Деление бактерий. Деление бактериальных клеток. Деление клетки надвое

05.05.2020 Здроровье

Размножение бактерий путем деления — самый распространенный метод увеличения численности микробной популяции. После деления происходит рост бактерий до исходного размера, для чего необходимы определенные вещества (факторы роста).

Способы размножения бактерий различны, но для большинства их видов присуща форма бесполового размножения способом деления. Способом почкования бактерии размножаются исключительно редко. Половое размножение бактерий присутствует в примитивной форме.

Рис. 1. На фото бактериальная клетка в стадии деления.

Генетический аппарат бактерий

Генетический аппарат бактерий представлен единственной ДНК — хромосомой. ДНК замкнута в кольцо. Хромосома локализована в нуклеотиде, не имеющем мембраны. В бактериальной клетке имеются плазмиды.

Нуклеоид

Нуклеоид является аналогом ядра. Он расположен в центре клетки. В нем локализована ДНК — носитель наследственной информации в свернутом виде. Раскрученная ДНК достигает в длину 1 мм. Ядерное вещество бактериальной клетки не имеет мембраны, ядрышка и набора хромосом, не делится митозом. Перед делением нуклеотид удваивается. Во время деления число нуклеотидов увеличивается до 4-х.

Рис. 2. На фото бактериальная клетка на срезе. В центральной части виден нуклеотид.

Плазмиды

Плазмиды представляют собой автономные молекулы свернутые в кольцо двунитевой ДНК. Их масса значительно меньше массы нуклеотида. Несмотря на то, что в ДНК плазмид закодирована наследственная информация, они не являются жизненно важными и необходимыми для бактериальной клетки.

Рис. 3. На фото бактериальная плазмида.

Этапы деления

После достижения определенных размеров, присущих взрослой клетке, запускаются механизмы деления.

Репликация ДНК

Репликация ДНК предшествует клеточному делению. Мезосомы (складки цитоплазматической мембраны) удерживают ДНК до тех пор, пока процесс деления (репликации) не завершится.

Репликация ДНК осуществляется с помощью ферментов ДНК-полимеразами. При репликации водородные связи в 2-х спиральной ДНК разрываются, в результате чего из одной ДНК образуются две дочерние односпиральные. В последующем, когда дочерние ДНК заняли свое место в разделенных дочерних клетках, происходит их восстановление.

Как только репликация ДНК завершилась, в результате синтеза появляется перетяжка, разделяющая клетку пополам. Вначале делению подвергается нуклеотид, затем цитоплазма. Синтез клеточной стенки завершает деление.

Рис. 4. Схема деления бактериальной клетки.

Обмен участками ДНК

У сенной палочки процесс репликации ДНК завершается обменом участками 2-х ДНК.

После деления клетки образуется перемычка, по которой ДНК одной клетки переходит в другую. Далее обе ДНК сплетаются. Некоторые отрезки обоих ДНК слипаются. В местах слипания происходит обмен отрезками ДНК. Одна из ДНК по перемычке уходит обратно в первую клетку.

Рис. 5. Вариант обмена ДНК у сенной палочки.

Типы делений бактериальных клеток

Если клеточное деление опережает процесс разделения, то образуются многоклеточные палочки и кокки.

При синхронном клеточном делении образуются две полноценные дочерние клетки.

Если нуклеотид делится быстрее самой клетки, то образуются многонуклеотидные бактерии.

Способы разделения бактерий

Деление с помощью разламывания

Деление с помощью разламывания характерно для сибиреязвенных бацилл. В результате такого деления клетки переламываются в местах сочленения, разрывая цитоплазматические мостики. Далее отталкиваются друг от друга, образуя цепочки.

Скользящее разделение

При скользящем разделении после деления клетка обосабливается и как бы скользит по поверхности другой клетки. Данный способ разделения характерен для некоторых форм эшерихий.

Секущееся разделение

При секущемся разделении одна из разделившихся клеток свободным концом описывает дугу круга, центром которого является точка ее контакта с другой клеткой, образуя римскую пятерку или клинопись (коринебактерии дифтерии, листерии).

Рис. 6. На фото бактерии палочковидной формы, образующие цепочки (сибиреязвенные палочки).

Рис. 7. На фото скользящий способ разделения кишечных палочек.

Рис. 8. Секущийся способ разделения коринебактерий.

Вид скоплений бактерий после деления

Скопления делящихся клеток имеют разнообразную форму, которая зависит от направления плоскости деления.

Шаровидные бактерии располагаются по одному, по двое (диплококки), пакетами, цепочками или как гроздья винограда. Палочковидные бактерии — цепочками.

Спиралевидные бактерии — хаотично.

Рис. 9. На фото микрококки. Они круглые, гладкие, имеют белую, желтую и красную окраску. В природе микрококки распространены повсеместно. Живут в разных полостях человеческого организма.

Рис. 10. На фото бактерии диплококки — Streptococcus pneumoniae.

Рис. 11. На фото бактерии сарцины. Кокковидные бактерии соединяются в пакеты.

Рис. 12. На фото бактерии стрептококки (от греческого «стрептос» — цепочка). Располагаются цепочками. Являются возбудителями целого ряда заболеваний.

Рис. 13. На фото бактерии «золотистые» стафилококки. Располагаются, как «гроздья винограда». Скопления имеют золотистую окраску. Являются возбудителями целого ряда заболеваний.

Рис. 14. На фото извитые бактерии лептоспиры — возбудители многих заболеваний.

Рис. 15. На фото палочковидные бактерии рода Vibrio.

Скорость деления бактерий

Скорость деления бактерий крайне высока. В среднем одна бактериальная клетка делится каждые 20 минут. В течение только одних суток одна клетка образует 72 поколения потомства. Микобактерии туберкулеза делятся медленно. Весь процесс деления занимает у них около 14 часов.

Рис. 16. На фото отображен процесс деления клетки стрептококка.

Половое размножение бактерий

В 1946 году учеными было обнаружено половое размножение в примитивной форме. При этом гаметы (мужские и женские половые клетки) не образуются, однако некоторые клетки обмениваются генетическим материалом (генетическая рекомбинация ).

Передача генов осуществляется в результате конъюгации — однонаправленного переноса части генетической информации в виде плазмид при контакте бактериальных клеток.

Плазмиды представляют собой молекулы ДНК небольшого размера. Они не связаны с геномом хромосом и способны удваиваться автономно. В плазмидах содержаться гены, которые повышают устойчивость бактериальных клеток к неблагоприятным условиям внешней среды. Бактерии часто передают эти гены друг другу. Отмечается так же передача генной информации бактериям другого вида.

При отсутствии истинного полового процесса именно конъюгация играет огромную роль при обмене полезными признаками. Так передается способность бактерий проявлять лекарственную устойчивость. Для человечества особо опасным является передача устойчивости к антибиотикам между болезнетворными популяциями.

Рис. 17. На фото момент конъюгации двух кишечных палочек.

Фазы развития бактериальной популяции

При посевах на питательную среду развитие бактериальной популяции проходит несколько фаз.

Исходная фаза

Исходная фаза — это период от момента посева до их роста. В среднем исходная фаза длится 1 — 2 часа.

Фаза задержки размножения

Это фаза интенсивного роста бактерий. Ее длительность составляет около 2-х часов. Она зависит от возраста культуры, периода приспособления, качества питательной среды и др.

Логарифмическая фаза

В эту фазу отмечается пик скорости размножения и увеличения бактериальной популяции. Ее длительность составляет 5 — 6 часов.

Фаза отрицательного ускорения

В эту фазу отмечается спад скорости размножения, уменьшается количество делящихся и увеличивается число погибших бактерий. Причина отрицательного ускорения — истощение питательной среды. Ее длительность составляет около 2-х часов.

Стационарная фаза максимума

В стационарную фазу отмечается равное количество погибших и вновь образованных особей. Ее длительность составляет около 2-х часов.

