памяти» она отклонилась.

Появляется ошибка у гировертикалей и за счет суточного вра­щения Земли и за счет собственной скорости полета самолета, однако для транспортных самолетов эта ошибка не превышает не­скольких угловых минут.

зрения появится красный флажок 12. Этот переключатель сое­диняет обмотки управления поперечного коррекционного двигате­ля 4 с фазой С, минуя сопротивление R2, и тем самым увеличивает

ток в двигателе, а следовательно, и раз­виваемый им коррекционный момент.

После выхода прибора на номиналь­ный режим работы переключатель 10 следует вернуть в исходное положение (флажок исчезнет из поля зрения). В но­минальном режиме работы управляющие обмотки коррекционного двигателя 4 соединены с фазой С через контакты вы­ключателя коррекции ВК-53РБ.. При совершении самолетом разворотов выключатель коррекции отключает попе­речный коррекционный двигатель, в противном случае возникает большая вираж­ная погрешность.


АВИАГОРИЗОНТ АГИ-1с

Авиагоризонт предназначен для определения положения самолета в пространстве относительно линии истинного горизонта, имеет встроенный прибор-указатель скольжения. Устанавливают авиагоризонт на транспортных самолетах гражданской авиации.

Кинематическая схема прибора изображена на рис. 4.8, упро­щенная электрическая - на рис. 4.9, а вид на шкалу - на рис. 4.10.

Рассмотрим работу прибора. Собственная ось вращения гиро­скопа (см. рис. 4.8) по сигналам от электролитического маятни­ка 8 с помощью коррекционных двигателей 3 и 10 устанавливается и удерживается в вертикальном положении.

Особенностью авиагоризонта АГИ-lc является способность работать в неограниченном диапазоне углов по крену и тангажу. Это возможно благодаря применению в прибо­ре дополнительной следящей рамы 4, ось которой совпадает с про­дольной осью самолета, а сама рама может поворачиваться отно­сительно самолета двигателем 11 . Назначение дополнительной следящей рамы - обеспечить перпендикулярность оси собственного вращения гироскопа и оси внешней рамы карданова подвеса. При кренах самолета внешняя рама 5 карданова подвеса поворачива­ется вокруг оси внутренней рамы. Этот поворот фиксируется переключателем 9 (см. рис. 4.8 и 4.9), с помощью которого включа­ется двигатель 11 ,поворачивающий следящую раму 4 , а вмести с ней и раму 5 в противоположном направлении. Следовательно, перпендикулярность собственной оси гироскопа 6 и оси внешней рамы при этом не нарушаются. При совершении самолётом эволюций по тангажу на углы, больше 90˚, с помощью переключателя 12 изменяется направление вращения двигателя 11. На­пример, если самолет делает фигуру «петля Нестерова», то в момент, когда он ока­жется в перевернутом сос­тоянии, т. е. изменит свое положение относительно главной оси гироскопа на 180°, направление вращения двигателя 11 для поворота следящей рамы следует из­менить на противополож­ное.

При совершении самоле­том эволюции по тангажу самолет обкатывается во­круг оси внешней рамы карданова подвеса и имеет по­этому диапазон работы 360°.

Индикация положения самолета относительно плос­кости горизонта в АГИ-1с осуществляется по силуэту самолета (см. рис. 4.8 и 4.10), укрепленного на корпусе прибора, и сферической шкале 2, связанной с осью внутренней рамы 7 карданова подвеса гироскопа. Сферическая шкала 2 окрашена в ко­ричневый цвет выше линии горизонта и в голубой - ниже линии горизонта. На коричневом поле имеется надпись «Спуск», на голу­бом - «Подъем». Таким образом, при наборе высоты силуэт само­лета вместе с самим самолетом переместится на голубое поле, как показано на рис. 3.18, в, так как шкала 2, связанная с гироскопом, останется неподвижной в пространстве. Следует отметить, что по­казания авиагоризонта АГИ-lc по тангажу противоположны пока­заниям АГБ-2. Это чрезвычайно важно, так как оба прибора иног­да устанавливают на одном самолете.

Рис 4.9 электрическая схема авиагоризонта АГИ-1.

Уменьшение времени начальной выставки оси собственного вра­щения гироскопа в вертикальное положение достигается последо­вательным включением обмоток возбуждения коррекционных двигателей 3 и 10 со статорными обмотками гиромотора. Кроме того, на внутренней раме 7 имеется механический маятник, который при невключенном приборе удерживает систему рам, примерно, в нуле­вом

положении. Для этой же цели служит механический арретир, при нажатии кнопки 15 кото­рого (см. рис. 4.10) дополни­тельная следящая рама уста­навливается в нулевое положе­ние. На кнопке имеется над­пись «Перед пуском нажать». С целью уменьшения ви­ражной погрешности авиагори­зонта поперечный коррекционный двигатель 3 на вираже от­ключается выключателем кор­рекции ВК-53РБ. На лицевой стороне прибора, внизу, распо­ложен указатель скольжения 13 и слева - рукоятка 14 для изменения положения силуэта самолета.


АВИАГОРИЗОНТ АГД-1

Авиагоризонт дистанционный АГД-1 обеспечивает эки­паж легковоспринимаемой крупномасштабной индикацией поло­жения самолета относительно плоскости истинного горизонта и

выдает потребителям (автопилот, курсовая система, радиолокаци­онные станции) электрические сигналы, пропорциональные откло­нениям самолета по крену и тангажу.

АГД-1 состоит из двух приборов: 1) трехстепенного гироскопа с маятниковой коррекцией, называемого гиродатчиком, который устанавливают возможно ближе к центру тяжести самолета; 2) указателей, помещаемых на приборных досках экипажа. К од­ному гиродатчику может быть подключено до трех указателей.

Принципиальная электромеханическая схема АГД-1 представлена на рис. 4.12, вид на шкалу указателя изображен на рис. 4.13

Рис 4.13 лицевая сторона авиагоризонта АГД-1.

36-кнопка арретир, 37- лампа, остальные обозначения такие же кА на 4.12.

Гиродатчик представляет собой трехстепенный гироскоп, ось внешней рамы карданова подвеса которого крепится в следящей раме 7. Назначение следящей рамы - обеспечить работу прибора по крену в неограниченном диапазоне углов. Следящая рама 7 обеспечивает перпендикулярность оси собственного вращения ги­роскопа оси внешней рамы подвеса с помощью индукционного дат-

чика 3 и двигателя-генератора 2, управ­ляемого усилителем 1 . Якорь 5 датчика закреплен на оси внутренней рамы, а статор 3 жестко связан с внешней рамкой 8 карданова подвеса.

Коммутатор 4 изменяет направление вращения двигателя 2, когда самолет со­вершает эволюции по тангажу с углами более 90°. Таким образом, следящая ра­ма 7 выполняет те же функции, что и в авиагоризонте АГИ-1с.

Особенностью следящей системы от­работки рамы 7 по крену в авиагоризон­те АГД-1 является применение усилите­ля на полупроводниковых элементах и двигателя-генератора. Маятниковая кор­рекция АГД-1 аналогична коррекции АГИ-lc и АГБ-2, но отличается тем, что двигатель поперечной коррекции 6 от­ключается не только переключателем 17, который управляется выключателем коррекции ВК-53РБ, но и спе­циальным ламельным устройством (на схеме не показано) при кренах 8-10°. Кроме того, коррекционный двигатель продольной коррекции 10 управляется электролитическим маятником 13 через жидкостный акселерометр 16. Он представляет собой устройство, аналогичное жидкостному маятнику. При продольных ускорениях самолета токопроводящая жидкость под действием инерционных сил смещается к одному из контактов и за счет увеличения элект­рического сопротивления цепи коррекция ослабляется на 50%.

Отклонения самолета по крену и тангажу замеряются гиродат­чиком и передаются на указатель двумя идентичными следящими системами:

1) следящей системой по крену, которая состоит из сельсина-датчика 9, сельсина-приемника 20, усилителя 18 и двига­теля-генератора 19;

2) следящей системой по тангажу, куда вхо­дят: сельсин-датчик 14, сельсин-приемник 23, усилитель 24, двига­тель-генератор 25.

Коммутатор 15 включается в следящую систему по тангажу для ее правильной работы при угле более 90°. Особенностью сле­дящих систем в АГД-1 является использование в них в качестве исполнительных устройств двигателей-генераторов. Двигатель-генератор представляет собой электрическую машину, состоящую из двигателя и генератора, укрепленных на одном валу. Напряже­ние, вырабатываемое в генераторе, пропорционально скорости вра­щения двигателя. Оно в следящей системе служит сигналом ско­ростной обратной связи для демпфирования колебаний системы. Двигатель-генератор 19 поворачивает шестерню 21 с силуэтом самолета 22 относительно корпуса прибора, а двигатель-генера­тор 25 вращает шкалу тангажа 26,

имеющую двухцветную окраску: выше линии горизонта - голубой цвет, ниже - коричневый. Таким образом, индикация показаний осуществляется по подвиж­ному силуэту самолета и подвижной шкале тангажа.

Индикация положения самолета относительно плоскости гори­зонта в АГД-1 естественная, т. е. соответствующая тому образу, который представляет себе экипаж о положении самолета относи­тельно земли. Грубый отсчет крена возможен по оцифрованной неподвижной шкале на корпусе прибора и силуэту самолета; по шкале 26 и силуэту самолета ориентировочно определяют углы тангажа. Индикация указателя АГД-1 по крену и тангажу пред­ставлена на рис. 4.11. По нашему мнению, определение положения самолета в АГД-1 удобнее, чем в АГБ-2 и АГИ-1с.

В авиагоризонте АГД-1 применено специальное устройство, на­зываемое арретиром, которое позволяет быстро привести рамы прибора и гиромотор в строго определенное положение относи­тельно корпуса прибора и, следовательно, самолета. Кинематичес­кая схема электромеханического дистанционного арретирующего устройства АГД-1 изображена на рис. 4.14.

Устройство работает следующим образом. При нажатии крас­ной кнопки 36 (см. рис. 4.13), находящейся на лицевой стороне указателя, подается напряжение на двигатель 34 (см. рис. 4.14. который, вращаясь, заставляет поступательно перемещаться шток 33 с помощью пальца, двигающегося по винтовой прорези, т.е вращающаяся гайка неподвижна, а винт перемещается. Шток 33 через ролик 32 упирается в дополнительную следящую раму 7, имеющую кольцо 35 клиновидного профиля.

