Ядро является носителем наследственной информации благодаря наличию. Генетическая информация в клетке

После открытия принципа молекулярной организации такого вещества, как ДНК в 1953 году, начала развиваться молекулярная биология. Далее в процессе исследований ученые выяснили как рекомбенируется ДНК, ее состав и как устроен наш человеческий геном.

Каждый день на молекулярном уровне происходят сложнейшие процессы. Как устроена молекула ДНК, из чего она состоит? И какую роль играют в клетке молекулы ДНК? Расскажем подробно обо всех процессах, происходящих внутри двойной цепи.

Что такое наследственная информация?

Итак, с чего все начиналось? Еще в 1868 нашли в ядрах бактерий. А в 1928 г. Н. Кольцов выдвинул теорию о том, что именно в ДНК зашифрована вся генетическая информация о живом организме. Затем Дж. Уотсон и Ф. Крик нашли модель всем теперь известной спирали ДНК в 1953 году, за что заслужено получили признание и награду — Нобелевскую премию.

Что такое вообще ДНК? Это вещество состоит из 2 объединенных нитей, точнее спиралей. Участок такой цепочки с определенной информацией называется геном.

В ДНК хранится вся информация о том, что за белки будут формироваться и в каком порядке. Макромолекула ДНК — это материальный носитель невероятно объемной информации, которая записана строгой последовательностью отдельных кирпичиков — нуклеотидов. Всего нуклеотидов 4, они дополняют друг друга химически и геометрически. Этот принцип дополнения, или комплементарности, в науке будет описан позже. Это правило играет ключевую роль в кодировке и декодировании генетической информации.

Так как нить ДНК невероятно длинная, повторений в этой последовательности не бывает. У каждого живого существа собственная уникальная цепочка ДНК.

Функции ДНК

К функциям относятся хранение наследственной информации и ее передача потомству. Без этой функции геном вида не мог бы сохраняться и развиваться на протяжении тысячелетий. Организмы, которые претерпели серьезные мутации генов, чаще не выживают или теряют способность производить потомство. Так происходит природная защита от вырождения вида.

Еще одна существенно важная функция — реализация хранимой информации. Клетка не может создать ни одного жизненно важного белка без тех инструкций, которые хранятся в двойной цепочке.

Состав нуклеиновых кислот

Сейчас уже достоверно известно, из чего состоят сами нуклеотиды — кирпичики ДНК. В их состав входят 3 вещества:

  • Ортофосфорная кислота.
  • Азотистое основание. Пиримидиновые основания — которые имеют только одно кольцо. К ним относят тимин и цитозин. Пуриновые основания, в составе которых присутствуют 2 кольца. Это гуанин и аденин.
  • Сахароза. В составе ДНК — дезоксирибоза, В РНК — рибоза.

Число нуклеотидов всегда равно числу азотистых оснований. В специальных лабораториях расщепляют нуклеотид и выделяют из него азотистое основание. Так изучают отдельные свойства этих нуклеотидов и возможные мутации в них.

Уровни организации наследственной информации

Разделяют 3 уровня организации: генный, хромосомный и геномный. Вся информация, нужная для синтеза нового белка, содержится на небольшом участке цепочки — гене. То есть ген считается низший и самый простой уровень кодировки информации.

Гены, в свою очередь, собраны в хромосомы. Благодаря такой организации носителя наследственного материала группы признаков по определенным законам чередуются и передаются от одного поколения к другому. Надо заметить, генов в организме невероятно много, но информация не теряется, даже когда много раз рекомбенируется.

Разделяют несколько видов генов:

  • по функциональному назначению выделяют 2 типа: структурные и регуляторные последовательности;
  • по влиянию на процессы, протекающие в клетке, различают: супервитальные, летальные, условно летальные гены, а также гены мутаторы и антимутаторы.

Располагаются гены вдоль хромосомы в линейном порядке. В хромосомах информация сфокусирована не вразброс, существует определенный порядок. Существует даже карта, в которой отображены позиции, или локусы генов. Например, известно, что в хромосоме № 18 зашифрованы данные о цвете глаз ребенка .

А что же такое геном? Так называют всю совокупность нуклеотидных последовательностей в клетке организма. Геном характеризует целый вид, а не отдельную особь.

Каков генетический код человека?

Дело в том, что весь огромнейший потенциал человеческого развития заложен уже в период зачатия. Вся наследственная информация, которая необходима для развития зиготы и роста ребенка уже после рождения, зашифрована в генах. Участки ДНК и есть самые основные носители наследственной информации.