Фаза ускорения гибели

В эту фазу прогрессивно нарастает количество погибших клеток. Ее длительность составляет около 3-х часов.

Фаза логарифмической гибели

В эту фазу клетки бактерий отмирают с постоянной скоростью. Ее длительность составляет около 5-и часов.

Фаза уменьшения скорости отмирания

В эту фазу оставшиеся живыми клетки бактерий переходят в состояние покоя.

Рис. 18. На рисунке отображена кривая роста бактериальной популяции.

Рис. 19. На фото колонии синегнойной палочки сине-зеленого цвета, колонии микрококков желтого цвета, колонии Bacterium prodigiosum кроваво-красного цвета и колонии Bacteroides niger черного цвета.

Рис. 20. На фото колонии бактерий. Каждая колония — потомство одной-единственной клетки. В колонии число клеток исчисляется миллионами. вырастает колония за 1 — 3 суток.

Деление магниточувствительных бактерий

В 1970-х годах были открыты бактерии, обитающие в морях, которые обладали чувством магнетизма. Магнетизм позволяет этим удивительным существам ориентироваться по линиям магнитного поля Земли и находить серу, кислород и другие, так необходимые ей вещества. Их «компас» представлен магнитосомами, которые состоят из магнита. При делении магниточувствительные бактерии делят свой компас. При этом перетяжки при делении становится явно недостаточно, поэтому бактериальная клетка сгибается и делает резкий перелом.

Рис. 21. На фото момент деления магниточувствительной бактерии.

Рост бактерий

Вначале деления бактериальной клетки две молекулы ДНК расходятся в разные концы клетки. Далее клетка делится на две равноценные части, которые отделяются друг от друга и увеличиваются до исходного размера. Скорость деления многих бактерий составляет в среднем 20 — 30 минут. В течение только одних суток одна клетка образует 72 поколения потомства.

Масса клеток в процессе роста и развития быстро поглощает питательные вещества из окружающей среды. Этому способствуют благоприятные факторы внешней среды — температурный режим, достаточное количество питательных веществ, необходимая pH среды. Для клеток аэробов необходим кислород. Для анаэробов он представляет опасность. Однако безграничное размножение бактерий в природе не происходит. Солнечный свет, сухой воздух, недостаток пищи, высокая температура окружающей среды и другие факторы губительно действуют на бактериальную клетку.

Рис. 22. На фото момент деления клетки.

Факторы роста

Для роста бактерий необходимы определенные вещества (факторы роста), часть из которых синтезируется самой клеткой, часть поступает из окружающей среды. Потребность в факторах роста у всех бактерий разная.

Потребность в факторах роста является постоянным признаком, что позволяет использовать его для идентификации бактерий, подготовке питательных сред и использовать в биотехнологии.

Факторы роста бактерий (бактериальные витамины) — химические элементы, большинством из которых являются водорастворимые витамины группы В. В эту группу входят так же гемин, холин, пуриновые и пиримидиновые основания и другие аминокислоты. При отсутствии факторов роста наступает бактериостаз.

Бактерии используют факторы роста в минимальных количествах и в неизменном виде. Ряд химических веществ этой группы входят в состав клеточных ферментов.

Рис. 23. На фото момент деления палочковидной бактерии.

Важнейшие бактериальные факторы роста

  • Витамин В1 (тиамин) . Принимает участие в углеводном обмене.
  • Витамин В2» (рибофлавин) . Принимает участие в окислительно-восстановительных реакциях.
  • Пантотеновая кислота является составной частью кофермента А.
  • Витамин В6 (пиридоксин) . Принимает участие в обмене аминокислот.
  • Витамины В12 (кобаламины — вещества, содержащие кобальт). Принимают активное участие в синтезе нуклеотидов.
  • Фолиевая кислота . Некоторые ее производные входят в состав ферментов, катализирующих процессы синтеза пуриновых и пиримидиновых оснований, а также некоторых аминокислот.
  • Биотин . Участвует в азотистом обмене, а также катализирует синтез ненасыщенных жирных кислот.
  • Витамин РР (никотиновая кислота). Участвует в окислительно-восстановительных реакциях, образовании ферментов и обмене липидов и углеводов.
  • Витамин Н (парааминобензойная кислота). Является фактором роста многих бактерий, в том числе населяющих кишечник человека. Из парааминобензойной кислоты синтезируется фолиевая кислота.
  • Гемин . Является составной частью некоторых ферментов, которые принимают участие в реакциях окислениях.
  • Холин . Принимает участие в реакциях синтеза липидов клеточной стенки. Является поставщиком метильной группы при синтезе аминокислот.
  • Пуриновые и пиримидиновые основания (аденин, гуанин, ксантин, гипоксантин, цитозин, тимин и урацил). Вещества необходимы главным образом в качестве компонентов нуклеиновых кислот.
  • Аминокислоты . Эти вещества являются составляющими белков клетки.

Потребность в факторах роста некоторых бактерий

Ауксотрофы для обеспечения жизнедеятельности нуждаются в поступлении химических веществ из вне. Например, клостридии не способны синтезировать лецитин и тирозин. Стафилококки нуждаются в поступлении лецитина и аргинина. Стрептококки нуждаются в поступлении жирных кислот — компонентов фосфолипидов. Коринебактерии и шигеллы нуждаются в поступлении никотиновой кислоты. Золотистые стафилококки, пневмококки и бруцеллы нуждаются в поступлении витамина В1. Стрептококки и бациллы столбняка — в пантотеновой кислоте.

Прототрофы самостоятельно синтезируют необходимые вещества.

Рис. 24. Разные условия окружающей среды по-разному влияют на рост колоний бактерий. Слева — стабильный рост в виде медленно расширяющегося круга. Справа — быстрый рост в виде «побегов».

Изучение потребности бактерий в факторах роста позволяет ученым получать большую микробную массу, так необходимую при изготовлении антимикробных препаратов, сывороток и вакцин.

Подробно о бактерияx читай в статьях:

Размножение бактерий является механизмом повышения числа микробной популяции. Деление бактерий — основной способ размножения. После деления бактерии должны достигнуть размеров взрослых особей. Рост бактерий происходит путем быстрого поглощения питательных веществ их окружающей среды. Для роста необходимы определенные вещества (факторы роста), часть из которых синтезирует сама бактериальная клетка, часть поступает из окружающей среды.

Изучая рост и размножение бактерий, ученые постоянно открывают полезные свойства микроорганизмов, использование которых в повседневной жизни и на производстве ограничивается только их свойствами.

Некоторые микроорганизмы размножаются спорообразовани-ем (актиномицеты и грибы) и почкованием (дрожжи), у некоторых микроорганизмов наблюдается половое размножение, но большин-ство из них размножается бесполым (вегетативным) путем. При благоприятных условиях размножение протекает с необыкновен-ной быстротой — каждые 20-30 минут материнская бактериальная клетка делится на две дочерние. Дочерняя клетка со временем становится материнской и также делится. Таким образом, деление бактерий идет в геометрической прогрессии. Если бы такое деле-ние шло беспрепятственно, то через 48 часов одна бактерия могла бы дать потомство в сотни биллионов клеток, а через пять дней такую массу, которая заполнила бы собой бассейны всех морей и океанов. Однако этого не происходит, поскольку на микроорганиз-мы действуют различные факторы окружающей среды.

Делению клетки предшествует равномерное увеличение об-щего азота, РНК и белка в цитоплазме. Затем происходит реплика-ция (удвоение) ДНК. В делящейся клетке между спиралями ДНК разрываются водородные связи и образуются одиночные дочер-ние спирали ДНК (рис.25).

Рис. 25. Процесс бинарного деления па-лочковидных прокариот

3 -вытягивание клетки;

— формирование перегородки;

5 -разделение клеток.

