Метод наименьших квадратов для параболы коэффициенты. Математика на пальцах: методы наименьших квадратов. Некоторые частные случаи применения МНК на практике

07.12.2023 История 

Метод наименьших квадратов является одним из наиболее распространенных и наиболее разработанных вследствие своей простоты и эффективности методов оценки параметров линейных . Вместе с тем, при его применении следует соблюдать определенную осторожность, поскольку построенные с его использованием модели могут не удовлетворять целому ряду требований к качеству их параметров и, вследствие этого, недостаточно “хорошо” отображать закономерности развития процесса .

Рассмотрим процедуру оценки параметров линейной эконометрической модели с помощью метода наименьших квадратов более подробно. Такая модель в общем виде может быть представлена уравнением (1.2):

y t = a 0 + a 1 х 1 t +...+ a n х nt + ε t .

Исходными данными при оценке параметров a 0 , a 1 ,..., a n является вектор значений зависимой переменной y = (y 1 , y 2 , ... , y T)" и матрица значений независимых переменных

в которой первый столбец, состоящий из единиц, соответствует коэффициенту модели .

Название свое метод наименьших квадратов получил, исходя из основного принципа, которому должны удовлетворять полученные на его основе оценки параметров: сумма квадратов ошибки модели должна быть минимальной.

Примеры решения задач методом наименьших квадратов

Пример 2.1. Торговое предприятие имеет сеть, состоящую из 12 магазинов, информация о деятельности которых представлена в табл. 2.1.

Руководство предприятия хотело бы знать, как зависит размер годового от торговой площади магазина.

Таблица 2.1

Номер магазина

Годовой товарооборот, млн руб.

Торговая площадь, тыс. м 2

Решение методом наименьших квадратов. Обозначим — годовой товарооборот -го магазина, млн руб.; — торговая площадь -го магазина, тыс. м 2 .

Рис.2.1. Диаграмма рассеяния для примера 2.1

Для определения формы функциональной зависимости между переменными и построим диаграмму рассеяния (рис. 2.1).

На основании диаграммы рассеяния можно сделать вывод о позитивной зависимости годового товарооборота от торговой площади (т.е. у будет расти с ростом ). Наиболее подходящая форма функциональной связи — линейная .

Информация для проведения дальнейших расчетов представлена в табл. 2.2. С помощью метода наименьших квадратов оценим параметры линейной однофакторной эконометрической модели

Таблица 2.2

Таким образом,

Cледовательно, при увеличении торговой площади на 1 тыс. м 2 при прочих равных условиях среднегодовой товарооборот увеличивается на 67,8871 млн руб.

Пример 2.2. Руководство предприятия заметило, что годовой товарооборот зависит не только от торговой площади магазина (см. пример 2.1), но и от среднего числа посетителей. Соответствующая информация представлена в табл. 2.3.

Таблица 2.3

Решение. Обозначим — среднее число посетителей -го магазина в день, тыс. чел.

Для определения формы функциональной зависимости между переменными и построим диаграмму рассеяния (рис. 2.2).

На основании диаграммы рассеяния можно сделать вывод о позитивной зависимости годового товарооборота от среднего числа посетителей в день (т.е. у будет расти с ростом ). Форма функциональной зависимости — линейная.

Рис. 2.2. Диаграмма рассеяния для примера 2.2

Таблица 2.4

В целом необходимо определить параметры двухфакторной эконометрической модели

у t = a 0 + a 1 х 1 t + a 2 х 2 t + ε t

Информация, требующаяся для дальнейших расчетов, представлена в табл. 2.4.

Оценим параметры линейной двухфакторной эконометрической модели с помощью метода наименьших квадратов.

Таким образом,

Оценка коэффициента =61,6583 показывает, что при прочих равных условиях с увеличением торговой площади на 1 тыс. м 2 годовой товарооборот увеличится в среднем на 61,6583 млн руб.

Пример.

Экспериментальные данные о значениях переменных х и у приведены в таблице.

В результате их выравнивания получена функция

Используя метод наименьших квадратов , аппроксимировать эти данные линейной зависимостью y=ax+b (найти параметры а и b ). Выяснить, какая из двух линий лучше (в смысле метода наименьших квадратов) выравнивает экспериментальные данные. Сделать чертеж.

Суть метода наименьших квадратов (МНК).