У человека 46 хромосом, или 22 соматические пары плюс по одной определяющей пол хромосоме от каждого родителя. Этот диплоидный набор хромосом кодирует весь физический облик человека, его умственные и физические способности и предрасположенность к заболеваниям. Соматические хромосомы внешне неразличимы, но несут они разную информацию, так как одна из них от отца, другая - от матери.

Мужской код отличается от женского последней парой хромосом — ХУ. Женский диплоидный набор — это последняя пара, ХХ. Мужчинам достается одна Х-хромосома от биологической матери, и затем она передается дочерям. Половая У-хромосома передается сыновьям.

Хромосомы человека значительно разнятся по размеру. Например, самая маленькая пара хромосом - №17. А самая большая пара - 1 и 3.

Диаметр двойной спирали у человека - всего 2 нм. ДНК настолько плотно закручена, что вмещается в маленьком ядре клетки, хотя ее длина будет достигать 2 метров, если ее раскрутить. Длина спирали — это сотни миллионов нуклеотидов.

Как передается генетический код?

Итак, какую роль играют в клетке молекулы ДНК при делении? Гены — носители наследственной информации - находятся внутри каждой клетки организма. Чтобы передать свой код дочернему организму, многие существа делят свое ДНК на 2 одинаковые спирали. Это называется репликацией. В процессе репликации ДНК расплетается и специальные «машины» дополняют каждую цепочку. После того как раздвоится генетическая спираль, начинает делиться ядро и все органеллы, а затем и вся клетка.

Но у человека другой процесс передачи генов - половой. Признаки отца и матери перемешиваются, в новом генетическом коде содержится информация от обоих родителей.

Хранение и передача наследственной информации возможны благодаря сложной организации спирали ДНК. Ведь как мы говорили, структура белков зашифрована именно в генах. Раз создавшись во время зачатия, этот код на протяжении всей жизни будет копировать сам себя. Кариотип (личный набор хромосом) не изменяется во время обновления клеток органов. Передача же информации осуществляется с помощью половых гамет — мужских и женских.

Передавать свою информацию потомству не способны только вирусы, содержащие одну цепочку РНК. Поэтому, чтобы воспроизводиться, им нужны клетки человека или животного.

Реализация наследственной информации

В ядре клетки постоянно происходят важные процессы. Вся информация, записанная в хромосомах, используется для построения белков из аминокислот. Но цепочка ДНК никогда не покидает ядро, поэтому здесь нужна помощь другого важного соединения = РНК. Как раз РНК способно проникнуть через мембрану ядра и взаимодействовать с цепочкой ДНК.

Посредством взаимодействия ДНК и 3 видов РНК происходит реализация всей закодированной информации. На каком уровне происходит реализация наследственной информации? Все взаимодействия происходят на уровне нуклеотидов. Информационная РНК копирует участок цепи ДНК и приносит эту копию в рибосому. Здесь начинается синтез из нуклеотидов новой молекулы.

Для того чтобы иРНК могла скопировать необходимую часть цепи, спираль разворачивается, а затем, по завершении процесса перекодировки, снова восстанавливается. Причем этот процесс может происходить одновременно на 2 сторонах 1 хромосомы.

Принцип комплементарности

Состоят из 4 нуклеотидов — это аденин (А), гуанин (G), цитозин (С), тимин (T). Соединены они водородными связями по правилу комплементарности. Работы Э. Чаргаффа помогли установить это правило, так как ученый заметил некоторые закономерности в поведении этих веществ. Э. Чаргафф открыл, что молярное отношение аденина к тимину равно единице. И точно так же отношение гуанина к цитозину всегда равно единице.

На основе его работ генетики сформировали правило взаимодействия нуклеотидов. Правило комплементарности гласит, что аденин соединяется только с тимином, а гуанин - с цитозином. Во время декодирования спирали и синтеза нового белка в рибосоме такое правило чередования помогает быстро найти необходимую аминокислоту, которая прикреплена к транспортной РНК.

РНК и его виды

Что такое наследственная информация? нуклеотидов в двойной цепи ДНК. А что такое РНК? В чем заключается ее работа? РНК, или рибонуклеиновая кислота, помогает извлекать информацию из ДНК, декодировать ее и на основе принципа комплементарности создавать необходимые клеткам белки.

Всего выделяют 3 вида РНК. Каждая из них выполняет строго свою функцию.

  1. Информационная (иРНК) , или еще ее называют матричная. Она заходит прямо в центр клетки, в ядро. Находит в одной из хромосом необходимый генетический материал для постройки белка и копирует одну из сторон двойной цепи. Копирование происходит снова по принципу комплементарности.
  2. Транспортная — это небольшая молекула, у которой на одной стороне декодеры-нуклеотиды, а на другой стороне соответствующие основному коду аминокислоты. Задача тРНК — доставить в «цех», то есть в рибосому, где синтезирует необходимую аминокислоту.
  3. рРНК — рибосомная. Она контролирует количество белка, который продуцируется. Состоит из 2 частей — аминокислотного и пептидного участка.

