Как определяется ускорение. Ускорение – среднее, мгновенное, тангенциальное, нормальное, полное. Связь со средней скоростью

Рассмотрим более детально, что такое ускорение в физике? Это сообщение телу дополнительной скорости за единицу времени. В Международной системе единиц (СИ) за единицу ускорения принято считать количество метров, пройденных за секунду (м/с). Для внесистемной единицы измерения Гал (Gal), которая применяется в гравиметрии, ускорение равно 1 см/с 2 .

Виды ускорений

Что такое ускорение в формулах. Вид ускорения зависит от вектора движения тела. В физике это может быть движение по прямой, по кривой линии и по окружности.

  1. Если предмет движется по прямой линии, движение будет равноускоренным, и на него начнут действовать линейные ускорения. Формула для его вычисления (смотри формулу 1 на рис): a=dv/dt
  2. В случае, если речь идет о движении тела по окружности, то ускорение будет состоять из двух частей (a=a т +a n): тангенциального и нормального ускорения. Оба они характеризуются скоростью движения предмета. Тангенциальное - изменением скорости по модулю. Его направление идет по касательной к траектории. Такое ускорение вычисляется по формуле (см. формулу 2 на рис): a t =d|v|/dt
  3. Если же скорость движения предмета по окружности постоянна, ускорение называется центростремительным или нормальным. Вектор такого ускорения постоянно направлен к центру окружности, а значение модуля равно (смотри формулу 3 на рис): |a(вектор)|=w 2 r=V 2 /r
  4. Когда скорость тела по окружности разная, возникает угловое ускорение. Оно показывает, как изменилась угловая скорость за единицу времени и равно (см. формулу 4 на рис.):E(вектор)=dw(вектор)/dt
  5. В физике также рассматриваются варианты, когда тело движется по окружности, но при этом приближается или удаляется от центра. В этом случае на предмет действуют ускорения Кориолиса.Когда тело движется по кривой линии, вектор его ускорения будет вычисляться по формуле (см. формулу 5 на рис): a (вектор)=a T T+a n n(вектор)+a b b(вектор)=dv/dtT+v 2 /Rn(вектор)+a b b(вектор),в которой:
  • v - скорость
  • T (вектор) - единичный касательный к траектории вектор, идущий вдоль скорости (касательный орт)
  • n (вектор) - орт главной нормали относительно траектории, который определяется как единичный вектор в направлении dT (вектор)/dl
  • b (вектор) - орт бинормали относительно траектории
  • R - радиус кривизны траектории

При этом бинормальное ускорение a b b(вектор) всегда равно нулю. Поэтому конечная формула выглядит так (см. формулу 6 на рис): a (вектор)=a T T+a n n(вектор)+a b b(вектор)=dv/dtT+v 2 /Rn(вектор)

Что такое ускорение свободного падения?

Ускорением свободного падения (обозначается буквой g) называется ускорение, которое придается предмету в вакууме силой тяжести. Согласно второму закону Ньютона, такое ускорение равно силе тяжести, которая воздействует на объект единичной массы.

На поверхности нашей планеты значением g принято называть 9,80665 или 10 м/с². Для вычисления реального g на поверхности Земли нужно будет учесть некоторые факторы. Например, широту и время суток. Так что значение истинного g может быть от 9,780 м/с² до 9,832 м/с² на полюсах. Для его вычисления применяют эмпирическую формулу (см. формулу 7 на рис), в которой φ - широта местности, а h - расстояние над уровнем моря, выраженное в метрах.

Формула для вычисления g

Дело в том, что такое ускорение свободного падения состоит из гравитационного и центробежного ускорения. Примерное значение гравитационного можно подсчитать, представляя Землю однородным шаром с массой M, и вычисляя ускорение на протяжении её радиуса R (формула 8 на рис, где G - гравитационная постоянная величина со значением 6,6742·10 −11 м³с −2 кг −1).

Если использовать эту формулу для вычисления гравитационного ускорения на поверхности нашей планеты (масса М = 5,9736·10 24 кг, радиус R = 6,371·10 6 м), получится формула 9 на рис, однако данное значение условно совпадает с тем, что такое скорость, ускорение в конкретном месте. Несоответствия объясняются несколькими факторами:

  • Центробежным ускорением, имеющим место в системе отсчёта вращения планеты
  • Тем, что планета Земля не шарообразной формы
  • Тем, что наша планета неоднородна

Приборы для измерения ускорения

Ускорение принято измерять акселерометром. Но он вычисляет не само ускорение, а силу реакции опоры, возникающую при ускоренном движении. Такие же силы сопротивления появляются и в поле тяготения, поэтому акселерометром можно измерять и гравитацию.

