Источники органических веществ в воде. Органические соединения в воде. Органическое вещество в воде

04.01.2020 Здроровье

Судьба загрязняющих веществ в природных водах складывается по – разному. Тяжелые металлы, попав в водоем, распределяются по различным формам, после чего постепенно выносятся с течением, захватываются донными отложениями или поглощаются водными организмами (в первую очередь, связываясь с SH –группами), с которыми и оседают на дно, причем разные формы тяжелых металлов поглощаются в разной степени.

Нефтепродукты практически не смешиваются с водой и растекаются по ее поверхности тонкой пленкой, которая уносится тече­ниями и со временем адсорбируется на взвешенных частицах и оседает на дно. Растворенные нефтепродукты также адсорбируются на взвешен­ных частицах, либо окисляются растворенным в воде кислородом, причем разветвленные углеводороды окисляются быстрее неразветв­ленных. Также нефтепродукты могут усваиваться водными микроорга­низмами, однако здесь ситуация обратная: разветвленные усваиваются медленнее.

Поверхностно – активные вещества адсорбируются на взвешенных частицах и оседают на дно. Также они могут разлагаться некоторыми микроорганизмами. Некоторые ПАВ образуют нерастворимые соли с кальцием и магнием, однако поскольку такие ПАВ плохо мылятся в жесткой воде, их стараются заменять веществами, не образующими не­растворимых солей. Поведение ПАВ, не образующих нерастворимых солей, в основном описывается кинетическими моделями с использо­ванием эффективной линейной скорости потока из толщи воды на дно.

Удобрения, попав в водоем, обычно поглощаются живыми организмами, резко увеличивая биомассу, но, в конечном итоге, все равно оседают на дно (хотя частично могут быть извлечены из донных отложений обратно).

Большинство органических веществ, в том числе ядохимикаты, либо гидролизуются, либо окисляются растворенным кислородом, либо (несколько реже) связываются с гумусовыми кислотами или ионами Fe 3+ . И окислению и гидролизу могут способствовать некоторые микроорганизмы. Окислению подвергаются вещества, содержащие серу в низких степенях окисления, двойные связи, ароматические кольца с донорными заместителями. Также окисляются атомы углерода, связанные с кислородом, и атомы углерода у поляризованных связей:


Галогенсодержащие соединения, а также ароматические соединения с мета –ориентирующими заместителями (например, NO 2 –группой) и галогенами окисляются гораздо медленнее, чем незамещенные аналоги. Кислородсодержащие группы в молекуле или o, n – ориентирующие заместители (кроме галогенов) в ароматическом кольце, наоборот, ускоряют окисление. В общем, относительная устойчивость соединений к окислению в воде примерно такая же, как и в атмосфере.

Гидролизу подвергаются, в первую очередь, соединения, содержащие полярные связи углерод – галоген, существенно медленнее - сложноэфирные связи, еще медленнее - связи C –N.

Увеличение полярности связи приводит к ускорению гидролиза. Кратные связи, а также связи с ароматическим ядром практически не гидролизуются. Также плохо гидролизуются соединения, в которых у одного атома углерода находится несколько атомов галогенов. Если в результате гидролиза образуются кислоты, то повышение рН, как правило, способствует этому процессу, если образуются основания – усилению гидролиза способствует уменьшение рН. В сильнокислых средах ускоряется процесс гидролиза связей С – О, но замедляется гидролиз связей углерод – галоген.

Как окисление, так и гидролиз органических соединений описываются кинетическими моделями и могут быть охарактеризованы периодом полупревращения этих соединений. Гидролиз, катализируемый кислотами и основаниями, описывается более сложными моделями, поскольку его скорость очень сильно зависит от рН (Рис.).

Такую зависимость обычно выражают уравнением

k = k n + k а * 10 - pH + k b £„ * 10 14 –рН,

где k - общая константа скорости гидролиза, k n - константа скорости гидролиза в нейтральной среде, k a – константа скорости гидролиза, катализируемого кислотой, k b , - константа скорости гидролиза, катали­зируемого основанием.