Сразу после репликации ДНК начинается вытяжение клетки и образование поперечной перегородки за счет двух слоев цитоплазматической мембраны, выпячивающейся навстречу друг другу. Чаще всего перегородка образуется посередине материнской клетки, в результате чего дочерние клетки имеют примерно одинако-вые размеры. Между слоями перегородки идет формирование кле-точной стенки.

В процессе размножения одна из половин клетки постоянно сохраняет жгутики. На конечном этапе размножения бактерий жгу-тики вырастают и у другой половины.

Рост и размножение микроорганизмов зависит от различных факторов окружающей среды и видовых характеристик. Наблюде-ние за развитием микроорганизмов, культивируемых в жидкой пи-тательной среде в замкнутых резервуарах, показывает, что для роста биомассы необходимы наличие источника энергии, присут-ствие компонентов, необходимых для синтеза биомассы, отсутствие в среде ингибиторов, подавляющих рост клеток, поддержание в среде необходимых физико-химических условий. В этих условиях рост микроорганизмов условно можно подразделить на несколько последовательных фаз или периодов (рис. 26):

1. лаг-фаза (англ. lag — запаздывание) — период между посевом бактерий и началом размножения. В этот период происходит адап-тация бактериальной культуры к питательной среде. Она проявля-ется в накоплении оптимального количества необходимых фермен-тов, в инактивации некоторого ингибитора, присутствующего в сре-де, в прорастании спор и др. При благоприятных условиях бактерии увеличиваются в размерах и готовятся к делению. Лаг-фаза мо-жет длиться от 10 минут до нескольких часов, но в среднем она составляет 4-5 часов.

3. Фаза логарифмического или экспоненциального роста явля-ется периодом наиболее интенсивного деления бактерий. Бактерии делятся каждые 20-40 минут. Во время этой фазы бактерии осо-бенно ранимы, что объясняется высокой чувствительностью рас-тущих клеток к факторам окружающей среды. Продолжительность экспоненциального роста зависит от концентрации питательных ве-ществ в субстрате и в среднем составляет 5-6 часов.

5. Фаза стационарного роста вызывается постепенным исто-щением среды, накоплением в ней литических ферментов, хими-ческим ингибированием роста микробной клетки продуктами ме-таболизма. Эта фаза отличается от предыдущей повышенной со-противляемостью бактерий многим химическим и физическим фак-торам. К началу этой фазы количество жизнеспособных клеток достигает максимального уровня и остается на этом максимуме в течение нескольких часов в зависимости от вида микроорганизмов и особенностей их культивирования. В конце этой фазы у некоторых микроорганизмов наблюдается процесс спорообразования.

6. Завершающая фаза процесса размножения — фаза старения и гибели — характеризуется отмиранием бактерий из-за истощения питательной среды и накопления в ней продуктов метаболизма. Наблюдается автолиз микроорганизмов как экстремальное прояв-ление нестабильности клетки после прекращения роста. Продол-жительность этой фазы может составлять от нескольких часов до нескольких недель.

Дата публикования: 2015-11-01; Прочитано: 2315 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.002 с)…

Бактерии, как и все живые организмы, размножаются. Проис-ходит это чаще всего путем простого поперечного деления в раз-личных плоскостях. При этом образуются разнообразные сочетания клеток: парные соединения, одиночные клетки, гроздья, цепочки, пакеты и др.

Некоторые микроорганизмы размножаются спорообразовани-ем (актиномицеты и грибы) и почкованием (дрожжи), у некоторых микроорганизмов наблюдается половое размножение, но большин-ство из них размножается бесполым (вегетативным) путем.

При благоприятных условиях размножение протекает с необыкновен-ной быстротой — каждые 20-30 минут материнская бактериальная клетка делится на две дочерние. Дочерняя клетка со временем становится материнской и также делится.

Таким образом, деление бактерий идет в геометрической прогрессии. Если бы такое деле-ние шло беспрепятственно, то через 48 часов одна бактерия могла бы дать потомство в сотни биллионов клеток, а через пять дней такую массу, которая заполнила бы собой бассейны всех морей и океанов. Однако этого не происходит, поскольку на микроорганиз-мы действуют различные факторы окружающей среды.

Делению клетки предшествует равномерное увеличение об-щего азота, РНК и белка в цитоплазме.

Затем происходит реплика-ция (удвоение) ДНК. В делящейся клетке между спиралями ДНК разрываются водородные связи и образуются одиночные дочер-ние спирали ДНК (рис.25).

25. Процесс бинарного деления па-лочковидных прокариот

1 — образование одиночных спиралей ДНК;

2 — удвоение (репликация) ДНК;

3 -вытягивание клетки;

— формирование перегородки;

4 — окончание формирования перего-родки и образование выпуклой клеточной стенки;

5 -разделение клеток.

Сразу после репликации ДНК начинается вытяжение клетки и образование поперечной перегородки за счет двух слоев цитоплазматической мембраны, выпячивающейся навстречу друг другу.

Чаще всего перегородка образуется посередине материнской клетки, в результате чего дочерние клетки имеют примерно одинако-вые размеры. Между слоями перегородки идет формирование кле-точной стенки.

Одиночная спираль ДНК в новых клетках служит матрицей для создания второй спирали, в результате чего образуется двой-ная спираль ДНК с восстановленными водородными связями и формируется новый нуклеоид.

В процессе размножения одна из половин клетки постоянно сохраняет жгутики.

На конечном этапе размножения бактерий жгу-тики вырастают и у другой половины.

Рост и размножение микроорганизмов зависит от различных факторов окружающей среды и видовых характеристик. Наблюде-ние за развитием микроорганизмов, культивируемых в жидкой пи-тательной среде в замкнутых резервуарах, показывает, что для роста биомассы необходимы наличие источника энергии, присут-ствие компонентов, необходимых для синтеза биомассы, отсутствие в среде ингибиторов, подавляющих рост клеток, поддержание в среде необходимых физико-химических условий.

В этих условиях рост микроорганизмов условно можно подразделить на несколько последовательных фаз или периодов (рис. 26):

Рис. 26. Типичная кривая роста популяции микроорганизмов 1 — лаг-фаза;

2 — фаза ускоренного роста; 3 — фаза логарифмического (экспоненциального) роста;

4 — фаза замедления роста; 5 — фаза стационар-ного роста; 6 — фаза старения и отмирания.

лаг-фаза (англ. lag — запаздывание) — период между посевом бактерий и началом размножения. В этот период происходит адап-тация бактериальной культуры к питательной среде. Она проявля-ется в накоплении оптимального количества необходимых фермен-тов, в инактивации некоторого ингибитора, присутствующего в сре-де, в прорастании спор и др. При благоприятных условиях бактерии увеличиваются в размерах и готовятся к делению.

Лаг-фаза мо-жет длиться от 10 минут до нескольких часов, но в среднем она составляет 4-5 часов.

2. Фаза ускоренного роста наблюдается после лаг-фазы и характеризуется нарастанием темпов деления микроорганизмов и накопления биомассы.

3. Фаза логарифмического или экспоненциального роста явля-ется периодом наиболее интенсивного деления бактерий.

Бактерии делятся каждые 20-40 минут. Во время этой фазы бактерии осо-бенно ранимы, что объясняется высокой чувствительностью рас-тущих клеток к факторам окружающей среды. Продолжительность экспоненциального роста зависит от концентрации питательных ве-ществ в субстрате и в среднем составляет 5-6 часов.

4. Фаза замедления роста является переходным периодом от экспоненциального роста к фазе стационарного роста. Во время этой фазы наблюдается истощение питательных веществ субстрата и накопление в нем продуктов метаболизма, что снижает интенсив-ность размножения микроорганизмов.