Есть еще один прибор для измерения ускорения – акселерограф. Он вычисляет и графически фиксирует значения ускорения поступательного и вращательного движения.

Ско́рость в физическая величина, характеризующая быстроту перемещения и направление движения материальной точки относительно выбранной системы отсчёта; по определению, равна производной радиус-вектора точки по времени.

Скорость в широком смысле - быстроту изменения какой-либо величины (не обязательно радиус-вектора) в зависимости от другой (чаще подразумеваются изменения во времени, но также в пространстве или любой другой). Так, например, говорят об угловой скорости, скорости изменения температуры, скорости химической реакции, групповой скорости, скорости соединения и т. д. Математически «быстрота изменения» характеризуется производной рассматриваемой величины.

Ускоре́ние обозначается - быстрота изменения скорости, то есть первая производная от скорости по времени,векторная величина, показывающая, на сколько изменяется вектор скорости тела при его движении за единицу времени:

ускорение является вектором, то есть учитывает не только изменение величины скорости (модуля векторной величины), но и изменение её направления. В частности, ускорение тела, движущегося по окружности с постоянной по модулю скоростью, не равно нулю; тело испытывает постоянное по модулю (и переменное по направлению) ускорение, направленное к центру окружности (центростремительное ускорение).

Единицей ускорения в Международной системе единиц (СИ) служит метр в секунду за секунду (m/s2, м/с2),

Производная ускорения по времени, то есть величина, характеризующая скорость изменения ускорения, называется рывок:

Где - вектор рывка.

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Среднее ускорение

Среднее ускорение> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где – вектор ускорения.

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость 0. В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = - 0. Тогда определить ускорение можно так:

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с2, то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.


Мгновенное ускорение

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями аХ, aY, aZ).

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

а направление вектора ускорения совпадает с вектором скорости 2.

Если скорость тела по модулю уменьшается, то есть

то направление вектора ускорения противоположно направлению вектора скорости 2. Иначе говоря, в данном случае происходитзамедление движения, при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n. Вектор нормального ускорения направлен по радиусу кривизны траектории.

    Ускорение - это векторная переменная, которая показывает изменение величины скорости тела за единицу времени.

    В системе измерения СИ - ускорение измеряется в метрах на секунду в квадрате, м/с2 (m/s) . А также ускорение редко и преимущественно в гравиметрии, измеряется в Галомах (Gal) . В свою очередь один Галом равняется 1 сантиметру на секунду в квадрате, см/с.

    Ускорение измеряется в метрах в секунду за секунду, а также в метрах на секунду в квадрате.

    В физике ускорением называют величину, характеризующую быстроту изменения скорости, равную отношению изменения скорости тела к временному промежутку, в течение которого это изменение и произошло.

    Ускорение - это величина которая дает представление о том, как быстро изменяется скорость тела со временем, поэтому эта величина равна нулю, для тел движущихся с постоянной скоростью. В СИ нет специальной единицы для измерения ускорения и ее обозначают просто как метр на секунду в квадрате:

    Чтобы понять эту размерность надо вспомнить определение ускорения и разбить размерность на составляющие: М/С - это скорость, и домножение на 1/С - ее изменение за секунду.

    В СГС единицей ускорения является ГАЛ, величина, названная в честь изучавшего ускорение свободного падения итальянца Галилея, который для этого сбрасывал шарики с Пизанской башни.

    Ускорение - это изменение скорости: например,

    автомобиль с места набрал скорость 50км/час за 10 секунд.

    Переведем 50км/час = 50 000м/3600с = 7,94м/с

    Тогда ускорение составит 7,94/10 = 0,794 м/с2

    Ускорение измеряется в метрах в секунду в квадрате.

    Ускорение играет немаловажную роль для того чтобы определить силу, импульс и т.д.

    Ускорение связано как все догадываются со скоростью.

    Скорость связано со временем.

    Вот и находим что a- ускорение измеряется в Скорости деленной на время.

    V/с*с= а.

    Метр/секунда в квадрате . Помню до дыр заучивали это в школе по математике. Не сказать что помогло, но однажды очень даже пригодилось. Тут как говорится нужно математиком быть. В противном случае для незнающих математики эти цифры - пустой звук. По крайней мере мне так кажется.

    Ускорение измеряется в метр/секунда в квадрате

    Это я хорошо запомнил еще со школьной программы ибо очень уж забавная величина, точнее звучит она забавно 🙂 Итак, ускорение принято измерять в метрах в секунду за секунду. Ускорение - это физическая величина. Вот и вс, по моему такое своеобразное название достаточно легко запомнить, если постараться.