Продукты окисления и гидролиза, как правило, менее опасны для организмов, чем исходные вещества. Кроме того, они могут далее окислиться до Н 2 О и СО 2 или усвоиться микроорганизмами. В гидросфере второй путь более вероятен. Химически устойчивые органические вещества в итоге оказываются в донных отложениях за счет адсорбции на взвесях или поглощения микроорганизмами.

Во всех водоемах эффективные линейные скорости потока растворенных веществ на дно обычно намного меньше 10 см/сут, поэтому этот путь очищения водоемов достаточно медленный, но зато весьма надежный. Органические вещества, попавшие в донные отложения, обычно разрушаются обитающими в них микроорганизмами, тяжелые металлы превращаются в нерастворимые сульфиды.

чивы, поскольку подвергаются гидролизу с последующим осаждением гидроксидов. Формы миграции железа в почвенно-грунтовых водах меняются посезонно: в период весеннего половодья при большом количестве взвешенного материала преобладают взвешенные формы, в межень (сезонное понижение уровня воды в реках) большую роль в переносе железа играет органическое вещество. Наиболее важные источники поступления химических, в том числе биогенных элементов в природные воды разделяют на две большие группы: внешние и внутренние. Внешние источники обеспечивают поступление веществ в водоемы с речным стоком, атмосферными осадками, промышленными, хозяйствен- но-бытовыми и сельскохозяйственными сточными водами. Внутренние источники накапливают химические элементы за счет процессов поступления из залитого ложа водохранилищ, минерализации древесной, луговой и высшей водной растительности и отмершего планктона, а также донных отложений.

4. Органические вещества в природных водах

Органические вещества - одна из самых сложных по качественному составу групп соединений, содержащихся в природных водах. Она включает органические кислоты, фенолы, гумусовые вещества, азотсодержащие соединения, углеводы и т. д., накапливающиеся за счет внутриводоемных процессов (автохтонные).

Природные воды содержат органические вещества в сравнительно невысоких концентрациях. Средняя концентрация органического углерода в речных и озерных водах редко превышает 20 мг/л. В морских и океанических водах содержание С еще более низкое. Содержание белковоподобных веществ, свободных аминокислот и аминов колеблется в пределах 20–340, 2–25 и 6–200 мкг азота на 1 л соответственно.

К числу аллохтонных (поступающих извне) относятся органические кислоты, эфиры, углеводы, гумусовые вещества. Концентрация органических кислот и сложных эфиров редко превышает пределы 40–200 и 50–100 мкг/л. Содержание углеводов несколько выше и нередко достигает единиц миллиграммов в 1 л. Значительную часть органического вещества природных вод составляют гумусовые вещества: гуминовые кислоты и фульвокислоты. Особенно богаты гуминовыми веществами воды северных районов страны, где концентрация их часто составляет единицы и десятки миллиграммов на 1 л. В морских и океанических водах среднее содержание гумусовых веществ ниже и редко превышает 3 мг/л.

По происхождению органические вещества природных вод делят на две большие группы:

1) продукты биохимического распада остатков организмов, населяющих водоем (главным образом планктон), - это вещества автохтонного происхождения;

2) органические вещества, поступающие в водоемы извне с речным стоком, атмосферными осадками, промышленными, хозяйственно-бытовыми и сельскохозяйственными сточными водами, - аллохтонные вещества. Особое место в этой группе занимают гумусовые вещества почв, торфяников, лесных подстилок.

Органические вещества природных вод могут находиться в состоянии истинных растворов, коллоидов и взвешенных грубых частиц (суспензий). Коллоидная форма миграции наиболее характерна для природных вод зоны гипергенеза, богатых высокомолекулярными гумусовыми веществами. Однако часть окрашенных органических соединений - фульвокислоты и некоторые формы гуминовых кислот - могут быть в состоянии истинных растворов. Для природных вод характерна миграция органического вещества в виде взвесей, например детрита, состоящего из мельчайших органических и неорганических остатков, образующихся при распаде погибших организмов. Особое место среди этих явлений занимает комплексообразование, что имеет положительное биологическое значение, инактивируя избыточные количества ионов тяжелых металлов; благоприятствует растворению труднодоступных, но биологически важных элементов.