Единственное отличие при декодировании — у РНК нет тимина. Вместо тимина тут присутствует урацил. Но потом, в процессе синтеза белка, при ТРНК все равно правильно устанавливает все аминокислоты. Если же происходят какие-то сбои в декодировании информации, то возникает мутация.

Репарация поврежденной молекулы ДНК

Процесс восстановления поврежденной двойной цепочки называется репарацией. В процессе репарации поврежденные гены удаляются.

Затем необходимая последовательность элементов в точности воспроизводиться и врезается обратно в то же место на цепи, откуда было извлечено. Все это происходит благодаря специальным химическим веществам — ферментам.

Почему происходят мутации?

Почему некоторые гены начинают мутировать и перестают выполнять свою функцию — хранение жизненно необходимой наследственной информации? Это происходит из-за ошибки при декодировании. Например, если аденин случайно заменен на тимин.

Существуют также хромосомные и геномные мутации. Хромосомные мутации случаются, если участки наследственной информации выпадают, удваиваются либо вообще переносятся и встраиваются в другую хромосому.

Геномные мутации наиболее серьезны . Их причина - это изменение числа хромосом. То есть когда вместо пары — диплоидного набора присутствует в кариотипе триплоидный набор.

Наиболее известный пример триплоидной мутации — это синдром Дауна, при котором личный набор хромосом 47. У таких детей образуется 3 хромосомы на месте 21-й пары.

Известна также такая мутация, как полиплодия. Но полиплодия встречается только у растений.

07.04.2015 13.10.2015

ДНК (Дезоксирибонуклеиновая кислота) – это макромолекула, являющаяся носителем информации об организме от одного поколения к другому.
Белки образуют полипептидные цепи, информацию о которых хранит дезоксирибонуклеиновая кислота. Каждый участок, в котором заключаются данные о такой цепи, называется геном. Молекулы дезоксирибонуклеиновой кислоты, находящиеся внутри одной клетки, в своей совокупности представляют носитель генетической информации обо всём организме.

Историческая справка

Открытие молекулы дезоксирибонуклеиновой кислоты было произведено ещё в 1869 году. Швейцарский физиолог Фридрих Мишер обнаружил вещество, которое назвал нуклеин. Значимость великого открытия поначалу не была оценена, как полагается. Длительное время считалось, что нуклеин есть не что иное, как запасник фосфора.
С приходом XX века изучение дезоксирибонуклеиновой кислоты продолжалось, однако, в начале века подавляющее большинство учёных этой области даже не предполагало, что ДНК является передатчиком информации. По их мнению, слишком проста и повторяющаяся у неё структура, чтобы нести подобную сложную функцию.

Научный прорыв случился в 1944 году, когда было определено, что ДНК имеет большую значимость для науки. Учёный Освальд Эйвери вместе с двумя коллегами Маклином Маккарти и Колином Маклауд занимались исследованиями дезоксирибонуклеиновой кислоты, результатом их деятельности стала публикация в журнале «The Journal of Experimental Medicine». Статья доказывала, что дезоксирибонуклеиновая кислота представляет собой «материал» генов и является носителем наследственной информации.

ДНК – передача наследственной информации

Как только было доказано, что дезоксирибонуклеиновая кислота есть не что иное, как генокод организма и имеет важную роль как носитель информации, исследования учёных-биологов взяли правильное направление. Началось стремительное изучение цепей и взаимосвязей. До 1950 года удалось определить только то, что молекула ДНК состоит из цепей нуклидов, но как они между собой соединены и сколько их, оставалось неизвестным.
Только в 1953 году было определено, что внутри молекулы дезоксирибонуклеиновой кислоты существуют взаимосвязи азотистых оснований разных типов. Сама молекула ДНК была представлена, как двойная спираль.
Передачу наследственной информации дезоксирибонуклеиновой кислотой можно сравнить с тем, как люди обмениваются информацией. У нас это происходит с использованием звуков и букв. У ДНК с применением оснований азотистой кислоты.
Каждая спираль макромолекулы состоит из азотистых оснований, рибоксиновой кислоты и остатка фосфорной кислоты. Звенья могут иметь различную последовательность, главной их характеристикой является то, что все они тесно связаны с последовательностью второй спирали. Это свойство получило название правило комплементарности.
Двойная спираль полимерных цепей похожа на верёвочную лестницу. Каждая ступень в ней – это нуклеотидные пары, которые связывает сахарофосфатный состав. Главным отличием молекулы ДНК друг от друга является последовательность пар. Но именно это расположение и является кодом, согласно которому определяется порядок производимых клетками белков.