    На уроках физики много лет назад я узнал, что ускорение измеряется в м/с .

    Ускорение показывает отношение изменения скорости движения тела ко времени данного изменения.

    Тело, которое под действием силы тяжести падает на землю, движется с ускорением свободного падения, равным 9,8 м/с.

    Кроме системной единицы измерения есть ещ и внесистемная: gal , которая применяется в гравиметрии. 1 gal = 980,6 см/с.

    Если вспомнить школьную программу, то мы можем сказать, что ускорение показывает нам изменение скорости движения предмета во времени. А мы знаем, что скорость измеряется в м/с (расстояние на время), а значит, ускорение измеряется в м/с^2. Это в системе СИ .

    Также существует и внесистемная единица измерения ускорения, называемая гал (1см/с^2).

    Метры деленные на секунду в квадрате,это я знаю из школьного курса)

    Еще со школьной программы мы все знаем, что ускорение измеряется в метрах/секунда в квадрате. Именно эта единица измерения принята международной системой измерения СИ. Это проходят, если не ошибаюсь, на уроках физики шестого класса.

За секунду (русское обозначение: м/с 2 ; международное: m/s 2 ).

Ускорение в кинематике точки

Наиболее общий случай

Ускорение и связанные величины

a → = d v → d t = d 2 r → d t 2 . {\displaystyle {\vec {a}}={d{\vec {v}} \over dt}={d^{2}{\vec {r}} \over dt^{2}}.}

Если на траектории точки известны координаты r → (t 0) = r → 0 {\displaystyle {\vec {r}}(t_{0})={\vec {r}}_{0}} и вектор скорости v → (t 0) = v → 0 {\displaystyle {\vec {v}}(t_{0})={\vec {v}}_{0}} в какой-либо момент времени t 0 , а также зависимость ускорения от времени a → (t) , {\displaystyle {\vec {a}}(t),} то, интегрируя это уравнение, можно получить координаты и скорость точки в любой момент времени t (как до, так и после момента t 0 ):

v → (t) = v → 0 + ∫ t 0 t a → (τ) d τ , {\displaystyle {\vec {v}}(t)={\vec {v}}_{0}+\int _{t_{0}}^{t}{\vec {a}}(\tau)d\tau ,} r → (t) = r → 0 + (t − t 0) v → 0 + ∫ t 0 t ∫ t 0 ξ a → (τ) d τ d ξ . {\displaystyle {\vec {r}}(t)={\vec {r}}_{0}+(t-t_{0}){\vec {v}}_{0}+\int _{t_{0}}^{t}\int _{t_{0}}^{\xi }{\vec {a}}(\tau)d\tau d\xi .} j → = d a → d t , {\displaystyle {\vec {j}}={\frac {\mathrm {d} {\vec {a}}}{\mathrm {d} t}},} где j → {\displaystyle {\vec {j}}} - вектор рывка.

Анализ движения по кривой

Траекторию движения материальной точки на малом участке можно считать плоской. Вектор ускорения можно разложить по сопутствующему базису { τ → , n → , b → } : {\displaystyle \left\{{\vec {\tau }},{\vec {n}},{\vec {b}}\right\}:}

a → = a τ τ → + a n n → + a b b → = d v d t τ → + v 2 R n → + a b b → , {\displaystyle {\vec {a}}={a}_{\tau }{\vec {\tau }}+{a}_{n}{\vec {n}}+{a}_{b}{\vec {b}}={\frac {dv}{dt}}{\vec {\tau }}+{\frac {v^{2}}{R}}{\vec {n}}+{a}_{b}{\vec {b}},} v {\displaystyle v\ } - величина скорости, τ → = v → / | v → | {\displaystyle {\vec {\tau }}={\vec {v}}/|{\vec {v}}|} - единичный касательный к траектории вектор, направленный вдоль скорости (касательный орт), - орт главной нормали к траектории, который можно определить как единичный вектор в направлении d τ → / d l , {\displaystyle d{\vec {\tau }}/dl,} b → {\displaystyle {\vec {b}}} - орт бинормали к траектории, перпендикулярный одновременно ортам τ → {\displaystyle {\vec {\tau }}} и n → {\displaystyle {\vec {n}}} (то есть ортогональный к мгновенной плоскости траектории), R {\displaystyle R} - радиус кривизны траектории.