В природных водах химические элементы находятся в виде ряда неорганических и разнообразных органических соединений. В растворенном состоя-

нии в химическом составе пресной воды преобладают четыре металла, присутствующие в виде простых катионов (Са2+ , Na+ , К+ , Мg2+ ).

Количественное и качественное содержание главных анионов и катионов определяет принадлежность к тому или иному классу воды. Однако минеральный состав воды не является единственным фактором, определяющим качество воды.

Органические вещества - одна из самых сложных по качественному составу групп соединений, содержащихся в природных водах, она включает органические кислоты, фенолы, гумусовые вещества, азотсодержащие соединения, углеводы. Органические вещества природных вод могут находиться в состоянии истинных растворов, коллоидов и взвешенных грубых частиц (суспензий).

При формировании химического состава природных вод выделяют прямые и косвенные, а также главные и второстепенные факторы. Главные факторы определяют содержание главных анионов и катионов (т. е. класс и тип воды по классификации О. А. Алекина). Второстепенные факторы вызывают появление некоторых особенностей данной воды (цвета, запаха и др.), но не влияют на

ее класс и тип.

Контрольные вопросы

1. Какие ионы относятся к главным независимо от происхождения вод?

2. Какие органические вещества чаще всего встречаются в реках и озерах?

3. В чем особенность классификации вод по О. А. Алекину?

4. Какие воды относятся к классу ультрапресных?

5. Какие воды относятся к категории рассолов?

Химический и газовый состав подземных вод нефтяных и газовых месторождений давно привлекал внимание исследователей своей спецификой, ибо трудно представить, чтобы длительное совместное существование залежей углеводородов и вмещающих их подземных вод не отразилось на составе последних. И действительно, воды нефтегазовых месторождений обычно характеризуются своеобразным составом минеральных, газовых и органических его компонентов.
Еще в прошлом веке А. Л. Потылицыным в воде из нефтяной скважины в Кудако на Таманском полуострове были определены соли муравьиной, уксусной, масляной и других жирных кислот, наличие которых в воде он объяснил окислением нефти кислородсодержащими соединениями воды. Давнюю историю имеют также определения нафтеновых кислот в водах нефтяных месторождений.
В. И. Вернадский (1936) особое место отводил водам нефтяных месторождений. «В этих водах,— писал он, — растворены органические кислоты, к сожалению, не изученные даже химически в достаточной степени. По-видимому, часть этих кислот принадлежит к ряду жирных кислот, но часть является своеобразными стойкими соединениями, может быть, связанными с нафтенами и с теми своеобразными циклическими углеводородами, которые характерны для некоторых нефтей». В. И. Вернадский также считал, что органические кислоты в подземных водах нефтяных месторождений являются следствием взаимодействия между водами и нефтями.
Учитывая, что органические вещества, в частности нафтеновые кислоты, являются специфическими компонентами вод нефтяных месторождений, им стали, придавать нефтепоисковое значение, особенно после работ В. А. Сулина (1948).
В последние годы внимание исследователей к органическому веществу подземных вод как возможному показателю нефтегазоносности заметно усилилось, причем, помимо вторичного рассеяния нефти, т. е. перехода ее продуктов в контактирующие с нефтяной залежью подземные воды, все большее признание находит и процесс концентрирования в водах первичнорассеянного органического вещества. Известно, что М. Е. Альтовским в 1953 г. была выдвинута гипотеза образования нефти из продуктов наземной растительности, проникающих в глубокие водоносные горизонты вместе с инфильтрационными водами (Альтовский и др., 1958, 1962). Являясь сторонником органического происхождения нефти, М. Е. Альтовский считал, что наиболее благоприятной средой для образования нефти и газа являются подземные воды, а не нефтематеринские породы. По его мнению, органические вещества подземных вод являются исходными продуктами для образования нефти, и именно из органических соединений, мигрирующих с подземными водами, образуются рассеянные компоненты нефти, концентрация которых в подземных водах приводит к образованию нефтегазовых залежей.
В настоящее время уже многие геологи и гидрогеологи-нефтяники важное место в образовании и миграции нефти придают воднорастворенным органическим веществам. В противоположность М. Е. Альтовскому, который стоял на позициях инфильтрационного происхождения глубоких подземных вод, большинство из них учитывает в этих процессах лишь органическое вещество морских и седиментационных вод. Так, Н. Брюдерер основную роль в нефтеобразовании придает органическим веществам, растворенным в морской воде. М. А. Гатальский (1963) считает, что в результате преобразования захороненного в водной среде органического вещества генерируются компоненты нефти, которые накапливаются в пластовых водах в виде растворенных органических соединений; их углеводородные компоненты перемещаются водой и при благоприятных геохимических и гидродинамических условиях могут частично или полностью выделяться из нее и образовывать нефть.