Сравнивая процесс с человеческим типом носителем и передачи информации, можно сказать, что в данном случае мы имеем дело с бедным алфавитом, в котором наличествует всего четыре буквы. Все слова, а также предложения складываются из них.
Расшифровка кода была осуществлена тогда, когда люди поняли, что код не является двоичным, а триплетный. Каждая аминокислота в белке абсолютно соответствует последовательности трёх нуклеотидов в РНК и ДНК, кодонов.

Дезоксирибонуклеиновой кислотой передаёт информацию два раза: при делении на две части и при кодировании белка. Таким образом, данные передаются только что образованной клетке. В процессе репликации ДНК снимает с себя копию. Происходит разделение нитей, связывающих спираль и выстраивание новой комплементарной цепи. В каждой из двух вновь образованных клеток имеются по идентичной копии дезоксирибонуклеиновой кислоты. Таким образом, сохраняется вся генетическая информация.

Практическое применение знаний о дезоксирибонуклеиновой кислоте

Знания, полученные о молекуле ДНК, сложно переоценить. Практическое их применение имеет для человечества огромное значение. По сути, открыв тайну макромолекулы, люди получили доступ к генам. Развитие науки о дезоксирибонуклеиновой кислоте открывает неограниченные возможности для биологии и медицины.
Знания о наследственной природе дезоксирибонуклеиновой кислоты нашли практическое применение в генной инженерии, которая оказывает влияние на развитие клинической медицины. Методы, построенные на основе изучения рекомбинантных ДНК, открыли новые возможности изучения наследственных болезней.
Используемые технологии рекомбинантных молекул ДНК стало революционным для науки, изучающей живые клетки. Перед медициной и промышленностью открылись новые пути к получению в достаточном количестве тех белков, которые прежде получались в ограниченных количествах, либо не получались вообще.

Увы, исследования далеки до своего завершения. Однако, на сегодняшний день сделано много. Это методы клонирования ДНК и генная инженерия. Настоящим прорывом медицины стала технология рекомбинантных ДНК. Она позволяет производить пересадку генетического материала из одного организма в другой. Направление находится в процессе изучения и развития, однако, некоторые его находки уже активно применяются на практике.

Необходимость применения знаний о ДНК на практике

Генная терапия сделала возможным вводить в организмы больных людей полностью здоровые гены, способные полноценно
работать. Это позволяет производить восстановление метаболических нарушений, которые были вызваны генами мутантами. Сегодня таким способом лечат детей с иммунодефицитом, который вызван дефектом аденозиндезаминазы.
Разработка методов лечения многих заболеваний с помощью технологии рекомбинантных ДНК находится в стадии клинических исследований. Это такие заболевания как:
Гемофилия В, определяемая по наличию кровоточивости по типу гематом;
Семейная гиперхолестеринемия;
Му-ковисцидоз и т.д.

Если в медицине генетика находится в процессе активного развития, то наиболее веские практические результаты она дала в сельском хозяйстве. Благодаря ей, сельскохозяйственное производство вышло на новый уровень. Выводятся новые сорта растений, представляющих интерес для человечества. Задача учёных состоит в том, чтобы не только выводить новые сорта, но и прививать им максимально полезные качества.

Перспективы развития науки о ДНК

Наука о дезоксирибонуклеиновой кислоте активно развивается, но, не смотря на это, она всё же ещё находится на начальном этапе своего развития. Чего ожидают учёные на конечном этапе? Это и полная победа над такими явлениями, как болезни и голод, и возможность клонировать живые организмы, менять черты организмов. Возможно, уже скоро будет выведен новый тип человека, который будет тем совершенным образом, которому все мы стремимся на протяжении своей истории.
Разгадка тайны ДНК стала началом новой эры развития биологии. По мере её изучения имели место не только научные открытия, но и курьёзы, и занимательные случаи.
К примеру, при изучении мух дрозофил, учёные стали давать своим открытиям смешные названия. Пара генов, приводящих к отсутствию у самок и самцов внешних половых органов, получили кукольное название «Barbie» и «Ken», а мутантный ген, обладатель которого быстро умирает, стал называться в честь известного мультипликационного героя из мультфильма «Соузпарк» «Kenny».

Изучением дезоксирибонуклеиновой кислоты и применением на практике результатов исследований занимаются учёные. Результаты их работы важны для человечества. В силах генетиков и продвигаемой ими науки изменить мир, сделать его лучше.