Фаза стационарного роста вызывается постепенным исто-щением среды, накоплением в ней литических ферментов, хими-ческим ингибированием роста микробной клетки продуктами ме-таболизма. Эта фаза отличается от предыдущей повышенной со-противляемостью бактерий многим химическим и физическим фак-торам. К началу этой фазы количество жизнеспособных клеток достигает максимального уровня и остается на этом максимуме в течение нескольких часов в зависимости от вида микроорганизмов и особенностей их культивирования.

В конце этой фазы у некоторых микроорганизмов наблюдается процесс спорообразования.

6. Завершающая фаза процесса размножения — фаза старения и гибели — характеризуется отмиранием бактерий из-за истощения питательной среды и накопления в ней продуктов метаболизма. Наблюдается автолиз микроорганизмов как экстремальное прояв-ление нестабильности клетки после прекращения роста.

Продол-жительность этой фазы может составлять от нескольких часов до нескольких недель.

Дата публикования: 2015-11-01; Прочитано: 2316 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Размножение микроорганизмов - бинарное деление одноклеточных микроорганизмов (бактерий, риккетсий, простейших, дрожжей), в результате которого образуются две новые дочерние полноценные особи, наделенные генетической информацией материнской клетки. Дрожжеподобные грибы могут размножаться почкованием, спорами; плесневые грибы и актиномицеты размножаются обычно спорами.

Бактерии

Размножаются простым поперечным делением.

Бактерии являются гаплоидными клетками. В состав бактериальной клетки входит капсула, клеточная стенка, цитоплазматическая мембрана, цитоплазма, где располагаются мезосомы, рибосомы, нуклеоид, и включения. Некоторые бактериальные клетки имеют жгутики и образуют споры.

В отличие от животных клеток такие внутренние структуры бактериальной клетки, как мезосомы, рибосомы, нуклеоид, не имеют мембран, отграничивающих их от цитоплазмы.

По способу питания бактерий делят на автотрофов и гетеротрофов, по способу дыхания - на аэробов и анаэробов.

Актиномицеты

Размножаются спорами и поперечным делением (отшнуровыванием) гиф.

Занимают промежуточное положение между грибами и бактериями. Среди лучистых грибов сеть патогенные виды - возбудители актиномикозов. Многие актиномицеты являются продуцентами антибиотиков. (см.

Антибиотики). В «Определителе» Берджи актиномицеты названы стрептомицетами.

Дрожжи

Существует 2 вида размножения дрожжей - вегетативное (бесполое) и половое с образованием спор. У большинства видов дрожжей вегетативное размножение осуществляется почкованием, редко делением (Schizosaccharomyces). Аспорогенные. дрожжи размножаются только почкованием. Половое размножение происходит при неблагоприятных условиях, когда дрожжи перестают почковаться и превращаются в сумки (аски) со спорами - аскоспоры.

Половой процесс заключается в копуляции (слиянии) 2 вегетативных клеток путем сближения их и образования копуляционного канала, в котором происходит слияние частей плазмы и ядра клеток, называемое кариогамией, с образованием диплоидной зиготы, представляющей 2 клетки, соединенные копуляционным каналом.

Редукционное деление, или мейоз, сопровождаемое уменьшением числа хромосом вдвое, происходит сразу, без полового процесса, и зигота превращается в аск с 4 гаплоидными спорами, поэтому вегетативное поколение таких спор гаплоидно. Споры прорастают без копуляции. Так происходит размножение у дрожжей Zygosaccharomyces. У дрожжей Saccharomyces половой процесс происходит при слиянии спор или проросших из них клеток с образованием диплоидной зиготы, которая сразу начинает почковаться, образуя диплоидное потомство.

Мейоз происходит непосредственно перед образованием спор.

Плесневые грибы

У Грибов различают вегетативное, половое и бесполое размножение.

Вегетативное размножение может осуществляться при отделении от основной массы мицелия его частей, которые могут развиваться самостоятельно, а так же путем почкования мицелия или отдельных клеток у дрожжевых грибов.

Половое размножение состоит в слиянии половых клеток, в результате чего возникает зигота.

Бесполое размножение осуществляется при помощи специальных образований, называемых спорами. Споры могут развиваться внутри специальных споровместилищ или на концах особых выростов мицелия – конидиеносцах.

Основной способ размножения плесневых грибов – при помощи спор. Плесень размножается невероятно быстро.

В обыкновенной хлебной плесени можно различить маленькие чёрные точки — спорангии, в которых образуются споры. В одном спорангии содержится до 50.000 спор, каждая из которых способна воспроизвести сотни миллионов новых спор всего за несколько дней! А если условия благоприятные, плесень быстро появится на книге, обуви или на упавшем дереве в лесу.

Бактерии: Жизнедеятельность бактерий характеризуется ростом - фор-мированием структурно-функциональных компонентов клетки и увеличением самой бактериальной клетки, а также размноже-нием - самовоспроизведением, приводящим к увеличению ко-личества бактериальных клеток в популяции.

Бактерии размножаются путем бинарного деления пополам, реже путем почкования.

Актиномицеты, как и грибы, могут размножаться спорами. Для одной группы одноклеточных цианобактерий описано множественное деление (ряд быстрых последовательных бинарных делений, приводящий к образованию от 4 до 1024 новых клеток). Актиномицеты, являясь ветвящимися бактериями, размножаются путем фрагментации нитевидных клеток Грамположительные бактерии делятся путем врастания синтези-рующихся перегородок деления внутрь клетки, синтезируют поперечную перегородку от периферии к центру при участии мезосом.

а грамотрицательные - путем перетяжки(на месте деления обнаруживается постепенно увеличивающееся искривление ЦПМ и клеточной стенки внутрь.), в результате образования гантелевидных фигур, из которых образуются две одинаковые клетки. При почковании на одном из полюсов материнской клетки формируется и растёт почка, материнская клетка проявляет признаки старения и обычно не может дать более 4 дочерних.

У других бактерий кроме размножения наблюдается половой процесс, но в самой примитивной форме.

Половой процесс бактерий отличается от полового процесса эукариот тем, что у бактерий не образуются гаметы и не происходит слияния клеток. Однако главнейшее событие полового процесса, а именно обмен генетическим материалом, происходит и в этом случае. Это называется генетической рекомбинацией.

Делению клеток предшествует репликация бактериальной хро-мосомы по полуконсервативному типу (двуспиральная цепь ДНК раскрывается и каждая нить достраивается комплементарной ни-тью), приводящая к удвоению молекул ДНК бактериального ядра - нуклеоида. Репликация ДНК происходит в три этапа: инициация, элон-гация, или рост цепи, и терминация.

Размножение спирохет: поперечное деление-деление клетки у бактерий, при котором материнская клетка дает начало двум дочерним клеткам. Осуществляется в три стадии:

1) реплика-ция молекулы ДНК кольцевой хромосомы, присоединенной к мезосоме, которая так же делится на две части;

2) разведение с помощью мезосом двух дочерних кольцевых хромосом;

3) раз-деление цитоплазмы поперечной перегородкой, которая образу-ется от периферии к центру клетки.

Размножение грибов:

Большинство грибов способно к вегетативному, собственно бесполому и половому размножению.

Характерен плеоморфизм - наличие одновременно нескольких видов спороношений, например, бесполого и полового.

Вегетативное размножение

  • Частями мицелия.
  • Специализированными образованиями: артроспорами (оидиями) с тонкими стенками или хламидиоспорами с толстыми, образуются они, с некоторыми отличиями, при распаде мицелия на части, а затем дают начало новому.
  • Почкование гиф или отдельных клеток (например, у дрожжей).

Также почкуются аскоспоры у сумчатых и базидиоспоры у головнёвых. Образующиеся почки постепенно отделяются, растут и со временем сами начинают почковаться.

Бесполое размножение

Собственно бесполое размножение идёт посредством спор.

В зависимости от способа образования различают эндогенные и экзогенные споры.

  • Эндогенные споры (спорангиоспоры) характерны для низших грибов.

Образуются внутри особых клеток, называемыхспорангиями.