*) В числителе приводятся среднеарифметические значения, в знаменателе - минимальные и максимальные.
А. А. Карцев (1963, 1964) признает решающую роль в образовании и миграции нефти воднорастворенных органических веществ. «Нефть и газ, — пишет он, — до и после своего существования в виде залежей (т. е. до формирования залежей и после их разрушения), по-видимому, в значительной части находятся в растворенном состоянии в подземных водах, входя в их химический состав. Частично растворены в водах и те органические вещества, из которых образуются углеводородные газы, нефтяные углеводороды и другие соединения, входящие в состав нефтей. Сам процесс превращения этих исходных веществ в нефть и газ в значительной мере происходит в водном растворе. Продукты разрушения нефтегазовых залежей снова становятся частью подземных вод» (Карцев, 1964).
Несмотря на различную оценку исследователей роли инфильтрационных или седиментационных вод в формировании глубоких подземных вод, в частности вод нефтегазовых месторождений, теоретической основой для использования органических веществ подземных вод как показателей нефтегазоносности является не только вторичное рассеяние нефти и газа, связанное с разрушением их залежей, но и первичное рассеяние, связанное с процессами формирования нефтяных и газовых залежей. И в том и в другом случае исследования должны быть направлены на выявление нефтегазоносных вод, на изучение в них компонентов нефти или веществ, из которых они могут образовываться в соответствующих условиях.
За последние 10—15 лет достигнут существенный прогресс в изучении органических веществ в подземных водах. Большую роль в этом сыграли исследования, проведенные в ИГиРГИ под руководством Е. А. Барс и во ВСЕГИНГЕО под руководством М. Е. Альтовского. В настоящее время в подземных водах уже определяется разнообразный круг органических соединений (рис. 1), однако стоящие перед исследователями задачи и сложность изучаемого объекта говорят о том, что мы находимся еще на начальной стадии исследований.
Во ВСЕГИНГЕО органическое вещество подземных вод начали изучать с 1953 г. За это время проведены региональные полевые работы, в результате которых изучено около 1000 проб различных вод. Одновременно с этим непосредственно в поле разрабатывались новые (и дорабатывались существовавшие) методы анализа органического вещества вод. Широкие региональные исследования органических веществ в подземных водах необходимы для решения ряда теоретических и практических вопросов нефтяной геологии и гидрогеологии и прежде всего для выявления региональных (и по возможности локальных) закономерностей изменения содержания и состава растворенных органических веществ. Не зная этих закономерностей, трудно разрабатывать, например, такие проблемы, как нефтеобразование, миграция нефти и газа в воднорастворенном состоянии, гидрохимические показатели нефтегазоносности и др.
Все исследования ВСЕГИНГЕО проведены по одной методике анализа, разработанной в основном А. А. Бродовской. Е. Л. Быковой, М. Я. Дудовой.
Некоторые выводы проведенных региональных исследований опубликованы в работах сотрудников ВСЕГИНГЕО (Альтовский и др., 1958, 1962; Быкова, 1960. 1961; Швец. 1959, 1961, 1964 и др.).
Основные из них следующие.
1. Минимальное количество органического углерода (Сорг), определенное в подземных водах, равно 0,06 мг!л (воды «пустых» структур Бухаро-Хивинской области), а максимальное — 212,5 мг/л (приконтурные воды нефтяного месторождения Норио в Восточной Грузии). Среднее количество Сорг в подземных водах (по данным около 1000 анализов) - 9, 3 мг/л.
Содержание органического азота (Nорг) в подземных водах изменяется от 0,03 (воды «пустых» структур Бухаро-Хивинской области) до 18,80 мг{л (воды нефтяного месторождения Окарем в Западной Туркмении). Среднее количество Nорг по данным более 500 анализов — 0,51 мг/л. Данные о содержании Сорг и Nорг в подземных водах различных районов приведены в табл. 1. Из нее следует, что воды нефтегазоносных районов более богаты органическим веществом по сравнению с водами ненефтегазоносных районов. Исключение составляют грунтовые воды Севера Европейской части СССР, обогащенные поверхностным гумусом.