За счет такого профиля кольца при давлении на раму со сторо­ны штока кольцо 35 вместе с гироузлом поворачивается вокруг оси рамы 7 до положения, пока ролик 32 не окажется в нижнем поло­жении кольца. При этом плоскость рамы 7 параллельна плоскости крыльев самолета. Далее шток 33 перемещает профильную план­ку 31, которая упирается в кулачок 30 и создает момент вокруг оси внешней рамы 8. Под действием этого момента гироскоп прецессирует вокруг оси внутренней рамы и доходит до упора, после чего прецессия прекращается, и гироскоп начинает поворачиваться во­круг оси внешней рамы до тех пор, пока выступ планки 31 не вой­дет в вырез кулачка 30, зафиксировав таким образом раму 8 в положении, при котором ось внутренней рамы параллельна про­дольной оси самолета.

Одновременно с этим палец 28, упираясь в кулачок 27, устанав­ливает внутреннюю раму 12 в положение, при котором ось собст­венного вращения гироскопа перпендикулярна осям внешней и внутренней рам карданова подвеса. Затем шток 33 под действием возвратной пружины, имеющейся в нем, откидывается в исходное положение и дает возможность планке 31 освободить кулачки 27 и 30.

Таким образом, арретир, установив рамки гироузла в опреде­ленное положение, сразу же освобождает их. Если арретирование производится на земле, когда самолет стоит горизонтально, или в горизонтальном полете, то собственная ось вращения гироскопа устанавливается по направлению вертикали места. Осуществлять арретирование следует только в горизонтальном полете, о чем на­поминает экипажу надпись на кнопке 36 «Арретировать в горизон­тальном полете».

Если произвести арретирование, например при крене, то при переходе в горизонтальный полет авиагоризонт будет показывать ложный крен. Правда, под действием маятниковой коррекции соб­ственная ось гироскопа установится в вертикальное положение, и, естественно, ложные показания исчезнут, но на это уйдет время, достаточное, чтобы экипаж мог совершить ошибки в пилотиро­вании. Следует отметить, что электрическая схема арретирования устроена таким образом, что при включении АГД-1 под напряже­ние арретирование происходит автоматически, без нажатия кнопки. При повторном арретировании, например при временном наруше­нии электропитания АГД-1, нажатие кнопки 36 обязательно, но только при горизонтальном полете.

На лицевой стороне указателя имеется сигнальная лампа 37 (см. рис. 4.13), которая загорается, во-первых, если происходит процесс арретирования и, во-вторых, при неисправностях в цепях питания гиромотора и постоянного тока ±27 В.


АВИАГОРИЗОНТ АГБ-3 (АГБ-Зк)

Основное назначение авиагоризонта АГБ-3 - обеспе­чить экипаж легко воспринимаемой крупномасштабной индикацией положения самолета или вертолета по углам крена и тангажа от­носительно плоскости истинного горизонта. Кроме того, авиагори­зонт позволяет выдавать электрические сигналы, пропорциональ­ные углам крена и тангажа, внешним потребителям, имеющимся на самолете и вертолете (автопилот, курсовая система и т. д.).

Авиагоризонт АГБ-Зк - модификация авиагоризонта АГБ-3,. отличается лишь наличием встроенной арматуры красного подсве­та для освещения лицевой части прибора и окраской элементов: индикации.

Электромеханическая схема авиагоризонта АГБ-3 представле­на на рис. 4.15, электрическая схема - на рис. 4.16, а вид на его шкалу - на рис. 4.17. Собственная ось гироскопа приводится в вертикальное поло­жение системой маятниковой коррекции, в которую входят два электролитических маятника 20 и 21, управляющие коррекционными двигателями 7 и 9. В АГБ-3 используются однокоординатные: электролитические маятники, работающие на том же принципе, что и двух координатные, которые применяются в АГБ-2, АГИ-lc и АГД-1. В однокоординатном маятнике три контакта, и он реагирует на наклоны только в одном направлении. В цепи поперечной кор­рекции имеется контакт 16 выключателя коррекции ВК-53РБ, ко­торый разрывает цепь при совершении самолетом разворотов, уменьшая виражную погрешность.

Время готовности прибора к работе в авиагоризонте сокращают механическим арретиром (на рис. 4.15 он не показан). Если само­лет находится в горизонтальном положении, то арретир устанавли­вает рамки гироузла в исходное состояние, при котором главная ось гироскопа совпадает с вертикалью места. Арретиром пользу­ются перед запуском прибора, когда по тем или иным причинам необходимо быстро привести рамы прибора в исходное положение. Арретир в АГБ-3 нажимного типа, т. е. для его работы необходимо нажать кнопку 26 (см. рис. 4.17) до отказа. Рамки автоматически освобождаются от арретира при отпускании кнопки.

Работа арретирующего устройства аналогична работе арретира в авиагоризонте АГД-1. В авиагоризонте АГБ-3 арретир механи­ческий.

Для обеспечения потребителей сигналами отклонения самолета по крену и тангажу на оси внешней рамы карданова подвеса уста­новлен сельсин-датчик 14 (см. рис. 4.15, 4.16), а на оси внутренней рамы - сельсин-датчик 15.

На самолете авиагоризонт установлен таким образом, что ось
внешней рамы 8 (см. рис. 4.15) направлена параллельно продольной оси самолета. Это обеспечивает работу прибора по крену в диапазоне углов 360°.

Ось внутренней рамы карданова подвеса параллельна в начальный момент поперечной оси самолета. Поскольку дополнительной

следящей рамы в AГБ-3 нет, как у АГИ-lc и АГД-1, то рабочий диапазон по танга­жу в этом авиагоризонте ог­раничен углами ±80°. Дей­ствительно, если самолет бу­дет иметь угол тангажа 90°, то ось внешней рамы совме­стится с осью собственного вращения гироскопа. Гиро­скоп, потеряв одну степень свободы, становится неустой­чивым. Однако для обеспечения экипажа верной инди­кацией о положении само­лета относительно плоскости горизонта в перевернутом состоянии (например, при выполнении фигуры «петля Нестерова») в приборе применены упоры 10 и 11 (см. рис 4.15). При выполнении сложных эволюции самолетом с углом тангажа более 80° упор 10, расположенный на внешней раме, нач­нет давить на упор 11, укрепленный на оси внутренней рамы. При этом создается момент вокруг оси внутренней рамы. По закону прецессии гироскоп под действием этого момента прецессирует, т. е. поворачивается вокруг оси внешней рамы, стремясь совместить ось собственного вращения с осью приложения момента по кратчай­шему расстоянию. Таким образом, внешняя рама карданова под. веса поворачивается на 180°. Когда угол тангажа будет более 90°, упор 11 отойдет от упора 10, прецессия прекратится, а силуэт само­лета 4 окажется перевернутым на 180° относительно шкалы тан­гажа 3, что укажет перевернутое положение самолета на 180 от­носительно плоскости горизонта.

Индикация положения самолета относительно плоскости гори­зонта в АГБ-3 осуществляется следующим образом. При кренах корпус прибора вместе с самолетом поворачивается вокруг оси внешней рамы на угол крена, так как собственная ось вращения гироскопа сохраняет вертикальное направление. Силуэт самолета 4 при этом участвует в двух движениях:1) переносном - вместе с корпусом прибора на угол крена у (рис. 4.18) и 2) вращательном (трибка 6 обкатывает неподвижную по крену трибку 5) на тот же угол Y- В результате этих двух движений силуэт самолета в прост­ранстве поворачивается на двойной угол крена самолета. Экипаж же наблюдает угол крена по движению силуэта самолета 4 относи­тельно шкалы 3. При этом силуэт поворачивается на естественный угол крена в том же направлении, что и самолет.

Отсчет углов крена грубо может быть произведен по шкале 27 на корпусе прибора, а углов тангажа - по шкале 3 и силуэту са­молета 4. Шкала тангажа следует за углами тангажа самолета благодаря следящей системе, в которую входят сельсин-датчик 15, расположенный на внутренней оси карданова подвеса, сельсин-приемник 19, усилитель 17 и двигатель-генератор 18. В прорези шкалы.3 проходит ось, на которой за креплен силуэт самолета.

Таким образом, показания в АГБ-3 по крену и тангажу получаются есте­ственными и идентичными показаниям АГД-1 (см. рис. 4.11).

АГБ-3 имеет схему сигнализации отказа в цепях питания прибора, содержащую следующие элементы: двигатель отказа питания 1 с флажком 2 (см. рис. 4.15 и 4.16) и два реле 22 и 23. Обмотки двигателя 1 включены последовательно с обмотками статора гиромотора 13. При исправных цепях перемен­ного тока 36 В по обмоткам двигателя протекают токи гиромотора и сельсинов-датчиков 14 и 15.

В результате этого возникает вращающий момент на валу дви­гателя 1, под воздействием которого флажок 2 сигнализатора, укрепленный на валу двигателя, убирается из видимой зоны лице­вой части прибора.

Если в цепи питания гиромотора отсутствует напряжение пере­менного тока или произошел обрыв фазы, то момент двигателя резко падает и под воздействием пружины флажок выбрасывается в видимую зону лицевой части прибора.

Реле 22 и 23 включаются параллельно цепи питания усилителя следящей системы тангажа. При отсутствии напряжения 27 В по­стоянного тока контакты 24 и 25 этих реле замыкаются, шунтируя две фазы обмоток двигателя 1, следовательно, его момент умень­шается, и пружина выбрасывает флажок 2, который сигнализи­рует об отказе питания.

Таким образом, обрыв в цепи с напряжением 36 В, частотой 400 Гц или в цепи с напряжением 27 В, а также отсутствие одного из этих видов электропитания можно определить по наличию в по­ле зрения шкалы прибора флажка сигнализатора.


АВИАГОРИЗОНТ АГК-47Б

Авиагоризонт комбинированный, так как в одном кор­пусе смонтированы три прибора: авиагоризонт, указатель поворо­та и указатель скольжения.

Назначение авиагоризонта - обеспечение экипажа информаци­ей о положении самолета относительно плоскости горизонта. Ука­затель поворота служит для определения направления разворота самолета, а указатель скольжения измеряет скольжение. Указатель поворота рассмотрен в разд. 4.2, а указатель скольжения - в разд. 3.11. Упрощенные кинематическая, электрическая схемы и лицевая сторона авиагоризонта представлены на рис. 4.19, 4.20, 4.21; все обозначения на рисунках одинаковые.