Слагаемое a b b → , {\displaystyle {a}_{b}{\vec {b}},} называемое бинормальным ускорением, всегда равно нулю. Это можно считать прямым следствием определения векторов n → , b → : {\displaystyle {\vec {n}},{\vec {b}}:} можно сказать, что они выбираются именно так, чтобы первый всегда совпадал с нормальным ускорением, второй же был ортогонален первому.

Векторы a τ τ → {\displaystyle {a}_{\tau }{\vec {\tau }}} и a n n → {\displaystyle {a}_{n}{\vec {n}}} называются касательным (тангенциальным) и нормальным ускорениями соответственно.

Итак, учитывая сказанное выше, вектор ускорения при движении по любой траектории можно записать как:

a → = a τ τ → + a n n → = d v d t τ → + v 2 R n → . {\displaystyle {\vec {a}}={a}_{\tau }{\vec {\tau }}+{a}_{n}{\vec {n}}={\frac {dv}{dt}}{\vec {\tau }}+{\frac {v^{2}}{R}}{\vec {n}}.}

Важные частные случаи

Равноускоренное движение

Если вектор a → {\displaystyle {\vec {a}}} не меняется со временем, движение называют равноускоренным . При равноускоренном движении вышеприведённые общие формулы упрощаются до следующего вида:

v → (t) = v → 0 + (t − t 0) a → , {\displaystyle {\vec {v}}(t)={\vec {v}}_{0}+(t-t_{0}){\vec {a}},} r → (t) = r → 0 + (t − t 0) v → 0 + (t − t 0) 2 2 a → . {\displaystyle {\vec {r}}(t)={\vec {r}}_{0}+(t-t_{0}){\vec {v}}_{0}+{(t-t_{0})^{2} \over 2}{\vec {a}}.}

Частным случаем равноускоренного движения является случай, когда ускорение равно нулю в течение всего времени движения. В этом случае скорость постоянна, а движение происходит по прямолинейной траектории (если скорость тоже равна нулю, то тело покоится), поэтому такое движение называют прямолинейным и равномерным.

Равноускоренное движение точки всегда является плоским, а твёрдого тела - плоскопараллельным (поступательным). Обратное, вообще говоря, неверно.

Равноускоренное движение при переходе в другую инерциальную систему отсчёта остаётся равноускоренным.

Случай равноускоренного движения, когда ускорение (постоянное) и скорость направлены по одной прямой, но в разных направлениях, называется равнозамедленным движением. Равнозамедленное движение всегда одномерно. Движение можно рассматривать как равнозамедленное лишь до того момента, пока скорость не станет равной нулю. Кроме того, всегда существуют инерциальные системы отсчёта, в которых движение не является равнозамедленным.

Прямолинейное движение

Важным частным случаем движения с ускорением является прямолинейное движение, когда ускорение в любой момент времени коллинеарно скорости (например, случай падения тела с вертикальной начальной скоростью). В случае прямолинейного движения можно выбрать одну из координатных осей вдоль направления движения и заменить радиус-вектор и векторы ускорения и скорости на скаляры. При постоянном ускорении из приведённых выше формул вытекает, что

v 2 = u 2 + 2 a s . {\displaystyle v^{2}=u^{2}+2\,as.}

Здесь u и v - начальная и конечная скорость тела, a - его ускорение, s - пройденный телом путь.

Ряд практически важных формул связывают затраченное время, пройденный путь, достигнутую скорость и ускорение при равноускоренном прямолинейном движении с нулевой начальной скоростью:

t = 2 s a = v a = 2 s v , s = v t 2 = a t 2 2 = v 2 2 a , {\displaystyle t={\sqrt {\frac {2s}{a}}}={\frac {v}{a}}={\frac {2s}{v}},\qquad \qquad s={\frac {vt}{2}}={\frac {at^{2}}{2}}={\frac {v^{2}}{2a}},} v = 2 a s = a t = 2 s t , a = v t = 2 s t 2 = v 2 2 s , {\displaystyle v={\sqrt {2\,as}}=at={\frac {2s}{t}},\qquad \qquad a={\frac {v}{t}}={\frac {2s}{t^{2}}}={\frac {v^{2}}{2s}},}

так что любые две из этих величин определяют две другие (здесь предполагается, что время отсчитывается от начала движения, t 0 = 0 ).