  • Экзогенные споры обычно называют конидиями,они имеются у высших и у некоторых низших грибов.

Образуются на вершинах или сбоку специальных гиф - конидиеносцев, ориентированных вертикально, которые могут быть простыми или разветвлёнными.

Покрыты плотной оболочкой, поэтому довольно устойчивы, но неподвижны. Могут подхватываться воздушными потоками или животными и переноситься на значительные расстояния. При прорастании дают ростовую трубку, а затем гифы.

Половое размножение

Конъюгация гамет

Для низших грибов свойственно слияние гаплоидных гамет путём изогамии, анизогамии (гетерогамии) или оогамии.

В случае оогамии развиваются половые органы - оогонии (женские) и антеридии (мужские). При оплодотворении происходит образование ооспоры - это зигота, которая покрывается толстой оболочкой, некоторое время проводит в состоянии покоя, после чего прорастает.

Скорость и фазы размножения бактерий в стационарных условиях.

При выращивании бактерий на жидкой питательной среде наблюдается придонный, диффузный или поверхностный (в виде пленки) рост культуры.

Рост периодической культуры бактерий, выращиваемых на жидкой питательной среде, подразделяют на несколько фаз, или периодов:

1. лаг-фаза;

2. фаза логарифмического роста;

3. фаза стационарного роста, или максимальной концентрации бактерий;

4. фаза гибели бактерий.

Эти фазы можно изобразить графически в виде отрезков кри-вой размножения бактерий, отражающей зависимость логариф-ма числа живых клеток от времени их культивирования.
Лаг-фаза - период между по-севом бактерий и началом размножения.

Продолжительность лаг-фазы в среднем 4-5 ч. Бактерии при этом увеличиваются в раз-мерах и готовятся к делению; нарастает количество нуклеино-вых кислот, белка и других компонентов.
Фаза логарифмического (экспоненциального) роста является периодом ин-тенсивного деления бактерий. Продолжительность ее около 5- 6 ч. При оптимальных условиях роста бактерии могут делиться каждые 20-40 мин.

Во время этой фазы бактерии наиболее ра-нимы, что объясняется высокой чувствительностью компонен-тов метаболизма интенсивно растущей клетки к ингибиторам синтеза белка, нуклеиновых кислот и др.
Затем наступает фаза стационарного роста, при которой количество жиз-неспособных клеток остается без изменений, составляя макси-мальный уровень (М-концентрация). Ее продолжительность вы-ражается в часах и колеблется в зависимости от вида бактерий, их особенностей и культивирования.

Завершает процесс роста бактерий фаза гибели, характеризующаяся отмиранием бак-терий в условиях истощения источников питательной среды и накопления в ней продуктов метаболизма бактерий. Продолжи-тельность ее колеблется от 10 ч до нескольких недель. Интен-сивность роста и размножения бактерий зависит от многих фак-торов, в том числе оптимального состава питательной среды, окислительно-восстановительного потенциала, рН, температуры и др.

Скорость роста бактерий зависит как от внешних условий, так и от физиологических особенностей самой клетки.

При наличии благоприятных условий рост бактериальной клетки завершается размножением. Основным способом размножения большинства бактерий является простое деление клетки пополам. Делению предшествует репликация (удвоение) хромосомы. Эти два процесса тесно взаимосвязаны. Частота репликации регулируется скоростью роста клетки. Репликация бактериальной хромосомы осуществляется описанным ранее способом (см. п. 3.2.5).

Изучение закономерности равномерного распределения генетического материала между дочерними клетками, образовавшимися в результате деления материнской клетки, позволило Г. Жакобу, С. Бреннеру и Т. Кузену (1963) сформулировать концепцию репликона. Репликон — единица репликации, это участок ДНК, содержащий регуляторные элементы, необходимые для независимой репликации. У бактерий таковым являются хромосома и плазмиды. Каждый репликон содержит не менее двух локусов, участвующих в контроле репликации: структурный ген-репликатор (ген-инициатор), детерминирующий синтез белка-инициатора и специальный сайт-репликатор, который распознает сигналы на начало удвоения хромосомы.

После некоторого периода роста клетка достигает определенного физиологического состояния. Из цитоплазматической мембраны в репликон поступают сигналы о необходимости репликации хромосомы и готовности клетки к делению. Под влиянием сигналов активизируется деятельность структурного гена и синтезируется белок-инициатор.

Он, воздействуя на репликатор, запускает репликацию.
Между системой репликации хромосомы и делением клетки существует координированное взаимодействие: делению клетки всегда предшествует удвоение хромосомы. После завершения репликации начинается процесс деления клетки. У грамположительных бактерий и цианобактерий это осуществляется образованием поперечной перегородки, разделяющей материнскую клетку на две равноценные дочерние.
Деление происходит следующим образом.

Вначале
синтезируется двуслойная цитоплазматическая мембрана. Затем на внутренней стороне клеточной стенки образуются два бугорка. Они интенсивно растут и, проникая кольцеобразно внутрь клетки между слоями образовавшейся цитоплазматической мембраны, образуют двойную перегородку, делящую клетку пополам.

Деление большинства грамотр тщательных бактерий
происходит путем перетяжки. При этом геномы расходятся по полюсам клетки, цитоплазматическая мембрана и клеточная стенка растягиваются, впячиваясь от периферии к центру клетки до контакта друг с другом. В результате клетка перешнуровывается на две дочерние. Деление клеток образованием перегородки или перетяжкой получило название бинарного в связи с формированием двух одинаковых дочерних клеток.

Кроме описанного бинарного деления, у бактерий известен другой способ размножения * почкование. Почкованием размножаются бактерии родов Hyphomicrobium, Pedomicrobium и других, объединенных в группу почкующихся бактерий.

Эти организмы имеют вид вытянутых палочек (0,5х 2 мкм), иногда грушевидных, оканчивающихся гифами, или простеками (выростами).
Размножение у этих бактерий начинается с образования почки на конце гифы или непосредственно на материнской клетке.

Почка разрастается в дочернюю клетку, формирует жгутик и отделяется от материнской клетки. По достижению зрелого состояния жгутик теряется и процесс развития повторяется.
В отличие от бинарного деления при почковании исходная клетка остается материнской, а вновь образованная — дочерней.

Между ними имеются морфологические и физиологические различия.
Актиномицеты размножаются фрагментами мицелия и спорами. У одних (род Micromonospora) единичные споры формируются на гифах вегетативного мицелия, у других (род Streptomyces и др.) цепочки спор образуются на концах гиф воздушного мицелия, так называемых конидиеносцах.

Фрагменты мицелия и споры в благоприятных условиях влажности, температуры прорастают и дают начало новым организмам.

Нитчатые цианобактерии кроме бинарного деления размножаются участками трихом и гормогониями. Последние представляют собой укороченные нити, состоящие из мелких вегетативных клеток одинаковой формы и размеров. При отмирании средних клеток трихома (нити) гормогонии выскальзывают из чехла материнского трихома, растут, делятся, образуя новые трихомы.

Гормогонии, в отличие от материнского трихома, не имеют гетероцист и никогда не окружены чехлом.
Независимо от того, каким путем идет процесс размножения бактерий, скорость этого процесса огромна: за 24 ч может смениться столько поколений, сколько у человека за пять тысяч лет.

Скорость размножения зависит от многих условий и для каждого вида бактерий различна. При наличии в среде необходимых питательных веществ, благоприятной температуры и кислотности среды деление каждой клетки может повторяться через 20-30 мин (Е. coli). При такой скорости размножения из одной клетки за сутки возможно образование 472 * 1019 клеток (273, 72 генерации).

Интенсивное размножение имеет для бактерий большое биологическое значение. Оно обеспечивает сохранение микроорганизмов на земной поверхности. При наступлении неблагоприятных условий они погибают массами, но достаточно сохраниться где-нибудь нескольким клеткам, как при подходящих условиях они дадут большое потомство клеток.
Численность популяции микроорганизмов в естественных местообитаниях, например, в почве или воде, постоянно меняется в соответствии с изменением условий существования.