Собственная ось вращения гироскопа 7 (см. рис. 4.19, 4.20) приводится в вертикальное положение с помощью маятниковой системы коррекции, куда входят электролитический маятник,/6 и два соленоида 13 и 14, Соленоид 13 располагается перпендику­лярно внешней оси у карданова подвеса, а соленоид 14 - перпен­дикулярно внутренней оси х карданова подвеса на внутренней раме 6, выполненной в виде кожуха. Каждый из соленоидов имеет по две обмотки, создающих при прохождении по ним токов маг­нитные поля противоположного направления. В соленоидах име­ются металлические сердечники, которые имеют возможность пере­мещаться внутри соленоидов. Если собственная ось вращения гироскопа совпадает с направлением местной вертикали, то с элек­тролитического маятника на обмотки соленоидов поступают одина­ковые сигналы и сердечники находясь в среднем положении, не создают моментов вокруг осей карданова подвеса. При отклонении главной оси гироскопа от вертикального направления токи, протекающие по обмоткам соленоидов, будут не равны вследствие неодинаковых сопротивлений между контактами электролитичес­кого маятника. Это приведет к перемещению сердечников в соле­ноидах, и за счет их веса вокруг осей карданова подвеса возникнут моменты, которые возвратят ось собственного вращения гироскопа к вертикальному положению. Так соленоид 14 участвует в созда­нии момента вокруг внут­ренней оси карданова под­веса, а соленоид 13 - во­круг внешней оси подвеса.

Внешняя ось кардано­ва подвеса авиагоризонта параллельна поперечной оси самолета, поэтому ин­дикация тангажа осуще­ствляется по круговой шкале 4, связанной с внешней рамой карданова подвеса 5, и линии гори­зонта, связанной с корпу­сом прибора. При пикиро­вании или кабрировании линия горизонта переме­щается относительно не­подвижной шкалы - пи­лоту картина представля­ется обратной: силуэт са­молета 1 вместе со шка­лой 4 опускается или поднимается относительно линии горизонта. Индикация крена осуществляется по относительному положению силуэта самолета /, связанного с внутренней рамой карданова под­веса, и шкалы 3, закрепленной на внешней раме карданова подвеса. Для того чтобы индикация крена была естественной, т. е. силуэток самолета имитировал крен относительно плоскости горизонта, так же как и в АГБ-3, в АГК.-47Б применена пара шестерен с передаточным отношением 1:1. Шкала тангажа имеет оцифровку через 20°, а шкала крена имеет разметку через 15°. Индикация крена и тангажа у АГК-47Б при эволюциях само­лета представлена на рис. 4.11.

В авиагоризонте имеется механический арретир фиксированно­го типа, т. е. если в АГБ-3 и АГД-1 арретир работает только тогда, когда нажата кнопка, то в АГК-47Б имеется возможность, выдви­нув шток арретира 20 (рис. 4.21) на себя, зафиксировать его в этом положении. При арретированном приборе на лицевой стороне прибора появляется красный флажок с надписью «Арретир». Ког­да прибор заарретирован, ось собственного вращения гироскопа совпадает с вертикальной осью самолета, а оси у и x совпадают соответственно с продольной и поперечной осями самолета. На рукоятке управления арретиром написано «Арретир тянуть».

С помощью кремальеры 22 можно в некоторых пределах изме­нять положение линии искусственного горизонта относительно кор­пуса прибора, что иногда целесообразно делать для удобства выдерживания траектории полета по тангажу, при длительном негоризон­тальном полете.

Как и всякий авиагоризонт, АГК-47Б подвержен виражной ошибке, но ввиду того, что он пред­назначен для установки на легкомоторные самолеты, где может не быть выключателя коррекции, от­ключение коррекции в нем не произ­водится. В то же время для умень­шения ошибки при левом вираже прибор сконструирован таким обра­зом, что нормальным положением оси собственного вращения являет­ся ее наклоненное положение впе­ред, по полету, на 2°. Уменьшение ошибки именно для левого виража, вероятно, можно объяснить тем, что самолеты чаще совершают левые виражи, поскольку командир само­ лета сидит в кабине на левом кресле. Действительно, при левом вираже электролитический маятник будет показывать кажущуюся вертикаль, которая отклоняется внутрь виража на угол

где ω - угловая скорость виража; V - скорость полета самолета; g - ускорение силы тяжести.

Под действием системы поперечной коррекции с помощью со­леноида 13 гироскоп начнет прецессировать в сторону кажущейся вертикали со скоростью

В то же время при развороте конец собственной оси вращения гироскопа будет разворачиваться вокруг положения истинной вер­тикали со скоростью

(4.5)

где α 0 - начальный угол наклона оси собственного вращения ги­роскопа вперед (рис. 4.22), направленной в противоположную сто­рону, так как гироскоп стремится сохранить положение оси собст­венного вращения в пространстве неизменным. Направление скорости ω γ противоположно направлению скорости прецессии гироскопа β.

Очевидно, для того чтобы при левом вираже не было ошибки, необходимо выполнение условия

или для небольших углов β 0 (4.6) можно записать

(4.7)

(4.8)

Зная К у авиагоризонта и наиболее употребительные скорос­ти, при которых происходит разворот, можно определить необхо­димый угол α 0 наклона оси гироскопа.


АВИАГОРИЗОНТ АГР-144

Авиагоризонт АГР-144 является комбинированным прибором; в нем смонтированы три прибора: авиагоризонт, указа­тель поворота и указатель скольжения.

Назначение авиагоризонта -обеспечение экипажа информа­цией о положении самолета относительно плоскости горизонта Указатель поворота служит для определения наличия и направле­ния разворота самолета вокруг его вертикальной оси. Указатель скольжения измеряет скольжение самолета. Кроме того, при координирован

Основные динамические силы

Прыжок – это комплексное понятие: результат взаимодействия двух или более переменных величин, действие законов физики и человека. Чтобы понять, как происходит такое взаимодействие, надо рассмотреть каждую величину по отдельности.

«Магнит под столом»

Если бы я разбросал металлические опилки по столу, вы бы, наверное, посмотрели на меня с удивлением. Но если бы я разместил под поверхностью стола магнит и стал бы двигать его, вы бы подумали, что я волшебник. Конечно, здесь нет никаких чудес. Это простое действие законов физики. Очевидная реальность – это движение металлических опилок по поверхности стола без всякой видимой причины. На самом же деле магнит действует на опилки так, как он и должен действовать без какого-либо вмешательства потусторонних сил. Приблизительно то же самое происходит и с полетом. Пока мы не разберемся с основными динамическими силами, мы будем считать, что происходит какое-то чудо. Чтобы научиться летать, вы должны понять, как действуют эти силы.

Необходимо научиться понимать ситуацию в целом. Возьмем, например, птиц. Они считаются не самыми умными в мире. Они не посещали даже детские сады, однако, у них есть комплексное понимание основных принципов полета, что позволяет им летать безопасно и более грациозно, чем это делает человек. Может быть, мы слишком много думаем? Однако, человек может летать. Мы можем научиться разбираться в ситуациях и взаимоотношениях. Именно наше рациональное понимание принципов полета делает его возможным. Мы никогда не доберемся туда, где еще не побывали наши мысли. Когда вы все обдумали и проанализировали, вы понимаете, что существует огромное количество деталей, которые управляют летящим телом. Мы должны изучить каждую составляющую часть прыжка, рассмотреть его под микроскопом, чтобы понять, как из отдельных частей образуется целое. Предлагаю начать с изучения языка полета.

Язык пространственной ориентации

Различные переменные величины, относящиеся к полету, требуют разъяснения (определения), что можно сделать с помощью языка. Такой язык является очень специфическим для авиации, когда обычные и знакомые всем слова обретают иной смысл в зависимости от конкретной ситуации.

Крен, тангаж и рыскание

Ориентирование или местоположение должно пониматься только по отношению к чему-либо. Это «что-либо» – ближайшее к нам небесное тело, т.е Земля. Когда мы начнем прыгать с парашютом на другие небесные тела с меньшей гравитацией, чем, у земли, мы будем определять свое местоположение по отношению к ближайшим планетам. При системе, которую мы применяем для определения нашего местоположения, требуется построение трех осей ориентации. Давайте упростим себе задачу, приняв человеческое тело за летящее тело. Если вы разведете руки в стороны, ваши руки будут представлять собой «Ось тангажа». Отклонение от оси можно продемонстрировать, наклоняя тело вперед и назад. «Ось Крена» – это шест, проходящий через вашу грудь. Отклонением от этой оси будут наклоны в стороны. Третья ось – «Ось Рыскания» (ось поворота в горизонтальной плоскости вокруг вертикальной оси). Ее можно представить как шест, проходящий через ваше тело от макушки до ног. Отклонением от этой оси будет поворот-пируэт вправо или влево.

Давайте проверим правильность понимания вами этих терминов на конкретных примерах. Представьте, что вы – самолет, летящий на определенной высоте. Если вас попросят отклониться от оси тангажа вниз, вы заставите самолет опустить нос. Увеличение оси заставит вас поднять нос вверх по отношению к хвосту. Если надо сделать крен вправо, вы опустите правое крыло и поднимите левое. «Рыскание» вправо будет простым поворотом вправо в горизонтальной плоскости.

Внимание! Данный сайт не обновляется. Новая версия: shatalov.su

Преобразования: Последняя битва

Дата создания: 2009-10-20 03:43:37
Последний раз редактировалось: 2012-02-08 09:36:52

    Предварительные уроки:
  1. Тригонометрия. Перейти.
  2. Векторы. Перейти.
  3. Матрицы. Перейти.
  4. Координатные пространства. Перейти.
  5. Преобразования координатных пространств. Перейти.
  6. Перспективная проекция. Перейти.

Что-то мы давненько не вспоминали о преобразованиях! Наверное, мой дорогой читатель, ты уже соскучился по ним? Как показывает практика, преобразования — самая любимая тема у изучающих трёхмерное программирование.

На данный момент вы уже должны хорошо разбираться в преобразованиях.

45. Принцип действия каналов крена, тангажа и рыскания автопилота.

Если же нет, то смотрите предварительные уроки.

Когда мы только начинали изучать преобразования, я писал, что с помощью матриц можно манипулировать предметами в пространстве: перемещать, вращать, увеличивать. Если вы изучили все предыдущие уроки и попытались применить полученные знания на практике, то скорее-всего вам пришлось столкнуться с определёнными трудностями: как передвигать предметы в произвольном направлении, как же всё-таки составить матрицу для преобразования в пространство камеры, как вращать предметы в произвольном направлении?