Каждый белок представлен одной или несколькими полипиптидными цепями. Участок ДНК, несущий информацию об одной полипиптидной цепи, называют геном . Совокупность молекул ДНК клетки выполняет функцию носителя генетической информации. Генетическая информация передается как от материнской клетки дочерним клеткам, так и от родителей детям. Ген является единицей генетической , или наследственной, информации.

ДНК – носитель генетической информаци в клетке – непосредственного участия в синтезе белков не принимает. В клетках эукариот молекулы ДНК содержатся в хромосомах ядра и отделены ядерной оболочкой от цитоплазмы, где происходит синтез белков. К рибосомам – местам сборки белков – высылается из ядра несущий информацию посредник, способный пройти через поры ядерной оболочки. Таким посредником является информационная РНК (иРНК). По принципу комплементарности она синтезируется на ДНК при участие фермента, называемого РНК-полимеразой .

1) Процесс синтеза РНК, в котором в качестве матрицы используется одна из цепей молекулы ДНК, называют транскрипцией .

2) Транскрипция – это механизм, с помощью которого нуклеотидная поледовательность одной из цепей ДНК переписыватся комплементарной ей последовательность молекулы иРНК.

Информационная РНК – это однонитевая молекула, и транскрипция идет с одной цепи двунитевой молекулы ДНК. Она является копией не всей молекулы ДНК, а только части ее – одного гена у эукариот или группы рядом расположенных генов, несущих информацию о структуре белков, необходимых для выполнения одной функции, у прокариот. Такую группу генов называют опероном . В начале каждого оперона находится своего рода посадочная площадка для РНК-полимеразы, называемая промотором .это специфическая последовательность нуклеотидов ДНК, которую фермент «узнает» благодаря химическому сродству. Только присоединившись к промотору, РНК-полиммераза способна начать интез РНК. Доядя до конца оперона, фермент встречает сигнал (в виде определенной последоватльности нуклеотидов), означающий конец считывания. Готовая иРНК отходит от ДНК и направляется к месту синтеза белков.

В процессе транскрипции можно выделить четыре стадии: 1) связывание РНК -полимеразы с промотором; 2) инициация – начало синтеза. Оназаключается в образовании первой фосфодиэфирной связи между АТФ или ГТФ и вторым нуклеотидом синтезирующейся молекулы РНК; 3) элонгация – рост цепи РНК; т.е. последовательное присоединение нуклеотидов друг к другу в том порядке, в котором стоят комплементарные им нуклеотиды в транскрибируемой нити ДНК. Скорость элонгации 50 нуклеотидов в секунду; 4) терминация – завершение синтеза РНК.

Пройдя через поры ядерной оболочки, иРНК направляется к рибосомам, где осуществляется расшифровка генетической информации – перевод ее с «языка» нуклеотидов на «язык» аминокислот. Синтез полипептидных цепей по матрице иРНК, происходящий в рибосомах, называют трансляцией (лат. translation – перевод).

Аминокислоты, из котрых синтезируютсябелки, доставляются к рибосомам с помощью специальных РНК, называемых транспортными (тРНК). В клетке имеется столько же разных тРНК, сколько кодонов, шифрующих аминокислоты. На вершине «листа» каждой тРНК имеется последовательность трех нуклеотидов, комплементарных нуклеотидам кодона в иРНК. Ее называют антикодоном. Специальный фермент – кодаза – опознает тРНК и присоединяет к «черешку листа» аминокислоту – только ту, которая кодируется триплетом, комплементарным антикодону. На образование ковалентной связи между тРНК и «своей» аминокислотой затрачивается энергия одной молекулы АТФ.

Для того чтобы аминокислота включилась в полипептидную цепь, она должна оторваться от тРНК. Это становится возможным, когда тРНК поступает на рибососму и антикодон узнает свой кодон в иРНК. В рибосоме имеется два участка для связывания двух молекул тРНК. В один из этих участков, называемый акцепторным , поступает тРНК с аминокислотой и присоединяется к своему кодону (I). Эта аминокислота присоединяет к себе (акцептирует) растущую цепь белка (II)? Между ними образуется пептидная связь. тРНК, к которой теперь присоединяется вместе с кодоном иРНК в донорный участок рибосомы. В освободившийся акцепторный участок приходит новая тРНК, связанная с аминокислотой, которая шифруется очередным кодоном (III). Из донорного участка сюда вновь переносится оторвавшаяся полипептидная цепь и удлинняется еще на одно звено. Аминокислоты в растущей цепи соединены в той последовательности, в которой расположены шифрующие их кодоны в иРНК.