Задача заключается в нахождении коэффициентов линейной зависимости, при которых функция двух переменных а и b принимает наименьшее значение. То есть, при данных а и b сумма квадратов отклонений экспериментальных данных от найденной прямой будет наименьшей. В этом вся суть метода наименьших квадратов.

Таким образом, решение примера сводится к нахождению экстремума функции двух переменных.

Вывод формул для нахождения коэффициентов.

Составляется и решается система из двух уравнений с двумя неизвестными. Находим частные производные функции по переменным а и b , приравниваем эти производные к нулю.

Решаем полученную систему уравнений любым методом (например методом подстановки или ) и получаем формулы для нахождения коэффициентов по методу наименьших квадратов (МНК).

При данных а и b функция принимает наименьшее значение. Доказательство этого факта приведено .

Вот и весь метод наименьших квадратов. Формула для нахождения параметра a содержит суммы , , , и параметр n - количество экспериментальных данных. Значения этих сумм рекомендуем вычислять отдельно. Коэффициент b находится после вычисления a .

Пришло время вспомнить про исходый пример.

Решение.

В нашем примере n=5 . Заполняем таблицу для удобства вычисления сумм, которые входят в формулы искомых коэффициентов.

Значения в четвертой строке таблицы получены умножением значений 2-ой строки на значения 3-ей строки для каждого номера i .

Значения в пятой строке таблицы получены возведением в квадрат значений 2-ой строки для каждого номера i .

Значения последнего столбца таблицы – это суммы значений по строкам.

Используем формулы метода наименьших квадратов для нахождения коэффициентов а и b . Подставляем в них соответствующие значения из последнего столбца таблицы:

Следовательно, y = 0.165x+2.184 - искомая аппроксимирующая прямая.

Осталось выяснить какая из линий y = 0.165x+2.184 или лучше аппроксимирует исходные данные, то есть произвести оценку методом наименьших квадратов.

Оценка погрешности метода наименьших квадратов.

Для этого требуется вычислить суммы квадратов отклонений исходных данных от этих линий и , меньшее значение соответствует линии, которая лучше в смысле метода наименьших квадратов аппроксимирует исходные данные.

Так как , то прямая y = 0.165x+2.184 лучше приближает исходные данные.

Графическая иллюстрация метода наименьших квадратов (мнк).

На графиках все прекрасно видно. Красная линия – это найденная прямая y = 0.165x+2.184 , синяя линия – это , розовые точки – это исходные данные.

Для чего это нужно, к чему все эти аппроксимации?

Я лично использую для решения задач сглаживания данных, задач интерполяции и экстраполяции (в исходном примере могли бы попросить найти занчение наблюдаемой величины y при x=3 или при x=6 по методу МНК). Но подробнее поговорим об этом позже в другом разделе сайта.

Доказательство.

Чтобы при найденных а и b функция принимала наименьшее значение, необходимо чтобы в этой точке матрица квадратичной формы дифференциала второго порядка для функции была положительно определенной. Покажем это.

Выбрав вид функции регрессии, т.е. вид рассматриваемой модели зависимости Y от Х (или Х от У), например, линейную модель y x =a+bx, необходимо определить конкретные значения коэффициентов модели.

При различных значениях а и b можно построить бесконечное число зависимостей вида y x =a+bx т.е на координатной плоскости имеется бесконечное количество прямых, нам же необходима такая зависимость, которая соответствует наблюдаемым значениям наилучшим образом. Таким образом, задача сводится к подбору наилучших коэффициентов.

Линейную функцию a+bx ищем, исходя лишь из некоторого количества имеющихся наблюдений. Для нахождения функции с наилучшим соответствием наблюдаемым значениям используем метод наименьших квадратов.

Обозначим: Y i - значение, вычисленное по уравнению Y i =a+bx i . y i - измеренное значение, ε i =y i -Y i - разность между измеренными и вычисленными по уравнению значениям, ε i =y i -a-bx i .

В методе наименьших квадратов требуется, чтобы ε i , разность между измеренными y i и вычисленными по уравнению значениям Y i , была минимальной. Следовательно, находим коэффициенты а и b так, чтобы сумма квадратов отклонений наблюдаемых значений от значений на прямой линии регрессии оказалась наименьшей:

Исследуя на экстремум эту функцию аргументов а и с помощью производных, можно доказать, что функция принимает минимальное значение, если коэффициенты а и b являются решениями системы:

(2)

Если разделить обе части нормальных уравнений на n, то получим:

Учитывая, что (3)

Получим , отсюда , подставляя значение a в первое уравнение, получим:

При этом b называют коэффициентом регрессии; a называют свободным членом уравнения регрессии и вычисляют по формуле:

Полученная прямая является оценкой для теоретической линии регрессии. Имеем:

Итак, является уравнением линейной регрессии.