Рассмотрением этих вопросов мы и займёмся сегодня.

Перемещение в пространстве

Небольшое замечание : мировое пространство координат мы будем обозначать осями x,y,z. Базисные векторы, образующие локальное (объектное, камеры) пространство мы будем обозначать как i =(1,0,0), j =(0,1,0), k =(0,0,1) (названия векторов читаются как: и , жи , ка ). Вектор i — параллелен оси x, вектор j — оси y, вектор k — оси z.

Напоминаю, что с помощью линейной комбинации (суммы) базисных векторов можно выразить любой вектор пространства. Также не забываем о том, что длина базисных векторов равна единице.

Теперь смотрим на картинку:

Для простоты мы отбросили одно измерение — вертикальное. Соответственно на картинках изображён вид сверху.

Допустим мы находимся в какой-то точке мирового пространства. В данном случае под местоимением «мы» можно подразумевать что угодно: объект в игровом мире, персонаж, камеру. В данном случае (рис.а ) мы смотрим в сторону точки A . Откуда мы знаем, что «взгляд» направлен в сторону точки A ? Ну, когда мы обсуждали камеры, то договорились, что вектор k указывает направление взгляда.

От центра мира (мирового пространства координат) нас отделяет вектор v . И вдруг! Нам страшно захотелось подойти к точке A . Первая мысль: снять со стрелочки «вперёд» значение (dz) и прибавить к третьей компоненте вектора v . Результат этого недоразумения можно увидеть на рис.б . Казалось бы, всё пропало — прощайте мечты о собственном квейке. Отставить панику! Нужно просто тщательно обдумать сложившуюся ситуацию.

Представим, что мы уже находимся в точке A — посмотрим на рис.в . Как видно из рисунка, после перемещения векторы k и i не изменились. Соответственно мы их трогать и не будем.

Смотрим на оставшуюся часть картинки: вектор v после перемещения — это сумма двух векторов: вектора v до перемещения и неизвестного нам вектора, совпадающего по направлению с вектором k … А ведь мы теперь можем легко найти неизвестный вектор!

Если вы внимательно изучали урок про векторы, то вы помните, что умножение скаляра на вектор увеличивает (если скаляр больше единицы) вектор. Поэтому неизвестный вектор равен k *dz. Соответственно вектор v после перемещения можно найти по формуле:

Ну разве не просто?

Вращение вокруг осей

Мы уже знаем формулы вращения вокруг осей. В этом разделе я просто более наглядно их поясню. Рассмотрим вращение двух векторов вокруг центра координат в двухмерном пространстве.

Так как мы знаем угол поворота (угол альфа ), то координаты базисных векторов пространства можно легко вычислить с помощью тригонометрических функций:

i.x = cos(a); i.z = sin(a); k.x = -sin(a); k.y = cos(a);

Теперь посмотрим на матрицы вращения вокруг осей в трёхмерном пространстве и на соответствующие иллюстрации.

Вращение вокруг оси x:

Вращение вокруг оси y:

Вращение вокруг оси z:

На рисунках показано какие именно векторы меняют свои координаты.

Небольшое замечание : неверно говорить о вращении вокруг осей. Вращение происходит вокруг векторов. Мы не умеем представлять прямые (оси) в памяти компьютера. А вот векторы — запросто.

И ещё одно: как определяется положительный и отрицательный угол вращения? Это легко: нужно «встать» в центр координат и смотреть в сторону положительного направления оси (прямой). Вращение против часовой стрелки — положительное, по часовой — отрицательное. Соответственно на рисунках выше углы вращения вокруг x и y — отрицательные, а угол вращения вокруг оси z — положительный.

Вращение вокруг произвольной прямой

Представьте такую ситуацию: вы поворачиваете камеру с помощью матрицы вокруг оси x (наклоняете камеру) на двадцать градусов. Теперь вам нужно повернуть камеру на двадцать градусов вокруг оси y. Да без проблем, скажете вы… Стоп! А вокруг чего теперь нужно поворачивать объект? Вокруг оси y, которая была до предыдущего поворота или после? Ведь это две совершенно разные оси. Если вы просто создадите две матрицы вращения (вокруг оси x и вокруг оси y) и перемножите их, то второй поворот будет осущетсвлён вокруг первоначальной оси y. А что если нам необходим второй вариант? В данном случае нам нужно будет научиться вращать объекты вокруг произвольной прямой. Но сначала небольшой тест:

Сколько векторов на следующей картинке?

Правильнй отвект — три вектора. Помните: векторы — это длина и направление. Если в пространстве два вектора имеют одинаковую длину и направление, но находятся в разных местах, то можно считать, что это один и тот же вектор. Кроме того, на рисунке я изобразил сумму векторов. Вектор v = v 1 + v 2 .

В уроке по векторам мы кратко рассмотрели скалярное и векторное произведение векторов. К сожалению, мы не изучили эту тему более подробно. В формуле ниже будет использоваться и скалярное, и векторное произведение. Поэтому буквально пару слов: значение скалярного произведение — это проекция первого вектора на второй. При векторном произведении двух векторов: a x b = c , вектор c перпендикулярен векторам a и b .

Смотрим на следующий рисунок: в пространстве определён вектор v . И данный вектор нужно повернуть вокруг прямой l (эль):

Мы не умеем представлять прямые в программах. Поэтому прямую мы представим в виде единичного вектора n , который совпадает по направлению с прямой l (эль). посмотрим на более подробный рисунок:

Что у нас есть:
1. Прямая l представленная вектором единичной длины n . Как уже писалось выше, вращение вектора v будет осуществляться вокруг вектора, а не прямой.
2. Вектор v , который нужно повернуть вокруг вектора n . В результате вращения у нас должен получиться вектор u (читается как у ).
3. Угол, на который нужно осуществить вращение вектора v .

Зная эти три величины, мы должны выразить вектор u .

Вектор v можно представить как сумму из двух векторов: v = v ⊥ + v || . При этом вектор v || — параллелен вектору n (можно даже сказать: v || — проекция v на n ), а вектор v ⊥ перпендикулярен n . Как несложно догадаться, поворачивать нужно только перпендикулярную вектору n часть вектора v . То есть — v ⊥ .

На рисунке присутствует ещё один вектор — p . Этот вектор перпендикулярен плоскости образованной векторами v || и v ⊥ , |v ⊥ | = |p | (длины этих векторов равны) и p = n x v .

u ⊥ = v ⊥ cosa + p sina

Если непонятно почему u ⊥ вычисляется именно так, вспомните что такое синус и косинус и что представляет собой умножение скалярного значения на вектор.

Теперь нужно из последнего уравнения убрать v ⊥ и p . Делается это с помощью простых подстановок:

v || = n (v · n ) v ⊥ = v v || = v n (v · n ) p = n x v u || = v || u ⊥ = v ⊥ cosa + p sina = (v n (v · n ))cosa + (n x v )sina u = u ⊥ + v || = (v n (v · n ))cosa + (n x v )sina + n (v · n )

Вот такая вот загогулина!

Это формула поворота вектора v на угол a (альфа) вокруг вектора n . Теперь с помощью этой формулы мы можем вычислить базисные векторы:

Упражнения

1. Обязательное: подставьте базисные векторы в формулу вращения вектора вокруг произвольной прямой. Посчитайте (с помощью карандаша и листка бумаги). После всех упрощений у вас должны получиться базисные векторы как на последней картинке. Упражнение займёт у вас минут десять.

Вот и всё.

Роман Шаталов 2009-2012

Введение.
Кватернион
Основные операции над кватернионами.
Кватернионы единичной длины
Интерполяция
Преобразование из двух направлений
Композиция вращений
Физика

Введение.

Давайте коротко определимся с терминологией. Каждый представляет себе, что такое ориентация объекта. Термин "ориентация" подразумевает, что мы находимся в некоторой заданной системе отсчета. Например, фраза "он повернул голову влево" осмыслена только тогда, когда мы представляем, где находится "лево" и где находилась до этого голова. Это важный для понимания момент, ведь если бы это был монстр с головой на животе макушкой вниз то фраза "он повернул голову влево" уже не покажется такой однозначной.

Трансформацию, которая определенным образом вращает из одной ориентации в другую, назовем поворотом. С помощью поворота можно описать и ориентацию объекта, если ввести некую ориентацию по умолчанию как точку отсчета. Например, любой объект, описанный с помощью набора треугольников, уже имеет ориентацию по умолчанию. Координаты его вершин описываются в локальной системе координат этого объекта. Произвольную ориентацию этого объекта можно описать матрицей поворота относительно его локальной системы координат. Также можно выделить такое понятие как "вращение". Под вращением будем понимать изменение ориентации объекта заданным образом во времени. Чтобы однозначно задать вращение, надо, чтобы в любой момент времени мы могли определить точную ориентацию вращаемого объекта. Другими словами вращение задает "путь", пройденный объектом при изменении ориентации. В такой терминологии поворот не задает однозначного вращения объекта. Важно понимать что, к примеру, матрица не задает однозначного вращения тела, одну и ту же матрицу поворота можно получить, повернув объект на 180 градусов вокруг фиксированной оси и на 180 + 360 или 180 — 360. Эти термины я применяю для демонстрации различий в понятиях, и ни в коей мере не настаиваю на использовании. В дальнейшем оставлю за собой право говорить "матрицы вращения".

При слове ориентация часто возникают ассоциация с направлением. Часто можно услышать фразы подобные "он повернул голову в сторону приближающегося локомотива". Например, ориентацию автомобиля можно было бы описать направлением, в котором смотрят его фары. Однако направление задается двумя параметрами (например, как в сферической системе координат), а объекты в трехмерном пространстве имеют три степени свободы (вращения). В случае с автомобилем он может смотреть в одном направлении как стоя на колесах, так и лежа на боку или на крыше. Ориентацию действительно можно задать направлением, но их потребуется два. Давайте рассмотрим ориентацию на простом примере головы человека.

Договоримся про исходное положение, в котором голова ориентирована по умолчанию (без вращения). За исходное примем положение, в котором голова смотрит лицом по направлению оси "z", а вверх (макушкой) смотрит по направлению оси "y". Назовем направление, в котором повернуто лицо "dir" (без вращения совпадает с "z"), а направление, куда смотрит макушка "up" (без вращения совпадает с "y"). Теперь у нас есть точка отсчета, есть локальная координатная система головы "dir", "up" и глобальная с осями x, y, z. Произвольно повернем голову и отметим, куда смотрит лицо. Глядя в этом же направлении можно вращать голову вокруг оси, совпадающей с направлением взгляда "dir".