Но в лабораторных условиях на питательных средах изменение численности популяции микроорганизмов происходит закономерным образом.

А так же в разделе «РАЗМНОЖЕНИЕ БАКТЕРИЙ»

Актиномицеты (Actinomyces) в переводе с латинского — лучистый гриб, обособленная группа микроорганизмов обладающая рядом морфологических признаков низшего вида гриба и не образующей спор бактерии.

Морфология актиномицетов

Строение актиномицитов имеет схожие черты с мицелиальными грибами, грифы мицелия имеют толщину в среднем 0.7 мк, изменяющуюся в пределах 0,5-1,2 мм, что на много меньше чем у грибов.

Для нитей, прямого или немного изогнутого вида, не имеющих поперечных перегородок, характерно моноподиальное или в отдельных случаях мутовчатое ветвление. Клеточная оболочка по составу имеет ряд черт грамположительных бактерий.

Размножение актиномицетов

Actinomyces размножаются с помощью субстрационного мицелия прорастающего в субстрате и воздушного мицелия вырастающего с плодоносцев-спорангиофоров.

Плодоносцы в зависимости от вида имеют различную форму завитков от закрученной формы, до прямой или волнистой.

Некоторые виды актиномицетов имеют спороносные ветки расположенные в виде мутовок или пучков, часто они моноподиально висят на нитях мицелия.

Образование спор происходит с помощью фрагментации или сегментации.

Фрагментация — это процесс дробления протопласта спороносной ветки на сто и более меленьких комков содержащих базофильное а также ядерное вещество.

Комки, превращаясь в споры, располагаются длинной цепочкой в спороносце.

Сегментация — это процесс разделения спороносца на сегменты с палочковидной формой, с помощью поперечных перегородок, они округляются и преобразовываются в споры.

Оболочки спор у разных видов имеют гладкую иногда бугристую, зубчатую, шиповидную, волосистую поверхность. Выросты на поверхности оболочек хорошо видны через электронный микроскоп.

В большинстве случаев актиномицеты аэрофилы и мезофилы, но получили распространение и термофилы, многие их виды способны образовывать пигменты разных цветов.

Актиномицеты, имея разнообразный набор ферментов способны синтезировать различные вещества и выделять их большими количествами в окружающую среду. Среди этих веществ, обладающих высокой физиологической активностью, встречаются многие витамины, некоторые аминокислоты, токсины, каротиноиды, фитогормоны и другие.

Также стоит упомянуть способность актиномицетитов образовывать разнообразные виды антибиотиков.

К царству Бактерии относятся собственно бактерии и цианобактерии.

Бактерии — это мельчайшие одноклеточные прокариотические (безъядерные) организмы.

Размеры бактерий: обычно от 0,1 до 15 мкм, но иногда достигают 30-100 мкм.

Численность видов бактерий: около 3 млрд.

Морфологические типы бактерий (в зависимости от формы тела): кокки (сферические), бациллы (прямые палочковидные), спириллы (спиралевидные), вибрионы (в виде запятой), спирохеты (извитые), колониальные формы (диплококки, стрептококки, стафилококки) и др.

Подвижность: некоторые бактерии подвижны благодаря наличию жгутиков.

В обычном состоянии бактерии неустойчивы при высушивании и воздействии прямых солнечных лучей, повышении температуры до 65-80 °С, погибают от воздействия спирта и других дезинфицирующих веществ.

Строение бактерий

Бактериальная клетка не имеет оформленного ядра, покрыта оболочкой , состоящей из плазматической мембраны, клеточной стенки и (у многих видов бактерий) внешней слизистой капсулы.

Плазматическая мембрана полупроницаема и обеспечивает избирательное поступление веществ в клетку и выделение в окружающую среду продуктов обмена веществ. Она образует складчатые впячивания внутрь цитоплазмы (мезосомы ). На мембранах мезосом находятся различные окислительно-восстановительные ферменты , участвующие в дыхании, и (у фотосинтезирующих бактерий) пигменты , участвующие в фотосинтезе. Т.е. мезосомы выполняют функции митохондрий (синтезируют АТФ), хлоропластов (осуществляют фотосинтез), комплекса Гольджи и эндоплазматической сети (накапливают и преобразуют органические вещества и осуществляют их транспорт внутри клетки и выведение за ее пределы).

Клеточная стенка — тонкая, прочная и эластичная, придает бактериальной клетке определенную форму, защищает ее содержимое от воздействия неблагоприятных факторов внешней среды и выполняет ряд других функций. Опорным каркасом клеточной стенки служит сетка из одного или несколько слоев муреина. В состав клеточной стенки бактерий не входят хитин и целлюлоза, характерные для клеток грибов и растений.

Слизистая капсула предохраняет клетку от высыхания и является ее защитным покровом, а также служит для образования колоний из отдельных клеток.

Генетический материал бактерий представлен нуклеоидом , не ограниченным мембранами и находящимся в центре клетки.

Нуклеоид (или бактериальная хромосома ) — это зона, обычно находящаяся в центре бактериальной клетки, содержащая кольцевую молекулу ДНК и не ограниченная мембранами. Молекула ДНК в нуклеоиде не связана с гистоновыми белками и прикрепляется к выросту цитоплазматической мембраны в одной точке. Нуклеоид является носителем генетической информации и контролирует нормальный ход всех внутриклеточных процессов.

Молекула ДНК у бактерий имеет до 5 000 000 пар нуклеотидов ; но суммарное содержание ДНК в одной бактериальной клетке значительно меньше, чем в ядерной (эукариотической).

Цитоплазма бактериальной клетки представляет собой смесь белков, жиров, углеводов, других органических соединений, минеральных веществ и воды и имеет зернистый вид. В ней содержится до 20 тысяч рибосом класса 70S (медленно осаждаемых), на которых синтезируются белки. В цитоплазме бактерий также содержатся многочисленные включения — гранулы запасаемых веществ. У некоторых бактерий в цитоплазме имеются плазмиды — небольшие кольцевые молекулы ДНК, участвующие в обмене генетической информацией между различными бактериальными клетками.

В клетках бактерий отсутствуют митохондрии, лизосомы, комплекс Гольджи и другие органеллы, однако в них хорошо развиты мембранные структуры в виде канальцев, пузырьков и тила-коидов, часто содержащих ферменты и пигменты и являющихся аналогами многих органелл эукариотической клетки.

Жгутики — это органоиды движения бактерий, состоящие из собранных в спираль глобул особого белка — флагеллина . Они берут свое начало под цитоплазматической мембраной, закрепляясь там с помощью пары дисков. Количество жгутиков у бактерии — от I до 50. У одних бактерий жгутики расположены только на одном конце клетки, у других — на двух или по всей поверхности. Способ расположения жгутиков является характерным признаком при классификации подвижных бактерий.

У некоторых безжгутиковых водных и почвенных бактерий в цитоплазме имеются газовые вакуоли , позволяющих погружаться в толщу воды, подниматься на ее поверхность или передвигаться в капиллярах почвы.

Классификация бактерий

❖ Классификация бактерий по типу питания (ассимиляции):
■ автотрофные,
■ гетеротрофные.

Автотрофные бактерии сами синтезируют нужные им органические вещества из неорганических.

■ В зависимости от способа получения энергии, необходимой для этого синтеза, автотрофные бактерии подразделяются на фотосинтезирующие и хемосинтезирующие . Фотосинтезирующие бактерии (например, зеленые и пурпурные) осуществляют фотосинтез органических веществ, используя световую (солнечную) энергию.

В клетках фотосинтезирующих бактерий (в отличие от клеток растений) нет пластид, а фотосинтезирующие пигменты (бактерио-хлорофиллы ) находятся в тилакоидах, образующихся в результате выпячивания цитоплазматической мембраны. По своей структуре бактериохлорофиллы подобны хлорофиллам растений и отличаются от них природой белковых цепей.