Регрессия может быть прямой (b>0) и обратной (b Пример 1. Результаты измерения величин X и Y даны в таблице:

x i -2 0 1 2 4
y i 0.5 1 1.5 2 3

Предполагая, что между X и Y существует линейная зависимость y=a+bx, способом наименьших квадратов определить коэффициенты a и b.

Решение. Здесь n=5
x i =-2+0+1+2+4=5;
x i 2 =4+0+1+4+16=25
x i y i =-2 0.5+0 1+1 1.5+2 2+4 3=16.5
y i =0.5+1+1.5+2+3=8

и нормальная система (2) имеет вид

Решая эту систему, получим: b=0.425, a=1.175. Поэтому y=1.175+0.425x.

Пример 2. Имеется выборка из 10 наблюдений экономических показателей (X) и (Y).

x i 180 172 173 169 175 170 179 170 167 174
y i 186 180 176 171 182 166 182 172 169 177

Требуется найти выборочное уравнение регрессии Y на X. Построить выборочную линию регрессии Y на X.

Решение. 1. Проведем упорядочивание данных по значениям x i и y i . Получаем новую таблицу:

x i 167 169 170 170 172 173 174 175 179 180
y i 169 171 166 172 180 176 177 182 182 186

Для упрощения вычислений составим расчетную таблицу, в которую занесем необходимые численные значения.

x i y i x i 2 x i y i
167 169 27889 28223
169 171 28561 28899
170 166 28900 28220
170 172 28900 29240
172 180 29584 30960
173 176 29929 30448
174 177 30276 30798
175 182 30625 31850
179 182 32041 32578
180 186 32400 33480
∑x i =1729 ∑y i =1761 ∑x i 2 299105 ∑x i y i =304696
x=172.9 y=176.1 x i 2 =29910.5 xy=30469.6

Согласно формуле (4), вычисляем коэффициента регрессии

а по формуле (5)

Таким образом, выборочное уравнение регрессии имеет вид y=-59.34+1.3804x.
Нанесем на координатной плоскости точки (x i ; y i) и отметим прямую регрессии.


Рис 4

На рис.4 видно, как располагаются наблюдаемые значения относительно линии регрессии. Для численной оценки отклонений y i от Y i , где y i наблюдаемые, а Y i определяемые регрессией значения, составим таблицу:

x i y i Y i Y i -y i
167 169 168.055 -0.945
169 171 170.778 -0.222
170 166 172.140 6.140
170 172 172.140 0.140
172 180 174.863 -5.137
173 176 176.225 0.225
174 177 177.587 0.587
175 182 178.949 -3.051
179 182 184.395 2.395
180 186 185.757 -0.243

Значения Y i вычислены согласно уравнению регрессии.

Заметное отклонение некоторых наблюдаемых значений от линии регрессии объясняется малым числом наблюдений. При исследовании степени линейной зависимости Y от X число наблюдений учитывается. Сила зависимости определяется величиной коэффициента корреляции.

Метод наименьших квадратов (МНК) позволяет оценивать различные величины, используя результаты множества измерений, содержащих случайные ошибки.

Характеристика МНК

Основная идея данного метода состоит в том, что в качестве критерия точности решения задачи рассматривается сумма квадратов ошибок, которую стремятся свести к минимуму. При использовании этого метода можно применять как численный, так и аналитический подход.

В частности, в качестве численной реализации метод наименьших квадратов подразумевает проведение как можно большего числа измерений неизвестной случайной величины. Причем, чем больше вычислений, тем точнее будет решение. На этом множестве вычислений (исходных данных) получают другое множество предполагаемых решений, из которого затем выбирается наилучшее. Если множество решений параметризировать, то метод наименьших квадратов сведется к поиску оптимального значения параметров.

В качестве аналитического подхода к реализации МНК на множестве исходных данных (измерений) и предполагаемом множестве решений определяется некоторая (функционал), которую можно выразить формулой, получаемой в качестве некоторой гипотезы, требующей подтверждения. В этом случае метод наименьших квадратов сводится к нахождению минимума этого функционала на множестве квадратов ошибок исходных данных.