Когда на рибосоме оказывается один из трех триплетов (УАА, УАГ, УГА ), являющиеся «знаками препинания» между генами, ни одна тРНК не может занять место в акцепторном участке. Дело в том, что не существует антикодонов, комплементарных последовательностям нуклеотидов «знаков препинания». Оторвавшейся цепи не к чему присоединиться в акцепторном участке, и она покидает рибосому. Синтез белка завершен.

У прокариот синтез белков начинается с того, что кодонАУГ , расположенный на первом месте в копии с каждого гена, занимае в рибосоме такую позицию, что с ним взаимодействует антикодон особой тРНК, оединенной с формилментионином . Эта измененная форма аминокислоты метионина сразу попадает в донорный участок и выполняет роль заглавной буквы во фразе – с нее в бактериальной клетке начинается синтез любой полипептидной цепи. Когда триплет АУГ стоит не на первом месте, а внутри копии с гена, он кодирует аминокислоту метионин. После завершения синтеза полипептидной цепи формилметионин отщепляется от нее и в готовом белке отсуствует.

Для увеличения производства белков иРНК часто проходит одновременно не по одной, а по нескольким рибосомам. Акую структуру, объединенную одной молекулой иРНК, называют полисомой . На каждой рибосоме вэтом похожем на нитку бус конвейере синтезируются одинаковые белки.

Аминокислоты бесперебойно поставляются к рибосомам с помощью тРНК. Отдав аминокислоту, тРНК покидает рибосому и с помощью кодазы соединяется. Высокая слаженность всех «служб комбината» по производсву белов позволяет в течении нескольких секунд синтезировать полипептидные цепи, состоящие из сотен аминокислот.

Свойства генетического кода. Благодаря процессу транскрипции в клетке осуществляется передача информации от ДНК к белку

ДНК → иРНК → белок

Генетическая информация, содержащаяся в ДНК и в иРНК, заключена в последовательности расположения нуклеотидов в молекулах.

Каким же образом происходит перевод информации с «языка» нуклеотидов на «язык» аминокислот? Такой перевод осуществляется с помощью генетического кода. Код, или шифр , - это система символов для перевода одной формы информации в другую. Генетический код –это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в иРНК.

Какими же свойствами обладает генетический код?

1. Код триплетен . В состав РНК входят четыре нуклеотида: А, Г, Ц, У. Если бы мы пытались обозначить одну аминокислоту одним нуклеотидом, то 16 из 20 аминокислот остались бы не зашифрованы. Двух буквенный код позволил бы зашифровать 16 аминокислот. Природа создала трехбуквенный, или триплетный, код. Это означает, что каждая из 20 аминокислот зашифрована последовательностью из трех нуклеотидов, называемой триплетом или кодоном.

2. Код вырожден. Это означает, что каждая аминокислота шифруется более чем одним кодоном. Исключения: метеонин и триптофан, каждая из которых кодируется одним триплетом.

3. Код однозначен. Каждый кодон шифрует только одну аминокислоту.

4. Между генами имеется «знаки препинания». В печатном тексте в конце каждой фразы стоит точка. Несколько связанных по смыслу фраз составляют абзац. На языке генетической информации таким абзацем являетсяоперон и комплементарная ему иРНК. Каждый ген в опероне прокариот или отдельный ген эукариот кодирует одну полипептидную цепочку – фразу. Так как в ряде случаев по матрице иРНК последовательно создается несколько разных полипептидных цепей, они должны быть отделены друг от друга. Для этого в генетическом годе имеются три специальных триплета – УАА, УАГ, УГА, каждый из которых обозначает прекращение синтеза одной полипептидной цепи. Таким образом, эти триплеты выполняют функцию знаков препинания. Они находятся в конце каждого гена.

5. Внутри гена нет «знаков препинания».

6. Код универсален. Генетический код един для всех живущих на Земле существ. У бактерий и грибов, пшеницы и хлопка, рыб и червей, лягушек и человека одни и те же триплеты кодируют одни и те же аминокислоты.

Принципы репликации ДНК. Преемственность генетического материала в поколениях клеток и организмов обеспечивается процессом репликации – удвоения молекул ДНК. Этот сложный процесс осуществляется комплексом нескольких ферментов и не обладающих каталитической активностью белов, необходимых для придания полинуклеотидным цепям нужной конформации. В результате репликации образуются две идентичные двойные спирали ДНК. Эти так называемые дочерние молекулы ничем не отличаются друг от друга и от исходной материнской молекулы ДНК. Репликация происходит в клетке перед делением, поэтому каждая дочерняя клетка получает точно такие же молекулы ДНК, какие имела материнская клетка. Процесс репликации основан на ряде принципов:

1. Комплементарность . Каждая из двух цепей материнской молекулы ДНК служит матрицей для синтеза дополняющей ее, т.е. комплементарной, дочерней цепи.