Движение по окружности

Вектор ускорения

a → = d v → d t {\displaystyle {\vec {a}}={\frac {d{\vec {v}}}{dt}}}

при движении точки по окружности можно разложить на два слагаемых (компоненты):

a → = a → τ + a → n . {\displaystyle {\vec {a}}={\vec {a}}_{\tau }+{\vec {a}}_{n}.} a → B = a → A + [ ω → × [ ω → × A B → ] ] + [ ε → × A B → ] , {\displaystyle {\vec {a}}_{B}={\vec {a}}_{A}+\left[{\vec {\omega }}\times \left[{\vec {\omega }}\times {\vec {AB}}\right]\right]+\left[{\vec {\varepsilon }}\times {\vec {AB}}\right],}

где ε → {\displaystyle {\vec {\varepsilon }}} - вектор углового ускорения тела.

Второе слагаемое называется осестремительным ускорением , а третье - вращательным ускорением .

Создание ускорения. Динамика точки

Классическая механика

u i a i = 0 . {\displaystyle u_{i}a^{i}=0\,.}

Это означает, в частности, что 4-скорости меняются не по модулю, а лишь по направлению: независимо от направления в пространстве-времени 4-скорость любого тела равна по модулю скорости света. Геометрически, 4-ускорение совпадает с кривизной мировой линии и является аналогом нормального ускорения в классической кинематике.

В классической механике значение ускорения не изменяется при переходе от одной инерциальной системы отсчета к другой, то есть ускорение инвариантно относительно преобразований Галилея . В релятивистской механике 4-ускорение является 4-вектором, то есть при преобразованиях Лоренца изменяется аналогично пространственно-временным координатам.

"Обычный" трёхмерный вектор ускорения (то же, что a → (t) {\displaystyle {\vec {a}}(t)} в предыдущих разделах, обозначение заменено во избежание путаницы с 4-ускорением), определяемый как производная "обычной" трёхмерной скорости v → {\displaystyle {\vec {v}}} по координатному времени w → = d v → / d t {\displaystyle {\vec {w}}=d{\vec {v}}/dt} , применяется и в рамках релятивистской кинематики, но инвариантом преобразований Лоренца не является. В мгновенно сопутствующей инерциальной системе отсчёта 4-ускорение - это a = (0 , w →) . {\displaystyle a=(0,{\vec {w}}).} При действии постоянной силы ускорение точки w → {\displaystyle {\vec {w}}} уменьшается с ростом скорости, однако 4-ускорение остаётся неизменным (такой случай именуют

Движение тел принято делить по траектории на прямолинейное и криволинейное, а также по скорости – на равномерное и неравномерное. Даже не зная теории физики можно понять, что прямолинейное движение – это движение тела по прямой линии, а криволинейное - по траектории, являющейся частью окружности. А вот по скорости виды движения определяются более сложно. Если движение равномерное, то скорость тела не меняется, а при неравномерном движении появляется физическая величина, называемая ускорением.

Инструкция

  • Одна из важнейших характеристик движения - скорость. Скорость – это физическая величина, которая показывает какой путь пройден телом за определенный промежуток времени. Если скорость тела не меняется, то тело движется равномерно. А если скорость тела меняется (по модулю или векторно), то это тело движется с ускорением. Физическая величина, показывающая на сколько изменяется скорость тела за каждую секунду, называется ускорением. Обозначается ускорение как "а". Единицей ускорения в интернациональной системе единиц является такое ускорение, при котором за каждую секунду скорость тела изменятся на 1 метр в секунду (1 м/с). Эту единицу обозначают 1 м /с^2 (метр на секунду в квадрате).
  • Ускорение характеризует быстроту изменения скорости. Если, к примеру, ускорение тела равно 10 м/с^2 , то это означает, что за каждую секунду скорость тела изменяется на 10 м/с, т.е. в 10 раз быстрее, чем при ускорении1 м/с^2. Чтобы найти ускорение тела, начинающего равноускоренное движение, надо разделить изменение скорости на промежуток времени, за который это изменение произошло. Если обозначить начальную скорость тела v0, а конечную – v, промежуток времени - ∆t, то формула ускорения примет вид: a = (v - v0) / ∆t = ∆v / ∆t. Пример. Автомобиль трогается с места и за 7 секунд разгоняется до скорости 98 м /с. Нужно найти ускорение автомобиля. Решение. Дано: v= 98 м/с,v0 = 0, ∆t =7с. Найти: а-? Решение: a=(v-v0)/ ∆t = (98м/с – 0м/с)/7с = 14 м/с^2. Ответ: 14 м/с^2.
  • Ускорение – векторная величина, поэтому имеет числовое значение и направление. Если направление вектора скорости совпадает с направлением вектора ускорение, то данное тело движется равноускоренно. Если же векторы скорости и ускорения противонаправлены, то тело движется равнозамедленно (см. рисунок).