Например, наклонив голову на бок (прижавшись щекой к плечу) мы будем смотреть в том же направлении, но ориентация головы поменяется. Чтобы зафиксировать поворот вокруг направления взгляда, используем еще и направление "up" (направленно к макушке). В этом случае мы однозначно описали ориентацию головы и не сможем ее повернуть, не изменив направления осей "dir" и "up".

Мы рассмотрели достаточно естественный и простой способ задания ориентации с помощью двух направлений. Как же описать наши направления в программе, чтобы ими было удобно пользоваться? Простой и привычный способ хранить эти направления в виде векторов. Опишем направления с помощью векторов длиной в единицу (единичных векторов) в нашей глобальной системе координат xyz. Первый важный вопрос, как бы наши направления передать в понятном виде графическому API? Графические API работают в основном с матрицами. Нам бы хотелось получить матрицу поворота из имеющихся векторов. Два вектора описывающие направление "dir" и "up" и есть та самая матрица поворота, а точнее два компонента матрицы поворота 3×3. Третий компонент матрицы мы можем получить из векторного произведения векторов "dir" и "up" (назовем его "side"). В примере с головой вектор "side" будет смотреть в направлении одного из ушей. Матрица поворота это и есть координаты трех векторов "dir", "up" и "side" после поворота. Эти вектора до поворота совпадали с осями глобальной системы координат xyz. Именно в виде матрицы поворота очень часто и хранят ориентацию объектов (иногда матрицу хранят в виде трех векторов). Матрицей можно задать ориентацию (если известна ориентация по умолчанию) и поворот.

Похожий способ представления ориентации, называется углы Эйлера (Euler Angles), с тем лишь отличием, что направление "dir" задается в сферических координатах, а "up" описывается одним углом поворота вокруг "dir". В итоге получим три угла вращения вокруг взаимно перпендикулярных осей. В аэродинамике их называют Крен, Тангаж, Рысканье (Roll, Pitch, Yaw или Bank, Heading, Attitude). Крен (Roll) - это наклон головы вправо или влево (к плечам), поворот вокруг оси проходящей через нос и затылок. Тангаж (Pitch) - это наклон головы вверх и вниз, вокруг оси проходящей через уши. И Рысканье (Yaw) - это повороты головы вокруг шеи. Надо помнить, что повороты в трехмерном пространстве не коммутативны, а значит, на результат влияет порядок поворотов. Если мы повернем на R1 а потом на R2, ориентация объекта не обязательно совпадет с ориентацией при повороте на R2 и затем на R1. Именно поэтому при использовании Углов Эйлера важен порядок поворотов вокруг осей. Обратите внимание, что математика углов Эйлера зависит от выбранных осей (мы использовали только один из возможных вариантов), от порядка поворота вокруг них, а также от того в какой системе координат совершаются повороты, в мировой или локальной объекта. В углах Эйлера можно хранить и вращение и поворот.

Огромный недостаток такого представления, отсутствие операции комбинации поворота. Не пытайтесь складывать покомпонентно углы Эйлера. Итоговый поворот не будет комбинацией исходных поворотов. Это одна из самых распространенных ошибок начинающих разработчиков. Чтобы повернуть объект, храня вращение в углах Эйлера, нам придется перевести вращение в другую форму, например в матрицу. Затем перемножить матрицы двух поворотов и из итоговой матрицы извлечь углы Эйлера. Проблема усложняется еще и тем что в частных случаях прямое сложение углов Эйлера работает. В случае комбинации вращений вокруг одной и той же оси, этот метод математически верен. Повернув на 30 градусов вокруг оси X, а затем еще раз вокруг X на 40 градусов мы получим поворот вокруг X на 70 градусов. В случае вращений по двум осям простое сложение углов может давать некий "ожидаемый" результат.

Крен, тангаж и рыскание

Но как только появляется поворот по третьей оси, ориентация начинает вести себя непредсказуемо. Многие разработчики тратят месяцы труда чтобы заставить работать камеру "правильно". Рекомендую обратить пристальное внимание к этому недостатку, особенно если вы уже решили использовать углы Эйлера для представления вращений. Начинающим программистам кажется что, использовать углы Эйлера проще всего. Позволю себе высказать личное мнение, что математика углов Эйлера намного сложнее и коварнее чем математика кватернионов.

Углы Эйлера это комбинация (композиция) вращений вокруг базовых осей. Существует еще один, простой, способ задания вращения. Этот способ можно назвать "смесь" вращений вокруг базовых координатных осей, или просто вращение вокруг произвольной фиксированной оси. Три компоненты описывающие вращение образуют вектор, лежащий на оси, вокруг которой и поворачивается объект. Обычно хранят ось вращения в виде единичного вектора и угол поворота вокруг этой оси в радианах или градусах (Axis Angle). Выбрав подходящую ось и угол можно задать любую ориентацию объекта. В некоторых случаях удобно хранить угол вращения и ось в одном векторе. Направление вектора в этом случае совпадает с направлением оси вращения, а длина его равна углу поворота. В физике, таким образом, хранят угловую скорость. Вектор, совпадающий направлением с осью вращения и длиной представляющей скорость в радианах в секунду.

Кватернион

После краткого обзора о представлениях ориентации можно перейти к знакомству с кватернионом.

Кватернион - это четверка чисел, которые ввел в обращение (как считают историки) Уильям Гамильтон в виде гиперкомплексного числа. В этой статье я предлагаю рассматривать кватернион как четыре действительных числа, например как 4d вектор или 3d вектор и скаляр.

q = [ x, y, z, w ] = [ v, w ]

Существуют и другие представления кватерниона, которые я не буду рассматривать.
Как же хранят вращение в кватернионе? Практически также как и в "Axis Angle" представлении, первые три компонента представляют вектор, лежащий на оси вращения, причем длина вектора зависит от угла поворота. Четвертый компонент зависит только от величины угла поворота. Зависимость довольно простая - если взять единичный вектор V за ось вращения и угол alpha за вращение вокруг этой оси, тогда кватернион представляющий это вращение
можно записать как:

q = [ V*sin(alpha/2), cos(alpha/2) ]

Для понимания того, как хранит вращение кватернион, вспомним про двумерные вращения. Вращение в плоскости можно задать матрицей 2×2, в которой будут записаны косинусы и синусы угла поворота. Можно представить, что кватернион хранит комбинацию оси вращения и матрицы половины поворота вокруг этой оси.

Страницы: 123Следующая »

#кватернионы, #математика

В этой статье мы рассмотрим основные принципы захода на посадку на больших реактивных самолетах применительно к нашим условиям. Хотя за основу рассмотрения выбран Ту-154, следует учитывать, что на других типах ВС применяются, в общем, сходные принципы пилотирования. Информацию взята из расчета на реальную технику, а испытывать судьбу мы будем пока в MSFS98-2002, есть у фирмы "Микрософт" такой компьютерный симулятор, возможно, вы даже слышали...

Посадочная конфигурация самолета

Конфигурация самолета - сочетание положений механизации крыла, шасси, частей и агрегатов ВС, определяющих его аэродинамические качества.

На транспортном самолете, еще до входа в глиссаду, должна быть выпущена механизация крыла, шасси и переложен стабилизатор. Кроме того, по решению командира воздушного судна, экипаж может включить автопилот и/или автомат тяги для захода в автоматическом режиме.

Механизация крыла

Механизация крыла - комплекс устройств на крыле, предназначенных для регулирования его несущей способности и улучшения характеристик устойчивости и управляемости. Механизация крыла включает закрылки, предкрылки, щитки (интерцепторы), активные системы управления пограничным слоем (например, его сдув, отбираемым от двигателей воздухом) и т.д.

Закрылки (flaps)

В целом, закрылки и предкрылки предназначены для повышения несущей способности крыла на взлетно-посадочных режимах.

Аэродинамически, это выражается в следующем:

  1. закрылки увеличивают площадь крыла, что приводит к увеличению подъемной силы.
  2. закрылки увеличивают кривизну профиля крыла, что приводит к более интенсивному отклонению воздушного потока вниз, что также увеличивает подъемную силу.
  3. закрылки увеличивают аэродинамическое сопротивление самолета, а значит вызывают уменьшение скорости.

Увеличение подъемной силы крыла позволяет снизить скорость до более низкого предела. Например, если при массе 80 т скорость сваливания Ту-154Б без закрылков составляет 270 км/ч, то после выпуска закрылков полностью (на 48 град) она уменьшается до 210 км/ч. Если уменьшить скорость ниже этого предела, самолет выйдет на опасные углы атаки, возникнет срывная тряска (бафтинг, buffeting) (особенно при убраных закрылках) и, в конце концов, произойдет сваливание в штопор .

Крыло, оборудованное закрылками и предкрылками, образующими в нем профилированные щели, называют щелевым . Закрылки также могут состоять из нескольких панелей и иметь щели. Например, на Ту-154М применяются двухщелевые , а на Ту-154Б трехщелевые закрылки (на фото Ту-154Б-2). На щелевом крыле воздух из области повышенного давления под крылом с большой скоростью поступает через щели на верхнюю поверхность крыла, что приводит к уменьшению давления на верхней поверхности. При меньшей разности давлений, обтекание крыла получается более плавным и тенденция к формированию срыва уменьшается.

Угол атаки (УА), Angle of Attack (AoA)

Основное понятие аэродинамики. Углом атаки профиля крыла называется угол, под которым профиль обдувается набегающим потоком воздуха. В нормальной ситуации УА не должен превышать 12-15 град, в противном случае возникает срыв потока , т.е. образование турбулентных “бурунчиков” за крылом, как в быстром ручье, если поставить ладонь не вдоль, а поперек потока воды. Срыв приводит к потере подъемной силы на крыле и сваливанию самолета.

На "небольших" самолетах (включая Як-40, Ту-134) выпуск закрылков обычно приводит к “вспуханию” - самолет немного увеличивает вертикальную скорость и задирает нос. На "больших" самолетах стоят системы улучшения устойчивости и управляемости , которые автоматически парируют возникающий момент опусканием носа. Такая система есть на Ту-154 поэтому там "вспухание" невелико (кроме того, там момент выпуска закрылков совмещено с моментом перекладки стабилизатора, который создает противоположный момент). На Ту-134 пилоту приходится гасить увеличение подъемной силы вручаную отклоняя штурвальную колонку от себя. В любом случае, для уменьшения "вспухания", закрылки принято выпускать в два или три приема - обычно сначала на 20-25, потом на 30-45 градусов.