2. Полуконсервативность . В результате репликации образуются две двойные дочерние спирали, каждая из которых сохраняет (консервирует) в неизменном виде одну из цепей материнской ДНК. Вторые цепи дочерних молекул синтезируются из нуклеотидов заново по прицепу комплементарности к нитям материнской ДНК. Дочерние ДНК ничем не отличаются друг от друга и от материнской двойной спирали.

3.
Антипараллельность . Каждая цепь ДНК имеет определенную ориентацию. Один конец несет гидроксильную группу (-ОН),присоединенную к 3’-углероду в сахаре дезоксирибозе, на другом конце цепи находится остаток фосфорной кислоты в положении 5’-положении сахара. Две комплементарные цепи в молекуле ДНК ориентированы в противоположных направлениях – антипараллельно. Ферменты, синтезирующие новые нити ДНК и называемые ДНК-полимеразами, могут передвигаться вдоль матричных цепей лишь в одном направлении – от их 3’-концов к 5’-концам. При этом синтез комплементарных нитей всегда ведется в 5’→3’ направлении, т.е. униполярно. Поэтому в процессе репликации одновременный синтез новых цепей идет антипараллельно.

4. Прерывитость . Для того чтобы новые нити ДНК были построены по принципу комплементарности, двойная спираль должна быть раскручена и между материнскими цепями должны отсутствовать водородные связи.


Только в этом случае ДНК-полимеразы способна двигаться по материнским нитям и использовать их в качестве матриц для безошибочного синтеза дочерних цепей. Но полное раскручивание спиралей, состоящих из многих миллионов пар нуклеотидов, сопряжено со столь значительным числом вращений и такими энергетическими затратами, которые невозможны в условиях клетки. Поэтому репликация у эукариот начинается одновременно в некоторых местах молекулы ДНК. Участок между двумя точками, в которых начинается синтез дочерних цепей, называют репликоном . Он является единицей репликации.

В каждой молекуле ДНК эукариотической клетки имеется много репликонов. В каждом репликоне можно видеть репликативную вилку – ту часть молекулы ДНК, которая под действием специальных ферментов уже расплелась. Каждая нить в вилке служит матрицей для синтеза комплементарной дочерней цепи. В ходе репликации вилка перемещается вдоль материнской молекулы, при этом расплетаются новые участки ДНК. Так как ДНК-полимеразы могут двигаться лишь в одном направлении вдоль матричных нитей, а нити ориентированы антипараллельно, то в каждой вилке одновременно ведут синтез два разных ферментативных комплекса. Причем в каждой вилке одна дочерняя (лидирующая) цепь растет непрерывно, а другая (отстающая) синтезируется отдельными фрагментами длинной в несколько нуклеотидов. Такие ферменты, названые в честь открывшего их японского ученого фрагментами Оказаки , сшиваются ДНК-лигазой, образуя непрерывную цепь. Механизм образования дочерних цепей ДНК фрагментами называют прерывистыми.

5. Потребность в затравке ДНК-полимераза не способна начинать синтез лидирующей цепи, ни синтез фрагментов Оказаки отстающей цепи. Она может лишь наращивать уже имеющуюся полинуклеотидную нить, последовательно присоединяя дезоксирибонуклеотиды к ее 3’-ОН концу. Откуда же берется начальный 5’-концевой участок растущей цепи ДНК? Его синтезирует на матрице ДНК особая РНК-полимераза, называемая праймазой (англ. Primer – затравка). Размер рибонуклеотидной затравки невелик (менее 20 нуклеотидов) в сравнении с размером цепи ДНК, образуемой ДНК-поимеразой. Выполнившая сво. Функци. РНК-затравка удаляется специальным ферментом, а образованная при эом брешь заделывается ДНК-полимеразой, использующей в качестве затравки 3’-ОН конец соседнего фрагмента Оказаки.

Проблема недорепликации концов линейных молекул ДНК. Удаление крайних РНК-праймеров,комплементрных 3’-концам обеих цепей линейной материнской молекулы ДНК, приводит к тому, что дочерние цепи оказываются короче 10-20 нуклеотидов. В этом и заключается проблема недорепликации концов линейных молекул.

Проблема недорепликации 3’-концов линейных молекул ДНК решается эукариотическими клетками с помощью специального фермента – теломеразы .