Заметьте, что не сами ошибки, а именно квадраты ошибок. Почему? Дело в том, что зачастую отклонения измерений от точного значения бывают как положительными, так и отрицательными. При определении средней простое суммирование может привести к неверному выводу о качестве оценки, поскольку взаимное уничтожение положительных и отрицательных значений понизит мощность выборки множества измерений. А, следовательно, и точность оценки.

Для того чтобы этого не произошло, и суммируют квадраты отклонений. Даже более того, чтобы выровнять размерность измеряемой величины и итоговой оценки, из суммы квадратов погрешностей извлекают

Некоторые приложения МНК

МНК широко используется в различных областях. Например, в теории вероятностей и математической статистике метод используется для определения такой характеристики случайной величины, как среднее квадратическое отклонение, определяющей ширину диапазона значений случайной величины.

Которое находит самое широкое применение в различных областях науки и практической деятельности. Это может быть физика, химия, биология, экономика, социология, психология и так далее, так далее. Волею судьбы мне часто приходится иметь дело с экономикой, и поэтому сегодня я оформлю вам путёвку в удивительную страну под названием Эконометрика =) …Как это не хотите?! Там очень хорошо – нужно только решиться! …Но вот то, что вы, наверное, определённо хотите – так это научиться решать задачи методом наименьших квадратов . И особо прилежные читатели научатся решать их не только безошибочно, но ещё и ОЧЕНЬ БЫСТРО;-) Но сначала общая постановка задачи + сопутствующий пример:

Пусть в некоторой предметной области исследуются показатели , которые имеют количественное выражение. При этом есть все основания полагать, что показатель зависит от показателя . Это полагание может быть как научной гипотезой, так и основываться на элементарном здравом смысле. Оставим, однако, науку в сторонке и исследуем более аппетитные области – а именно, продовольственные магазины. Обозначим через:

– торговую площадь продовольственного магазина, кв.м.,
– годовой товарооборот продовольственного магазина, млн. руб.

Совершенно понятно, что чем больше площадь магазина, тем в большинстве случаев будет больше его товарооборот.

Предположим, что после проведения наблюдений/опытов/подсчётов/танцев с бубном в нашем распоряжении оказываются числовые данные:

С гастрономами, думаю, всё понятно: – это площадь 1-го магазина, – его годовой товарооборот, – площадь 2-го магазина, – его годовой товарооборот и т.д. Кстати, совсем не обязательно иметь доступ к секретным материалам – довольно точную оценку товарооборота можно получить средствами математической статистики . Впрочем, не отвлекаемся, курс коммерческого шпионажа – он уже платный =)

Табличные данные также можно записать в виде точек и изобразить в привычной для нас декартовой системе .

Ответим на важный вопрос: сколько точек нужно для качественного исследования?

Чем больше, тем лучше. Минимально допустимый набор состоит из 5-6 точек. Кроме того, при небольшом количестве данных в выборку нельзя включать «аномальные» результаты. Так, например, небольшой элитный магазин может выручать на порядки больше «своих коллег», искажая тем самым общую закономерность, которую и требуется найти!

Если совсем просто – нам нужно подобрать функцию , график которой проходит как можно ближе к точкам . Такую функцию называют аппроксимирующей (аппроксимация – приближение) или теоретической функцией . Вообще говоря, тут сразу появляется очевидный «претендент» – многочлен высокой степени, график которого проходит через ВСЕ точки. Но этот вариант сложен, а зачастую и просто некорректен (т.к. график будет всё время «петлять» и плохо отражать главную тенденцию) .

Таким образом, разыскиваемая функция должна быть достаточно простА и в то же время отражать зависимость адекватно. Как вы догадываетесь, один из методов нахождения таких функций и называется методом наименьших квадратов . Сначала разберём его суть в общем виде. Пусть некоторая функция приближает экспериментальные данные :


Как оценить точность данного приближения? Вычислим и разности (отклонения) между экспериментальными и функциональными значениями (изучаем чертёж) . Первая мысль, которая приходит в голову – это оценить, насколько великА сумма , но проблема состоит в том, что разности могут быть и отрицательны (например, ) и отклонения в результате такого суммирования будут взаимоуничтожаться. Поэтому в качестве оценки точности приближения напрашивается принять сумму модулей отклонений:

или в свёрнутом виде: (вдруг кто не знает: – это значок суммы, а – вспомогательная переменная-«счётчик», которая принимает значения от 1 до ) .