Предкрылки (slats)

Кроме закрылков, почти все транспортные самолеты также имеют предкрылки , которые установлены в передней части крыла, и автоматически отклоняются вниз одновременно с закрылками (пилот о них почти не думает). Принципиально они выполняет ту же функцию, что и закрылки. Отличие состоит в следующим:

  1. На больших углах атаки, отклоненные вниз предкрылки как крючком цепляются за набегающий поток воздуха, отклоняя его вниз вдоль профиля. В результате, предкрылки уменьшают угол атаки остальной части крыла и откладывают момент сваливания на большие углы атаки.
  2. Предкрылки обычно имеют меньший размер, а значит и меньшее лобовое сопротивление.

В целом, выпуск как закрылков так и предкрылков сводится к увеличению кривизны профиля крыла, что позволяет сильнее отклонять вниз набегающий поток воздуха, а значит увеличивать подъемную силу.

Насколько до сих пор известно, предкрылки отдельно в аir-файле не выделены.

Чтобы понять, на фига на самолетах применяется такая сложная механизация, понаблюдайте за приземлением птиц. Часто можно обратить внимание, как голуби и им подобные вороны садятся сильно распушив крылья, поджимая хвост и стабилизатор под себя, пытаясь получить профиль крыла большой кривизны и создать хорошую воздушную подушку. Это и есть выпуск закрылков и предкрылков.

Механизация B-747 на посадке

Интерцепторы (spoilers)

Интерцепторы , они же спойлеры представляют собой отклоняемые тормозные щитки на верхней поверхности крыла, которые увеличивают аэродинамическое сопротивление и уменьшают подъемную силу (в отличие от закрылков и предкрылков). Поэтому интерцепторы (особенно на "илах") также называют гасителями подъемной силы .

Интерцепторы - это очень широкое понятие, в которое напичкано много всяких разновидностей гасителей, и на разных типах они могут называться по-разному и располагаться в разных местах.

В качестве примера рассмотрим крыло самолета Ту-154, на котором применяются три типа интерцепторов:

1) внешние элерон-интерцепторы (spoilerons, roll spoilers)

Элерон-интерцепторы представляют собой дополнение к элеронам. Они отклоняются несимметрично. Например на Ту-154, при отклонении левого элерона вверх на угол до 20 град, левый элерон-интерцептор автоматически отклоняются вверх на угол до 45 град. В результате подъемная сила на левом полукрыле уменьшается, и самолет кренится влево. То же самое для правого полукрыла.

Почему нельзя обойтись только одними элеронами?

Дело в том, что чтобы создать момент крена на большом самолете, нужна большая площадь отклоняемых элеронов. Но, поскольку реактивные самолеты летают на скоростях близких к звуковым, они должны иметь тонкий профиль крыла, который бы не создавал слишком большого сопротивления. Применение больших элеронов приводило бы к его скручиванию и всяким нехорошим явлениям типа реверса элеронов (такое, например, может иметь место быть на Ту-134). Поэтому нужен способ распределить нагрузку на крыло более равномерно. Для этого и используются элерон-интерцепторы.- щитки, установленные на верхней поверхности, которые при отклонении вверх, уменьшают подъемную силу на данном полукрыле, и "топят" его вниз. Скорость вращения по крену при этом значительно возрастает.

Пилот не задумывается об элерон-интерцепторах, с его точки зрения, все происходит автоматически.

В air-файле элерон-интерцепторы, в принципе, предусмотрены.

2) средние интерцепторы (spoilers, speed brakes)

Средние интерцепторы это то, что обычно понимают под просто "интерцепторами" или "спойлерами" - т.е. "воздушные тормоза". Симметричное задействование интерцепторов на обеих половинах крыла приводит к резкому уменьшению подъемной силы и торможению самолета. После выпуска "воздушных тормозов" самолет сбалансируется на большем угле атаки, начнет тормозиться за счет возросшего сопротивления и плавно снижаться.

На Ту-154 средние интерцепторы отклоняются на произвольный угол до 45 град с помощью рычага на среднем пульте пилотов. Это к вопросу, где у самолета стоп-кран.

На Ту-154 внешние и средние интерцепторы это конструктивно разные элементы, но на других самолетах "воздушные тормоза" могут быть конструктивно совмещены с элерон-интерцепторами. Например, на Ил-76 интерцепторы обычно работают в элеронном режиме (с отклонением на угол до 20 град), а при необходимости - в тормозном (с отклонением на угол до 40 град).

Выпускать средние интерцепторы при заходе на посадку не надо. Вообще-то, выпуск интерцепторов после выпуска шасси обычно запрещен. В нормальной ситуации, интерцепторы выпускаются для более быстрого снижения с эшелона с вертикальной скоростью до 15 м/c и после после приземления самолета. Кроме того, они могут применяться при прерванном взлете и экстренном снижении.

Бывает, что "виртуальщики" при заходе на посадку забывают убрать газ, и держат режим чуть ли не на взлетном, пытаясь вписаться в схему посадки с очень высокой скоростью, вызывая гневные вопли диспетчера в стиле “Maximum speed below ten thousand feet is 200 knots!” В таких случаях можно кратковременно выпустить средние интерцепторы, но в реальности, это вряд ли приведет к чему-нибудь хорошему. Лучше пользоваться таким грубым методом гашения скорости заблаговременно - только на снижении, причем не всегда обязательно выпускать интерцепторы на полный угол.

3) внутренние интерцепторы (ground spoilers)

Также "тормозные щитки"

Расположены на верхней поверхности во внутренней (корневой) части крыла между фюзеляжем и гондолами шасси. У Ту-154 автоматически отклоняются на угол 50 град после приземления при обжатии основных аморстоек шасси, скорости более 100 км/ч и РУД-ах в положении "малый газ" или "реверс". Одновременно отклоняются и средние интерцепторы..

Внутренние интерцепторы предназначены для гашения подъемной силы после приземления или при прерваном взлете. Как и другие типы интерцепторов, они не столько гасят скорость, сколько гасят подъемную силу крыла, что приводит к увеличению нагрузки на колеса и улучшению сцепления колес с поверхностью. Благодаря этому после выпуска внутренних интерцепторов можно переходить к торможению с помощью колес.

На Ту-134 тормозные щитки - это единственный тип интерцепторов.

В симуляторе внутренние интерцепторы либо отсутствуют, либо воссоздаются достаточно условно.

Балансировка по тангажу

Большие самолеты имеют ряд особенностей управления по тангажу, о которых нельзя не упомянуть. Триммирование, центровка, балансировка, перекладка стабилизатора, расход штурвальной колонки. Рассмотрим эти вопросы более подробно.

Тангаж (pitch)

Тангаж (pitch) - угловое движение летательного аппарата относительно поперечной оси инерции, а проще говоря "задир". У моряков эта фигня называется "дифферент". Тангаж противопоставлен крену (bank) и рысканию (yaw) , которые соответственно характеризуют положения ЛА при его вращении вокруг продольной и вертикальной оси. Соответственно различают углы тангажа, крена и рысканья (иногда их называют углы Эйлера). Термин "рысканье" можно заменять словом "курс", например говорят "в канале курса".

Отличие угла тангажа от угла атаки, надеюсь объяснять нет необходимости... Когда самолет падает совершенно плашмя, как утюг, угол атаки у него будет 90 град, а угол тангажа будет близок к нулю. Наоборот, когда истребитель идет в наборе, на форсаже, с хорошей скоростью, у него угол тангажа может быть 20 град, а угол атаки, скажем, всего 5 град.

Триммирование

Чтобы обеспечить нормальное пилотирование, усилие на штурвале должно быть ощутимым, в противном случае, любое случайное отклонение могло бы ввести самолет в какой-нибудь нехороший штопор. Собственно говоря, именно поэтому на тяжелых самолетах, не предназначенных для выполнения резких маневров, обычно применяются штурвалы, а не ручки - их не так просто случайно отклонить по крену. (Исключение составляет Airbus, который предпочитает джойстики.)

Понятно, что при затяжеленном управлении бицепсы у пилота будут постепенно развиваться довольно приличные, более того, если самолет разбалансирован по усилиям его трудно пилотировать, т.к. любое ослабление усилия толкнет штурвальную колонку (ШК) не туда, куда надо. Поэтому, чтобы в процессе выполнения полета, летчики могли иногда хлопнуть стюардессу Катьку по заднице, на самолетах устанавливают триммеры.

Триммер - устройство, которое тем или иным способом фиксирует штурвал (ручку управления) в заданном положении, дабы папелац мог снижаться, набирать высоту и лететь в горизонтальном полете и т.д. без приложения усилий к штурвальной колонке.

В результате триммирования, точка, в которую тянет штурвал (ручку), будет не совпадать с нейтральным положением для данного руля. Чем дальше от положения триммирования, тем большие усилия приходится прикладывать, чтобы удержать штурвал (ручку) в заданном положении.

Чаще всего, под триммером имеют в виду триммер в канале тангажа - т.е. триммер руля высоты (РВ). Тем не менее, на больших самолетах триммеры на всякий случай, ставят во всех трех каналах - там они обычно выполняют вспомогательную роль. Например, в канале крена триммирование может применятся при продольной разбалансировки самолета из-за несимметричной выработки топлива из крыльевых баков, т.е. когда одно крыло перетягивает другое. В канале курса - при отказе двигателя, чтобы самолет не рыскал в сторону, когда один двигатель не работает. И т.д.

Триммирование можно технически реализовать следующими способами:

1) с помощью отдельного аэродинамического триммера , как на Ту-134- т.е. маленького "рулька" на руле высоты, который удерживают основной руль в заданном положении с помощью аэродинамической компенсации, т.е. используя силу набегающего потока. На Ту-134 для управления таким триммером используется колесо триммера , на которое наматывается трос, идущий к РВ.

2) с помощью МЭТ (механизма эффекта триммирования) , как на Ту-154 - т.е. просто регулируя затяжку в системе пружин (правильнее сказать, пружинных загружателей ), которые чисто механически удерживает штурвальную колонку в заданном положении. Когда шток МЭТ перемещается вперед-назад, загружатели то ослабляются, то натягиваются. Для управления МЭТ используются небольшие нажимные переключатели на рукоятках штурвалов, при включении которых, шток МЭТ, а за ним и штурвальная колонка медленно перемещаются в заданное положение. Аэродинамические триммеры как на Ту-134, на Ту-154 отсутствуют.