Хемосинтезирующие бактерии получают нужную для синтеза энергию от экзотермических реакций окисления неорганических веществ (молекулярного водорода, сероводорода, аммиака, закиси железа и др.). ‘

❖ Гетеротрофные бактерии (их большинство) используют в пищу готовые органические вещества, которые служат этим бактериям источником энергии и атомов углерода.

■ В зависимости от источника пищи гетеротрофные бактерии подразделяются на сапротрофы и симбионты .

Сапротрофы извлекают органические вещества из разлагающихся мертвых остатков организмов (бактерии гниения , получающие энергию от расщепления азотсодержащих соединений), выделений живых организмов (бактерии брожения , получающие энергию от расщепления углеродсодержащих соединений).

Симбионты поглощают органические вещества тела хозяина (растения, животного или человека), в котором они живут. При этом симбионты или:

■ продуцируют вещества, необходимые организму хозяина (пример: клубеньковые азотфиксирующие бактерии, поселяющиеся на корнях бобовых растений и находящиеся с ними во взаимовыгодном сосуществовании), или

❖ Классификация бактерий по типу диссимиляции (потребности в кислороде для высвобождения энергии, запасенной в молекулярных связях):
■ аэробные,
■ анаэробные,
■ факультативные.

Аэробные бактерии (туберкулезная палочка, гнилостные бактерии) живут только в кислородной среде (в верхних слоях почвы, в воздухе) и получают энергию путем окисления органических соединений до воды и диоксида углерода.

Анаэробные бактерии (бактерии желудочно-кишечного тракта, столбнячная палочка, возбудители гангрены, палочка ботулизма и др.) обитают в бескислородных средах и получают энергию в процессе реакций гликолиза и брожения.

Факультативные бактерии могут обитать как в кислородных, так и в бескислородных средах (пример: молочнокислая бактерия).

Размножение бактерий

Тип размножения бактерий — бесполый . Бактериальная клетка начинает размножаться, попав в благоприятные условия и достигнув определенного размера.

❖ Формы (способы) размножения бактерий:
■ делением клетки надвое,
■ почкованием (встречается как исключение),
■ спорообразованием.

Размножение делением клетки надвое: сначала путем репликации ДНК удваивается генетический материал клетки. После этого белки, прикрепляющие молекулы ДНК к выростам цитоплазматической мембраны, разделяют (растаскивают) дочерние молекулы ДНК и происходит оформление обособленных бактериальных хромосом (нуклеоидов ). Затем клетка удлиняется, и в ней постепенно образуется поперечная перегородка. Наконец, две дочерние клетки расходятся. Деления клеток происходят примерно через каждые 15-20 минут.

Спорообразование свойственно некоторым бактериям при наступлении неблагоприятных условий. При этом в бактериальной клетке значительно уменьшается количество свободной воды, снижается ферментативная активность, цитоплазма сжимается, а клетка покрывается очень плотной оболочкой. Споры бактерий устойчивы к различным воздействиям (выдерживают длительное высыхание, нагревание свыше 100 °С и охлаждение примерно до -200 °С) и сохраняют жизнеспособность в течение длительного времени. При попадании в благоприятные условия споры набухают и прорастают, образуя новую вегетативную клетку бактерий.

♦ Виды спор бактерий:
микроцисты (образуются из целой клетки),
эндогенные (образуются внутри клетки).

Циста — временная форма существования многих одноклеточных и ряда простейших многоклеточных организмов, характеризующаяся наличием защитной оболочки. Позволяет перенести неблагоприятные условия или предохраняет клетку в период ее деления.

❖ Формы полового процесса у бактерий:
■ трансформация,
■ конъюгация,
■ трансдукция.

Трансформация осуществляется при попадании фрагментов ДНК разрушенных клеток одной культуры бактерий в живую культуру другой бактерии. Эти фрагменты ДНК могут поглощаться клеткой-реципиентом и встраиваться в ее нуклеоид.

При конъюгации перенос участка ДНК от донора (выполняющего мужские функции) к клетке-реципиенту осуществляется при непосредственном контакте через половую фимбрию (тонкую белковую трубочку), которая формируется у клетки-донора. После этого клетки разъединяются. При конъюгации очень часто наблюдается передача не всей молекулы ДНК, а только ее фрагментов.

При трансдукции небольшой фрагмент ДНК переносится от одной клетки к другой бактериофагами .

Значение бактерий

❖ Положительное значение:
■ они участвуют в круговороте веществ и являются конечным звеном всех цепей питания;
■ являются редуцентами в биогеоценозе (разлагают и минерализуют экскременты и органические остатки);
■ участвуют в процессе почвообразования;
■ служат источником азота для бобовых растений;
■ принимают участие в образовании торфа, каменного угля, железной руды, других полезных ископаемых;
■ участвуют в биохимических процессах пищеварения животных и человека;
■ применяются в пищевой промышленности (для консервирования, получения молочнокислых продуктов и т.д.);
■ используются в микробиологической и химической промышленности (для получения спиртов, ацетона, сахаров, органических кислот и других химических соединений),
■ используются в фармацевтической промышленности для получения антибиотиков, вакцин, витаминов, аминокислот, ферментов и других биологически активных веществ;
■ применяются в процессах обработки льна, дубления кож и т.д.;
■ являются удобным объектом для генной инженерии;
■ применяются для борьбы с вредителями сельского хозяйства.

Дифтерия вызывается дифтерийной палочкой , поражающей верхние дыхательные пути. Токсин, выделяемый этими бактериями, разносится кровью и воздействует на сердце. Способ борьбы — прививка неактивным токсином.

Тиф: возбудитель — бактерии риккетсии , их переносчик -вши. При заболевании поражаются стенки кровеносных сосудов и образуются тромбы. Возможна прививка с помощью убитых бактерий, а также лечение антибиотиками тетрациклинового ряда.

Туберкулез: возбудитель — туберкулезная палочка , поражающая легкие и кости. Заражение происходит воздушно-капельным путем, а также через молоко больных животных. Профилактика -вакцинацией; лечение производится специальными препаратами.

Сифилис: возбудитель — спирохета рода трепонема . Сначала поражаются половые органы, затем глаза, кости, суставы, кожа, центральная нервная система. Передается при половом контакте. Лечение — антибиотиками и специальными препаратами.

Холера вызывается холерным вибрионом , в результате жизнедеятельности которого выделяется токсин, поражающий слизистую кишечника. Заражение происходит при употреблении в пищу грязных продуктов питания и воды. Для лечения применяются антибиотики тетрациклинового ряда.

Токсины — ядовитые продукты жизнедеятельности бактерий, которые, как правило, или сами являются поражающими факторами, или угнетают защитные силы организма, усиливая патогенное действие возбудителей болезни.

Методы борьбы с бактериями

❖ Методы борьбы с гнилостными бактериями:
■ высушивание плодов, грибов, мяса, рыбы, зерна;
■ охлаждение и замораживание продуктов;
■ маринование продуктов в уксусной кислоте;
■ создание высокой концентрации сахара (например, при изготовлении варенья), что вызывает плазмолиз в клетках бактерий и нарушает их жизнедеятельность;
■ консервирование (засолка).

❖ Другие методы борьбы с бактериями, в том числе болезнетворными:

дезинфекция (обеззараживание) — уничтожение болезнетворных микроорганизмов специальными химическими веществами (хлорной известью, хлорамином, раствором йода, этиловым спиртом и др.);

пастеризация — уничтожение бактерий в пищевых продуктах нагреванием до температуры 65-70 °С в течение 15-30 мин;

стерилизация — уничтожение бактерий с помощью ультрафиолетового излучения, химикатов или кипячения в автоклавах при температуре 120-130 °С и повышенном давлении;

■ соблюдение гигиены;

■ профилактические прививки.