Рис.1. Органические вещества, обнаруженные в настоящее время в подземных водах
Говоря о количестве органического вещества в подземных водах, следует иметь в виду, что применяемые до сих пор методы анализа Сорг (В. Г. Дацко, Л. П. Крылова. А. А. Бродовская и др.) не учитывали легколетучих соединений, которые терялись при подготовке проб воды для сухого сожжения. Разработанный в последнее время во ВСЕГИНГЕО метод мокрого сожжения Сорг, названный в честь М. Е. Альтовского его именем, лишен этого недостатка; выполненные этим методом анализы Сорг в минеральных водах курорта Трускавец показали, что количество летучих органических соединений может во много раз превышать содержание нелетучих.
2. В количественном содержании органического вещества имеются отличия для различных областей формирования подземных вод. Так, в водах областей питания (грунтовые воды горных обрамлений артезианских бассейнов) органического вещества содержится меньше, чем в водах областей разгрузки и районов нефтяных месторождений (табл. 2).
3. Имеется зависимость между обогащенностью подземных вод органическим веществом и гидродинамическими условиями: в водах более водопроницаемых пластов содержится меньше органического вещества по сравнению с водами слабопроницаемых водоносных пород, где меньше водообильность и ниже скорость движения вод. В частном случае экранирующее влияние дизъюнктивных нарушений, самих нефтяных залежей, соляных штоков и других приводит к замедленному водообмену в пластах и как следствие этого — к обогащению вод органическим веществом.

4. Подземные воды газовых месторождений содержат значительно меньше органического вещества, чем воды нефтегазовых и тем более нефтяных месторождений (для вод газовых месторождений Сорг в среднем около 5 мг1л, а для преимущественно нефтяных — около 15 мг/л).
5. Обобщение и анализ полученного во ВСЕГИНГЕО фактического материала по органическому веществу подземных вод, проведенные М. Е. Альтовским, показали следующее:
а) более обогащенными органическими веществами являются воды наиболее молодых геологических систем (по средним данным Сорг в мг/л): неоген—14 (348 анализов), палеоген — 8 (124 анализа), мел — 4 (187 анализов);
б) большее содержание органических веществ наблюдается в менее водопроницаемых и более богатых органическим веществом песчано-глинистых породах, а меньшее — в трещиноватых (хорошо водопроницаемых) и менее богатых органическим веществом гранитах и базальтах; пески, песчаники и известняки занимают промежуточное положение (табл. 3).


в) наиболее обогащены органическим веществом НСОз—С1—Na и С1—НСОз—Na воды, а наименее — С1 — Na — Са и С1 — Na — Mg, промежуточное место занимают С1—Na воды (табл. 4).