3) с использованием переставного стабилизатора , как на большинстве западных типов (см ниже)

В симуляторе трудно воссоздать настоящий триммер руля высоты, для этого придется использовать навороченный джойстик с эффектом триммирования, потому что, то, что в MSFS называется триммером, по сути, не стоит воспринимать как таковой - правильнее было бы замазать джойстик пластилином или жевачкой или просто положить мышь на стол (в FS98) - вот вам и триммер. Надо сказать, что управление это вообще больное место всех симуляторов. Даже если купить самый навороченный штурвал и систему педалей, оно все равно, скорее всего, будет далековато от реального. Имитация она и есть имитация, потому что, чтобы получить абсолютно точную копию настоящего самолета нужно затратить столько же усилий и переработать столько же информации, сколько и для того, чтобы построить настоящий самолет...

Центровка (CG)

Центровка воздушного судна (Center of Gravity (CG) position) - положение центра тяжести, измеряемое в процентах длины так называемой средней аэродинамической хорды (САХ, Mean Aerodynamic Chord, MAC) - т.е. хорды условного прямоугольного крыла, равноценного данному крылу, и имеющее с ним одинаковую площадь.

Хорда - отрезок прямой, соединяющий переднюю и заднюю кромку профиля крыла.

положение центра тяжести 25% САХ

Длину средней аэродинамической хорды находят интегрированием по длинам хорд вдоль всех профилей полукрыла. Грубо говоря, САХ характеризуют наиболее распространенный, наиболее вероятный профиль крыла. т.е. предполагается, что все крыло со всем его разнобоем профилей можно заменить одним единственном усредненным профилем с одной единственной усредненной хордой - САХ.

Чтобы найти положение САХ, зная его длину, нужно пересечь САХ с контуром реального крыла и посмотреть, где находится начало полученного отрезка. Эта точка (0% САХ) и будет служить точкой отсчета для определения центровки.

Разумеется, транспортный самолет не может иметь постоянную центровку. Она будет меняться от вылета к вылету из-за перемещений грузов, изменения количества пассажиров, а также в процессе полета по мере выработки топлива. Для каждого самолета определен допустимый диапазон центровок, при котором обеспечивается его хорошая устойчивость и управляемость. Обычно различают переднюю (для Ту-154Б - 21-28%), среднюю (28-35%) и заднюю (35-50%) центровки - для других типов цифры будут несколько отличаться.

Центровка пустого самолета сильно отличается от центровки заправленного самолета со всеми грузами и пассажирами, и для ее расчета перед вылетом заполняется специальный центровочный график .

Пустой Ту-154Б имеет центровку порядка 49-50% САХ, при том, что при 52,5% он уже опрокидывается на хвост (двигатели на хвосте перетягивают). Поэтому под хвостовой частью фюзеляжа в некоторых случаях необходимо устанавливать страховочную штангу.

Балансировка в полете

У самолета со стреловидным крылом центр приложения подъемной силы на крыле расположен в точке примерно 50-60% САХ, т.е. позади центра тяжести, который в полете обычно располагается в районе 20-30 % САХ.

В результате, в горизонтальном полете на крыле возникает рычаг подъемной силы , который хочет опрокинуть самолет на нос, т.е. в нормальной ситуации самолет находится под действием пикирующего момента .

Чтобы избежать всего этого, в течении всего полета придется парировать возникающий пикирующий момент балансировочным отклонением РВ , т.е. отклонение руля высоты не будет равно нулю даже в горизонтальном полете.

В основном, чтобы удержать самолет от "клевка" нужно будет создавать кабрирующий момент , т.е. РВ нужно будет отклоняться вверх.

Кабрировать - от фр. cabrer , "ставить на дыбы".

Всегда только вверх? Нет, не всегда.

При увеличении скорости, скоростной напор увеличится, а значит пропорционально возрастет суммарная подъемная сила на крыле, на стабилизаторе и на руле высоты

F под = F под1 – F под2 – F под3

Но сила тяжести останется прежней, а значит самолет перейдет в набор. Чтобы снова сбалансировать папелац в горизонтальном полете, придется опустить руль высоты пониже (отдать штурвал от себя), т.е. уменьшить слагаемое F под3 . Тогда нос опустится, и самолет снова сбалансируется в горизонтальном полете, но уже на меньшем угле атаки.

Таким образом, для каждой скорости у нас будет свое балансировочное отклонение РВ - мы получим ажно целую балансировочную кривую (зависимость отклонения РВ от скорости полета). На больших скоростях, придется отдавать штурвальную колонку от себя (РВ вниз), чтобы удержать самик от кабрирования, на малых скоростях придется брать штурвальную колонку на себя (РВ вверх), чтобы удержать самик от пикирования . Штурвал и руль высоты будут находится в нейтральном положении только на какой-то одной определенной приборной скорости (около 490 км/ч для Ту-154Б).

Стабилизатор (Horizontal Stabilizer)

Кроме того, как видно из приведенной схемы, самолет можно балансировать не только рулем высоты, но и переставным стабилизатором (слагаемое Fпод2). Такой стабилизатор с помощью специального механизма может целиком устанавливаться на новый угол. Эффективность такой перекладки будет примерно в 3 раза выше - т.е. 3 град отклонения РВ будут соответствовать 1 град отклонения стабилизатора, т.к. его площадь горизонтального стабилизатора у "тушки" примерно в 3 раза больше площади РВ.

В чем преимущество использования переставного стабилизатора? Прежде всего в том, что при этом уменьшается расход руля высоты . Дело в том, что иногда из-за слишком передней центровки для удержания самолета на определенном угле атаки приходится использовать весь ход штурвальной колонки - пилот выбрал управление полностью на себя, и дальше самолет уже не заманишь вверх никакой морковкой. Это особенно может иметь место на посадке с предельно передней центровкой, когда при попытке ухода на второй круг, руля высоты может не хватить. Собственно говоря, значение предельно передней центровки и устанавливаются из расчета, чтобы располагаемого отклонения руля высоты хватало на всех режимах полета.

Поскольку РВ отклоняется относительно стабилизатора, то нетрудно видеть, что применение переставного стабилизатора уменьшит расход штурвала и увеличит доступный диапазон центровок и доступных скоростей . А значит можно будет взять больше грузов и расположить их более удобным способом.

В горизонтальном полете на эшелоне стабилизатор Ту-154 находится под углом -1.5 град на кабрирование по отношению к фюзеляжу, т.е. почти горизонтально. На взлете и на посадке , он перекладывается дальше на кабрирование на угол до -7 град относительно фюзеляжа, чтобы создать достаточный угол атаки для поддержания самолета в горизонтальном полете на малой скорости.

Особенностью Ту-154 является то, что перестановка стабилизатора осуществляется только на взлете и на посадке , а в полете он убирается в положение -1.5 (которое считается нулевым), и самолет тогда балансируется одним рулем высоты.

При этом, для удобства экипажа и по ряду других причин, перекладка совмещена с выпуском закрылков и предкрылков, т.е. при переводе рукоятки закрылков из положения 0 в положение на выпуск, автоматически выпускаются предкрылки и стабилизатор перекладывается в согласованное положение. При уборке закрылков после взлета - то же самое, в обратном порядке.

Приведем таблицу, которая висит в кабине экипажа, чтобы постоянно ему напоминать, что у них там блин на фиг выпускается...

Таким образом, все происходит само собой. На круге перед посадкой на скорости 400 км/ч экипаж только должен проверить соответствует ли балансировочное отклонение РВ положению задатчика стабилизатора и, если нет, то устанавить задатчик в нужное положение. Скажем, стрелка указателя положения РВ в зеленом секторе, значит задатчик ставим на зеленое "П" - все достаточно просто и не требует значительных умственных усилий...

При отказах автоматики все выпуски и перекладки механизации можно проделать и в ручном режиме. Например, если речь идет о стабилизаторе, нужно откинуть колпак слева на фото и переставить стабилизатор в согласованное положение.

На других типах ВС, эта система работает иначе. Например на Як-42, MD-83, B-747 (затрудняюсь сказать за всю Одессу, но так должно быть на большинстве западных самолетов) стабилизатор отклоняется в течение всего полета и полностью заменяет собой триммер . Такая система более совершенна, т.к позволяет уменьшить сопротивление в полете, поскольку стабилизатор из-за большой площади отклоняется на меньшие углы, чем РВ.

На Як-40, Ту-134 стабилизатор также обычно регулируется независимо от механизации крыла.

Теперь об MSFS. В симуляторе мы имеем ситуацию "триммирующего стабилизатора", как на западных типах. Отдельного виртуального триммера в МSFS нет. Та прямоугольная штучка (как на "цесссне"), которая у микрософт называется "триммером" на самом деле является стабилизатором, что заметно, по независимости ее работы от РВ.

Почему так? Вероятно, все дело в том, что изначально (в конце 80-х) FS использовался как программная база для полнофункциональных тренажеров, на которых стояли реальные штурвальные колонки и реальные МЭТ-ы. Когда МS купила (сперла?) FS, она не стала глубоко вникать в особенности его работы (а возможно, даже не имела к нему полного описания), поэтому стабилизатор стал называться триммером. По крайней мере, такое предположение хочется сделать, изучая MS+FS, ведь описание к air-файлу так и не было опубликовано, а по качеству дефолтных моделей и ряду других признаков можно сделать вывод, что микрософт и само в нем не особо разбирается.

В случае Ту-154, вероятно, следует установить микрософтовский триммер один раз перед посадкой в горизонтальном полете, чтобы индикатор руля высоты был приблизительно в нейтральном положении, и больше к нему не возвращаться, а работать только триммером джойстика, которого ни у кого нет... Или работать c "прямоугольной штучкой", закрывать глаза и повторять про себя: "Это не стабилизатор, это не стабилизатор...."

Автомат тяги (Auto Throttle)

В штурвальном режиме КВС или 2П управляет двигателями с помощью РУД-ов (рычагов управления двигателями) на среднем пульте или подавая команды бортинженеру: "Режим такой-то"

Иногда бывает удобно управлять двигателями не вручную, а с помощью автомата тяги (auto throttle, АТ) , который старается удержать скорость в допустимых пределах, автоматически регулируя режим двигателей.