Цианобактерии

Цианобактерии (или сине-зеленые водоросли ) — группа микроскопических фототрофных одноклеточных, колониальных и многоклеточных (нитчатых) прокариотических организмов.

■ Цианобактерии осуществляют обычный двухфазный (со световой и темновой фазами) кислородный фотосинтез.

Распространение: в пресных и соленых водоемах (входят в состав планктона и бентоса ), на поверхности почвы, на скалах; могут вступать в симбиоз с грибами (образуя лишайники), протистами, водорослями, мхами.

Планктон — совокупность организмов (бактерий, микроскопических водорослей, животных и их личинок), населяющих толщу воды и пассивно переносимых течением.

Бентос — совокупность организмов, обитающих в грунте и на поверхности дна водоема.

Строение — сходное с бактериями: клетки безъядерные , имеют толстые многослойные стенки , состоящие из полисахаридов, пектиновых веществ и целлюлозы; часто покрыты слизистым чехлом. В цитоплазме расположены мембранные фотосинтезирующие структуры и пигменты , хлорофиллы, каротиноиды, фикоэритрин и др. (благодаря их разнообразию цианобактерии могут поглощать свет различных длин волн), а также нуклеоид, рибосомы, включения запасного вещества —гликоген а, а также (у некоторых видов) газовые вакуоли , наполненные азотом и регулирующие плавучесть клетки. У ряда нитчатых форм цианобактерий имеются специализированные клетки с сильно утолщенными бесцветными оболочками — гетероцисты, участвующие в фиксации азота и размножении.

Размножение: бесполое, делением клетки надвое; колониальные и нитчатые цианобактерии — распадом колоний или нитей.

♦ Значение бактерий:
■ обогащают воду кислородом, а почву — органикой и азотом;
■ очищают воду, минерализуя продукты гниения;
■ являются кормом для зоопланктона и рыб;
■ используются для получения ряда ценных веществ (аминокислот, пигментов, витамина В 12 и др.), вырабатываемых ими в процессе жизнедеятельности;
отдельные виды (спирулина, носток) используются в пищу;
■ (отрицательное) вызывают «цветение» воды в период массового размножения, обычно сопровождающегося гибелью (из-за недостатка пищи) и гниением большинства дочерних особей, что делает воду непригодной для питья и вызывает гибель рыбы.

Страница 2

Основной способ размножения бактерий - деление клетки надвое (бинарное деление). При этом плазматическая мембрана и стенка впячиваются и перешнуровывают ее пополам. Впячивание мембраны происходит между точками прикрепления двух дочерних кольцевых молекул ДНК, в результате чего дочерние клетки обеспечиваются копиями материнской хромосомы. Бактерии обладают способностью к образованию эндоспор. Некоторые эндоспоры имеют плотные многослойные оболочки, устойчивы по отношению к агрессивным факторам внешней среды и длительно сохраняют способность к прорастанию.

Половой процесс у бактерий заключается в переносе ДНК от одной клетки к другой с последующей генетической рекомбинацией. Обмен наследственным материалом может происходить путем конъюгации (прямой контакт клеток), трансдукции (перенос ДНК вирусом-бактериофагом) или трансформации (поглощение фрагментов ДНК извне). Однако универсальным источником изменчивости являются мутации. В сочетании с темпом размножения бактерий они обеспечивают этим организмам высокую способность к адаптации к условиям внешней среды.

Различные виды бактерий могут использовать в качестве источника энергии почти любые органические соединения - не только питательные вещества, как сахара, аминокислоты и жиры, но и продукты выделения, например мочевину и мочевую кислоту, содержащиеся в моче, и вещества, входящие в состав экскрементов. Один из видов бактерий может использовать в качестве питательного субстрата даже пенициллин, убивающий многие бактерии.

Смотрите также

Основные факторы водной среды и их влияние на организмы
Введение На нашей планете живые организмы освоили четыре среды обитания. Водная среда была первой, в которой возникла и распространилась жизнь. Только потом организмы овладели наземно...

Генная инженерия
Введение Генная инженерия - это область биотехнологий, включающая в себя действия по перестройке генотипов. Суть генной инженерии сводится к пониманию того, что любой организм, будь т...

Асептика в биотехнологии
Введение Биотехнологические процессы в основном проводят в асептических условиях. Асептика - это комплекс мероприятий, направленных на предотвращение попадания в среду посторонних вещ...

Известно много способов размножения, наблюдаемых у различных бактерий. У подавляющего числа представителей этой группы микроорганизмов размножение осуществляется путем деления клеток на две части.

В средней части физиологически подготовленной к размножению клетки за счет впячивания цитоплазматической мембраны образуется поперечная перегородка. Расщепляясь, она разделяет клетку на две доловинки. Образовавшиеся новые клетки могут быть несколько неодинаковыми по размеру, так как перегородка не всегда проходит посередине материнской клетки.

Кокки в процессе размножения последовательно делятся в одной, двух или трех взаимно перпендикулярных плоскостях. После деления они остаются в той или иной мере скрепленными друг с другом, в результате чего возникают сочетания кокков, отличающиеся по взаимному расположению (см. рис. 1): диплококки - парные кокки; стрептококки - цепочки кокков; тетракокки - по четыре кокка; сарцины - в форме правильных тючков по 8, 16 шт.; стафилококки - скопления, напоминающие грозди винограда. При очень слабой связи или ее отсутствии между возникающими при делении клетками образуются микрококки, во взаимном расположении которых нет никаких закономерностей. Они расположены поодиночке или в виде случайных скоплений по несколько экземпляров.

Палочки (бактерии, бациллы), подобно коккам, могут располагаться парами по длине - диплобактерии и цепочками - стрептобактерии. Большинство же палочек располагается одиночно, беспорядочно. По внешним очертаниям отдельные представители папочковидных заметно отличаются друг от друга. Известны палочки строго цилиндрической формы, бочковидные, с резко обрубленными, вогнутыми или заостренными концами и др.

Размножение делением не сводится только к удвоению числа клеток. Структурные элементы и вещества материнской клетки еще и перераспределяются между возникающими новыми клетками. Большая часть клеток нового поколения наследует бездефектные структуры родительских организмов, вторая - менее полноценные. В связи с таким распределением по прошествии нескольких циклов деления образуется какое-то количество нежизнеспособных клеток. Устайовлено, что доля таких клеток, приходящаяся на каждый цикл деления, составляет примерно 10 % общего числа.

Бактерии обладают большой скоростью размножения, которая зависит от условий питания, температуры, доступа воздуха и др.

При благоприятных условиях _клетка может делиться через каждые 20-30 мин, т. е. за сутки может произойти 48-72 цикла удвоения. Из одной клетки за это время возникло бы 4714169·10 15 клеток, через 36 ч микробная масса составила бы около 400 т.

Если бы размножение постоянно проходило с такой скоростью, то из одной клетки в течение 5 дней могло бы образоваться такое количество клеток, что общий объем их оказался бы равным объему всех морей и океанов.

Практически беспрерывного деления микробов не происходит. Размножению их мешают многие моменты: истощение питательной среды, накопление продуктов собственного обмена и другие физические, химические и биологические факторы внешней среды. Так, при снижении температуры на 10 °С скорость размножения снижается в 2-3 раза.

Попадая в новые условия, на свежий субстрат, микробы не сразу начинают размножаться. Проходит некоторое время до начала увеличения их числа (фаза задержки роста), в течение которого они приспосабливаются к среде обитания и подготавливают самую среду. После этого начинается бурное размножение, замедляющееся затем по мере исчерпания питательных ресурсов и накопления продуктов жизнедеятельности бактерий в среде.

Быстрое развитие микробиологической порчи продуктов - скисание, окисление, плесневение, гниение и др. - как раз и объясняется исключительно высокой скоростью размножения бактерий.