Приближая экспериментальные точки различными функциями, мы будем получать разные значения , и очевидно, где эта сумма меньше – та функция и точнее.

Такой метод существует и называется он методом наименьших модулей . Однако на практике получил гораздо бОльшее распространение метод наименьших квадратов , в котором возможные отрицательные значения ликвидируются не модулем, а возведением отклонений в квадрат:

, после чего усилия направлены на подбор такой функции , чтобы сумма квадратов отклонений была как можно меньше. Собственно, отсюда и название метода.

И сейчас мы возвращаемся к другому важному моменту: как отмечалось выше, подбираемая функция должна быть достаточно простА – но ведь и таких функций тоже немало: линейная , гиперболическая , экспоненциальная , логарифмическая , квадратичная и т.д. И, конечно же, тут сразу бы хотелось «сократить поле деятельности». Какой класс функций выбрать для исследования? Примитивный, но эффективный приём:

– Проще всего изобразить точки на чертеже и проанализировать их расположение. Если они имеют тенденцию располагаться по прямой, то следует искать уравнение прямой с оптимальными значениями и . Иными словами, задача состоит в нахождении ТАКИХ коэффициентов – чтобы сумма квадратов отклонений была наименьшей.

Если же точки расположены, например, по гиперболе , то заведомо понятно, что линейная функция будет давать плохое приближение. В этом случае ищем наиболее «выгодные» коэффициенты для уравнения гиперболы – те, которые дают минимальную сумму квадратов .

А теперь обратите внимание, что в обоих случаях речь идёт о функции двух переменных , аргументами которой являются параметры разыскиваемых зависимостей :

И по существу нам требуется решить стандартную задачу – найти минимум функции двух переменных .

Вспомним про наш пример: предположим, что «магазинные» точки имеют тенденцию располагаться по прямой линии и есть все основания полагать наличие линейной зависимости товарооборота от торговой площади. Найдём ТАКИЕ коэффициенты «а» и «бэ», чтобы сумма квадратов отклонений была наименьшей. Всё как обычно – сначала частные производные 1-го порядка . Согласно правилу линейности дифференцировать можно прямо под значком суммы:

Если хотите использовать данную информацию для реферата или курсовика – буду очень благодарен за поставленную ссылку в списке источников, такие подробные выкладки найдёте мало где:

Составим стандартную систему:

Сокращаем каждое уравнение на «двойку» и, кроме того, «разваливаем» суммы:

Примечание : самостоятельно проанализируйте, почему «а» и «бэ» можно вынести за значок суммы. Кстати, формально это можно проделать и с суммой

Перепишем систему в «прикладном» виде:

после чего начинает прорисовываться алгоритм решения нашей задачи:

Координаты точек мы знаем? Знаем. Суммы найти можем? Легко. Составляем простейшую систему двух линейных уравнений с двумя неизвестными («а» и «бэ»). Систему решаем, например, методом Крамера , в результате чего получаем стационарную точку . Проверяя достаточное условие экстремума , можно убедиться, что в данной точке функция достигает именно минимума . Проверка сопряжена с дополнительными выкладками и поэтому оставим её за кадром (при необходимости недостающий кадр можно посмотреть ) . Делаем окончательный вывод:

Функция наилучшим образом (по крайне мере, по сравнению с любой другой линейной функцией) приближает экспериментальные точки . Грубо говоря, её график проходит максимально близко к этим точкам. В традициях эконометрики полученную аппроксимирующую функцию также называют уравнением пАрной линейной регрессии .

Рассматриваемая задача имеет большое практическое значение. В ситуации с нашим примером, уравнение позволяет прогнозировать, какой товарооборот («игрек») будет у магазина при том или ином значении торговой площади (том или ином значении «икс») . Да, полученный прогноз будет лишь прогнозом, но во многих случаях он окажется достаточно точным.

Я разберу всего лишь одну задачу с «реальными» числами, поскольку никаких трудностей в ней нет – все вычисления на уровне школьной программы 7-8 класса. В 95 процентов случаев вам будет предложено отыскать как раз линейную функцию, но в самом конце статьи я покажу, что ничуть не сложнее отыскать уравнения оптимальной гиперболы, экспоненты и некоторых других функций.