Включите АТ (клавиша Shift R), задайте нужную скорость на УС-И (указатель скорости), и автоматика будет пытаться выдерживать ее без вмешательства пилота. На Ту-154 скорость при включенном АТ-6-2 можно регулировать двумя способами 1) вращая кремальеру на левом либо на правом УС-И 2) вращая регулятор на ПН-6 (=пультик СТУ и автомата тяги).

Разновидности систем посадки

Различают визуальный заход и заход по приборам .

Чисто визуальный заход на посадку на больших самолетах применяется редко и может вызвать трудности даже у опытного экипажа. Поэтому обычно заход осуществляется по приборам , т.е. с применением радиотехнических систем под управлением и контролем диспетчера УВД .

Управление воздушным движением (УВД, Air Traffic Control, ATC) - управление движением воздушных судов в полете и на площади маневрирования аэродрома.

Радиотехнические системы посадки

Рассмотрим заходы с применением радиотехнических систем посадки. Их можно подразделить на следующие типы:

“по ОСП” , т.е. с использованием ДПРМ и БПРМ

“по РМС” , т.е. с использованием ILS

“по РСП” , т.е. по локатору.

Заход по ОСП

Также известен как "заход по приводам" .

ОСП (оборудование системы посадки) - комплекс наземных средств, включающих две приводных радиостанции с маркерными радиомаяками, а также светотехническое оборудование (СТО) , установленное на аэродроме по утвержденной типовой схеме.

Конкретно, ОСП включает в себя

"дальний" (приводной радиомаяк) (ДПРМ, Outer Marker, OM) - дальнюю приводную радиостанцию со своим маркером, которая располагается в 4000 (+/- 200) м от торца ВПП. При пролете маркера в кабине срабатывает световая и звуковая сигнализация. Морзянка cигнала в системе ILS имеет вид “тире-тире-тире...“.

"ближний" (приводной радиомаяк) (БПРМ, Middle Marker, MM) - ближнюю приводную радиостанцию тоже со своим маркером, которая располагается в 1050 (+/- 150) м от торца ВПП. Морзянка в системе ILS имеет вид “тире-точка-...“

Приводные радиостанции работают в диапазоне 150-1300 кГц.

При полете по кругу, первый и второй комплекты автоматического радиокомпаса (АРК, Automatic Direction Finder, ADF) настраиваются на частоты ДПРМ и БПРМ- при этом одна стрелка на указателе АРК будет показывать на ДПРМ, вторая на БПРМ.

Напомним, что стрелка указателя АРК всегда показывает на радиостанцию подобно тому, как стрелка магнитного компаса, всегда показывает на север. Следовательно, при полете по схеме, момент начала четвертого разворота можно определить по курсовому углу радиостанции (КУР) . Скажем, если ДПРМ радиостанция точно слева, то КУР=270 град. Если мы хотим развернуться на нее, то разворот нужно начинать на 10-15 град раньше (т.е. при КУР=280...285 град). Пролет над радиостанцией будет сопровождаться разворотом стрелки на 180 град.

Таким образом, при полете по кругу курсовой угол ДПРМ помогает определить моменты начала выполнения разворотов на круге. В этом плане ДПРМ представляет собой что-то вроде точки отсчета, относительно которой рассчитываются многие действия при заходе на посадку.

К радиостанции также присобачен маркер , или маркерный радиомаяк - передатчик, посылающий вверх узконаправленный сигнал, который при пролете над ним воспринимается самолетными приемниками и заставляет срабатывать индикаторную лампочку и электрозвонок. Благодаря этому, зная на какой высоте следует проходить ДПРМ и БПРМ (обычно это 200 и 60 м соответственно) можно получить две точки, по которым можно построить предпосадочную прямую.

На западе, на аэродромах категории II и III cо сложным рельефом местности на расстоянии 75..100 м от торца ВПП устанавливают еще и внутренний радиомаркер (Inner Marker, IM) (c морзянкой “точка-точка-точка....“), который используется как дополнительное напоминание экипажу о приближении к моменту начала визуального наведения и необходимости принятия решения о посадке.

Комплекс ОСП относится к упрощенным системам посадки, он должен обеспечивать экипажу воздушного судна привод в район аэродрома и маневр снижения до высоты визуального обнаружения ВПП. На практике он играет вспомогательное значение и обычно не отменяет необходимость использования системы ILS или посадочного радиолокатора. Чисто по ОСП заходят только при отсутствии более совершенных систем посадки.

При заходе только по ОСП горизонтальная видимость должна составлять не менее 1800 м, вертикальная не менее 120 м. Если этот метеоминимум не соблюдается, необходимо уйти на запасной аэродром .

Обратите внимание, что ДПРМ и БПРМ на разных концах полосы имеют одну и ту же частоту. В нормальной ситуации, радиостанции на другом конце должны быть выключены, но в симе это не так, поэтому при полете по кругу, АРК часто начинает глючить, цепляя то одну радиостанцию, то другую.

Заход по РМС

Также говорят "заход по системе" . В общем-то, это то же самое, что и заход по ILS. (см.также статью Дмитрия Просько на этом сайте)

В русскоязычной терминологии радиомаячная система посадки (РМС) используется как обобщающий термин, который включает в себя различные разновидности систем посадки- в частности, ILS (Instrument Landing System) (как западный стандарт) и СП-70, СП-75, СП-80 (как отечественные стандарты).

Принципы захода по РМС достаточно просты.

Наземная часть РМС состоит из двух радиомаяков - курсового радиомаяка (КРМ) и глиссадного радиомаяка (ГРМ) , которые излучают два наклонных луча (равносигнальные зоны) в вертикальной и горизонтальной плоскости. Пересечение этих зон образует траекторию захода на посадку. Самолетные приемные устройства определяют положение самолета относительно этой траектории и выдают управляющие сигналы на командно-пилотажный прибор ПКП-1 (проще говоря, на авиагоризонт) и планово-навигационный прибор ПНП-1 (проще говоря, на указатель курса).

Если частота настроена правильно, то при подходе к полосе пилот увидит на большом авиагоризонте две перемещающихся линии - вертикальную командную стрелку курса и горизонтальную командную стрелку глиссады , а также два треугольных индекса, обозначающих положение ВС относительно расчетной траектории.

tangage - килевая качка) - угловое движение летательного аппарата или судна относительно главной (горизонтальной) поперечной оси инерции . Угол тангажа - угол между продольной осью летательного аппарата или судна и горизонтальной плоскостью. Угол тангажа обозначается буквой θ (тета) . В авиации различают:
  • положительный тангаж, с увеличением угла (подъём носа) - кабрирование , штурвал на себя;
  • отрицательный, с уменьшением угла (опускание носа) - пикирование , штурвал от себя.

Это один из трёх углов (крена , тангажа и рыскания), которые задают наклон летательного средства относительно его центра инерции по трём осям. По отношению к морским судам используется термин «дифферент » с таким же значением. Примечательно, что дифферент имеет обратные представления о положительности/отрицательности.

См. также

Напишите отзыв о статье "Тангаж"

Примечания

Ссылки

  • Каталог фигур высшего пилотажа Арести ФАИ = FAI Aresti Aerobatic Catalogue. - Federation Aeronautique Internationale, 2002.

Отрывок, характеризующий Тангаж

«О господи, народ то что зверь, где же живому быть!» – слышалось в толпе. – И малый то молодой… должно, из купцов, то то народ!.. сказывают, не тот… как же не тот… О господи… Другого избили, говорят, чуть жив… Эх, народ… Кто греха не боится… – говорили теперь те же люди, с болезненно жалостным выражением глядя на мертвое тело с посиневшим, измазанным кровью и пылью лицом и с разрубленной длинной тонкой шеей.
Полицейский старательный чиновник, найдя неприличным присутствие трупа на дворе его сиятельства, приказал драгунам вытащить тело на улицу. Два драгуна взялись за изуродованные ноги и поволокли тело. Окровавленная, измазанная в пыли, мертвая бритая голова на длинной шее, подворачиваясь, волочилась по земле. Народ жался прочь от трупа.
В то время как Верещагин упал и толпа с диким ревом стеснилась и заколыхалась над ним, Растопчин вдруг побледнел, и вместо того чтобы идти к заднему крыльцу, у которого ждали его лошади, он, сам не зная куда и зачем, опустив голову, быстрыми шагами пошел по коридору, ведущему в комнаты нижнего этажа. Лицо графа было бледно, и он не мог остановить трясущуюся, как в лихорадке, нижнюю челюсть.
– Ваше сиятельство, сюда… куда изволите?.. сюда пожалуйте, – проговорил сзади его дрожащий, испуганный голос. Граф Растопчин не в силах был ничего отвечать и, послушно повернувшись, пошел туда, куда ему указывали. У заднего крыльца стояла коляска. Далекий гул ревущей толпы слышался и здесь. Граф Растопчин торопливо сел в коляску и велел ехать в свой загородный дом в Сокольниках. Выехав на Мясницкую и не слыша больше криков толпы, граф стал раскаиваться. Он с неудовольствием вспомнил теперь волнение и испуг, которые он выказал перед своими подчиненными. «La populace est terrible, elle est hideuse, – думал он по французски. – Ils sont сошше les loups qu"on ne peut apaiser qu"avec de la chair. [Народная толпа страшна, она отвратительна. Они как волки: их ничем не удовлетворишь, кроме мяса.] „Граф! один бог над нами!“ – вдруг вспомнились ему слова Верещагина, и неприятное чувство холода пробежало по спине графа Растопчина. Но чувство это было мгновенно, и граф Растопчин презрительно улыбнулся сам над собою. „J"avais d"autres devoirs, – подумал он. – Il fallait apaiser le peuple. Bien d"autres victimes ont peri et perissent pour le bien publique“, [У меня были другие обязанности. Следовало удовлетворить народ. Много других жертв погибло и гибнет для общественного блага.] – и он стал думать о тех общих обязанностях, которые он имел в отношении своего семейства, своей (порученной ему) столице и о самом себе, – не как о Федоре Васильевиче Растопчине (он полагал, что Федор Васильевич Растопчин жертвует собою для bien publique [общественного блага]), но о себе как о главнокомандующем, о представителе власти и уполномоченном царя. „Ежели бы я был только Федор Васильевич, ma ligne de conduite aurait ete tout autrement tracee, [путь мой был бы совсем иначе начертан,] но я должен был сохранить и жизнь и достоинство главнокомандующего“.