Теломераза является ДНК-полимеразой, достраивающей 3’-концылинейных молекул ДНК хромосом короткими повторяющимися последовательностями. Они, располагаясь друг за другом, образуют регулярную концевую структуру длинной до 10 тыс. нуклеотидов. Помимо белковой части, теломераза содержит РНК, выполняющую роль матрицы для наращивания ДНК повторами.

Схема удлинения концов молекул ДНК. Сначала происходит комплементарное связывание выступающего конца ДНК с матричным участком теломеразной РНК, затем теломераза наращивает ДНК, используя в качестве затравки ее 3’-ОН конец, а в качестве матрицы – РНК, входящую в состав фермента. Эта стадия называется элонгацией. После этого происходит транслокация, т.е. перемещение ДНК, удлиненной на один повтор, относительно фермента. Следом идет элонгация и очередная транслокация.

В результате образуются специализированные концевые структуры хромосом. Они состоят из многократно повторенных коротких последовательностей ДНК и специфических белков.

Краткие итоги.

[email protected] в категроии , вопрос открыт 21.08.2017 в 18:41

А и РНК
Б т РНК
В ДНК
Г хромосомы

В основе индивидуальности, специфичности организмов лежит:
А строение белков организма
Б строение клеток
В функции клеток
Г строение аминокислот

ДНК несет информацию о строении
А белков, жиров, углеводов
Б белков и жиров
В аминокислот
Г белков

В одном гене закодирована информация:
А о структуре нескольких белков
Б о структуре одной из цепей ДНК
Во первичной структуре одной молекулы белка
Г о структуре аминокислоты

Какой из нуклеотидов не входит в состав ДНК?
А тимин
Бурацил
В гуанин
Г цитозин
Д аденин

Какие связи разрываются в молекуле ДНК при ее удвоении?
А пептидные
Б ковалентные, между углеводом и фосфатом
В водородные, между двумя нитями
Г ионные

Сколько новых одинарных нитей синтезируется при удвоении одной молекулы?
А четыре
Б две
В одна
Г три

Какая из схем удвоения ДНК правильна?
А молекула ДНК при удвоении образует совершенно новую дочернюю молекулу
Б дочерняя молекула ДНК состоит из одной старой и одной новой цепи
В материнская ДНК распадается на мелкие фрагменты, которые затем собираются в новые дочерние молекулы

Какой из фактов подтверждает, что ДНК является генетическим материалом?
А количество ДНК в клетках одного организма постоянно
Б ДНК состоит из нуклеотидов
В ДНК локализована в ядре клетки
Г ДНК представляет собой двойную спираль

В какой из названных клеток человека нет ДНК?
А зрелый лейкоцит
Б зрелый эритроцит
В лимфоцит
Г нейрон

Если нуклеотидный состав ДНК – АТТ-ГЦГ-ТАТ, то каким должен быть нуклеотидный состав иРНК?
А ТАА-ЦГЦ-УТА
Б ТАА-ГЦГ-УТУ
В УАА-ЦГЦ-АУА
Г УАА-ЦГЦ-АТА

Транскрипцией называется:
А процесс образования Ирнк
Б процесс удвоения ДНК
В процесс образования белковой цепи на рибосомах
Г процесс соединения тРНК с аминокислотами

Синтез иРНК начинается:
А с разъединения молекулы ДНК на две нити
Б с удвоения каждой нити
В с взаимодействия РНК-полимеразы и гена
Г с расщепления гена на нуклеотиды

Аминокислота триптофан кодируется кодом УГГ. Какой триплет ДНК несет информацию об этой кислоте?
А АЦЦ
Б ТЦЦ
В УЦЦ

Где синтезируется иРНК?
А в рибосомах
Б в цитоплазме
В в ядрышке
Г в ядре

Как будет выглядеть участок цепи иРНК, если второй нуклеотид первого триплета в ДНК (ГЦТ-АГТ-ЦЦА) будет замене на нуклеотид Т?
А ЦГА-УЦА-ГГТ
Б ЦАА-УЦА-ГГУ
В ГУУ-АГУ-ЦЦА
Г ЦЦУ-УЦУ-ГГУ

Если бы код былне трех, а четырехбуквенным, то сколько комбинаций могло бы быть составленов этом случае из четырех нуклеотидов?
А 4(4)
Б 4(16)
В 2(4)
Г 16(3)

Какую информацию содержит один триплет ДНК?
А информацию о последовательности аминокислот в белке
Б информацию об одном признаке организма
В информацию об одной аминокислоте, включаемой в белковую цепь
Г информацию о начале синтеза иРНК

Какой из ферментов осуществляет синтез иРНК?
А РНК-синтетаза
Б РНК-полимераза
В ДНК- полимераза