По сути, осталось раздать обещанные плюшки – чтобы вы научились решать такие примеры не только безошибочно, но ещё и быстро. Внимательно изучаем стандарт:

Задача

В результате исследования взаимосвязи двух показателей, получены следующие пары чисел:

Методом наименьших квадратов найти линейную функцию, которая наилучшим образом приближает эмпирические (опытные) данные. Сделать чертеж, на котором в декартовой прямоугольной системе координат построить экспериментальные точки и график аппроксимирующей функции . Найти сумму квадратов отклонений между эмпирическими и теоретическими значениями. Выяснить, будет ли функция лучше (с точки зрения метода наименьших квадратов) приближать экспериментальные точки.

Заметьте, что «иксовые» значения – натуральные, и это имеет характерный содержательный смысл, о котором я расскажу чуть позже; но они, разумеется, могут быть и дробными. Кроме того, в зависимости от содержания той или иной задачи как «иксовые», так и «игрековые» значения полностью или частично могут быть отрицательными. Ну а у нас дана «безликая» задача, и мы начинаем её решение :

Коэффициенты оптимальной функции найдём как решение системы:

В целях более компактной записи переменную-«счётчик» можно опустить, поскольку и так понятно, что суммирование осуществляется от 1 до .

Расчёт нужных сумм удобнее оформить в табличном виде:


Вычисления можно провести на микрокалькуляторе, но гораздо лучше использовать Эксель – и быстрее, и без ошибок; смотрим короткий видеоролик:

Таким образом, получаем следующую систему :

Тут можно умножить второе уравнение на 3 и из 1-го уравнения почленно вычесть 2-е . Но это везение – на практике системы чаще не подарочны, и в таких случаях спасает метод Крамера :
, значит, система имеет единственное решение.

Выполним проверку. Понимаю, что не хочется, но зачем же пропускать ошибки там, где их можно стопроцентно не пропустить? Подставим найденное решение в левую часть каждого уравнения системы:

Получены правые части соответствующих уравнений, значит, система решена правильно.

Таким образом, искомая аппроксимирующая функция: – из всех линейных функций экспериментальные данные наилучшим образом приближает именно она.

В отличие от прямой зависимости товарооборота магазина от его площади, найденная зависимость является обратной (принцип «чем больше – тем меньше») , и этот факт сразу выявляется по отрицательному угловому коэффициенту . Функция сообщает нам о том, что с увеличение некоего показателя на 1 единицу значение зависимого показателя уменьшается в среднем на 0,65 единиц. Как говорится, чем выше цена на гречку, тем меньше её продано.

Для построения графика аппроксимирующей функции найдём два её значения:

и выполним чертёж:


Построенная прямая называется линией тренда (а именно – линией линейного тренда, т.е. в общем случае тренд – это не обязательно прямая линия) . Всем знакомо выражение «быть в тренде», и, думаю, что этот термин не нуждается в дополнительных комментариях.

Вычислим сумму квадратов отклонений между эмпирическими и теоретическими значениями. Геометрически – это сумма квадратов длин «малиновых» отрезков (два из которых настолько малы, что их даже не видно) .

Вычисления сведём в таблицу:


Их можно опять же провести вручную, на всякий случай приведу пример для 1-й точки:

но намного эффективнее поступить уже известным образом:

Еще раз повторим: в чём смысл полученного результата? Из всех линейных функций у функции показатель является наименьшим, то есть в своём семействе это наилучшее приближение. И здесь, кстати, не случаен заключительный вопрос задачи: а вдруг предложенная экспоненциальная функция будет лучше приближать экспериментальные точки?

Найдем соответствующую сумму квадратов отклонений – чтобы различать, я обозначу их буквой «эпсилон». Техника точно такая же:


И снова на всякий пожарный вычисления для 1-й точки:

В Экселе пользуемся стандартной функцией EXP (синтаксис можно посмотреть в экселевской Справке) .

Вывод : , значит, экспоненциальная функция приближает экспериментальные точки хуже, чем прямая .

Но тут следует отметить, что «хуже» – это ещё не значит , что плохо. Сейчас построил график этой экспоненциальной функции – и он тоже проходит близко к точкам – да так, что без аналитического исследования и сказать трудно, какая функция точнее.

На этом решение закончено, и я возвращаюсь к вопросу о натуральных значениях аргумента. В различных исследованиях, как правило, экономических или социологических, натуральными «иксами» нумеруют месяцы, годы или иные равные временнЫе промежутки. Рассмотрим, например, такую задачу.