*) В скобках - число анализов
Приведенные данные говорят о влиянии химического состава воды на содержание в ней органических веществ: совершенно ясно, что высокие концентрации ионов кальция и магния уменьшают содержание растворенного органического вещества в водах (плохая растворимость в воде Са и Mg-coлей органических кислот и др.).
6. Нафтеновые кислоты, определенные турбидиметрическим методом анализа, широко распространены в подземных водах в количестве десятых долей—единиц миллиграмм/литр; объемным методом их определено до 3—4 г/л (приконтурные воды нефтяных месторождений Восточной Грузии). В определении истинных нафтеновых кислот в водах в настоящее время имеются существенные трудности аналитического порядка. Во ВСЕГИНГЕО М.Я.Дудовой (1964) была проведена специальная проверка различных методов определения нафтеновых кислот в водах и было выяснено, что петролейным эфиром, помимо нафтеновых, извлекаются также жирные и гуминовые кислоты. При изучении нафтеновых кислот в подземных водах прежде всего необходимы тщательные аналитические исследования в методическом плане.
7. Большой интерес, с нашей точки зрения, для нефтяной геологии и гидрогеологии представляют жирные кислоты, летучие с водяным паром, количество которых в подземных водах составляет десятки и сотни миллиграмм/литр, достигая в водах нефтяных и газовых месторождений 1—1,5 г/л. Содержание и распространение жирных кислот в различных водах Ферганской и Бухаро-Хивинской нефтегазоносных областей и юга Западно-Сибирской низменности показано на рис. 2.

Рис. 2. Изменение содержания жирных кислот, летучих с водяным паром, в подземных водах различных областей их формирования:
А — Бухаро-Хивинская нефтегазоносная область: / — область питания, // _ область транзита вод регионально непродуктивных отложений, /// — пустые структуры, IV— законтурные воды нефтегазовых месторождений; V — приконтурные воды нефтегазовых месторождений; VI — воды непродуктивных горизонтов на нефтегазовых месторождениях; Б — Южная часть Западно-Сибирского артезианского бассейна: / — область питания, 2 — область погружения вод, 3 — Иртышский и Чулымский артезианские бассейны, 4 — минеральные и промышленные воды, 5 — нефтяные месторождения среднего течения Оби; В — Ферганская нефтегазоносная область: а - область питания, б - область разгрузки, в — пустые структуры, г — законтурные воды нефтяных месторождений, д) приконтурные воды нефтяных месторождений.
8. Не менее важное значение для рассматриваемых вопросов нефтяной геологии и гидрогеологии имеют и широко распространенные в подземных водах углеводороды, близкие по составу к нефти (нефтяные углеводороды или углеводороды нефти). Полученные во ВСЕГИНГЕО данные по ряду нефтегазоносных областей показывают увеличение относительного содержания и распространенности нефтяных углеводородов в приконтурных водах нефтегазовых месторождений (табл. 5).

9. Наиболее распространенная группа органических веществ подземных вод — гумусовые вещества. Гумус обычно составляет не менее половины суммы группового состава люминесцирующих органических веществ. Распространенность гумуса во всех изученных водах равна 100%, за исключением приконтурных вод нефтяных месторождений, где несколько снижаются его содержание (менее 50% от суммы) и распространенность (70—75%). Эта особенность группового става органических веществ также может быть использована в нефтепоисковой гидрогеологии.
Безусловно, что не все перечисленные закономерности и особенности состава и содержания органических веществ подземных вод в силу ряда причин имеют равноценное значение для нефтяной геологии и гидрогеологии. Поэтому нам представляется, что особое внимание необходимо обратить на дальнейшее более глубокое и всестороннее изучение таких генетически связанных с нефтью компонентов, как углеводороды нефти и органические кислоты (декарбоксилирование последних проводит к образованию углеводородов), а также на общее суммарное содержание органического вещества подземных вод (его баланс).
Значение органических веществ подземных вод, как показателей нефтегазоносности, подчеркивается в ряде опубликованных работ, особенно сотрудников ИГиРГИ (Барс, 1959, 1963; Барс и Коган, 1965 и др.) и ВСЕНИНГЕО (Альтовский, 1959, 1960; Альтовский и др., 1962; Швец, 1964) и др.
На основе анализа фактического материала, накопленного во ВСЕГИНГЕО за 10 лет М.Е.Альтовский в 1964 г. предложил (по его терминологии) «химико-органические» показатели нефтегазоносности, которые он рекомендовал применять в комплексе с другими гидрогеологическими показателями на разных стадиях поисковых работ на нефть и газ.
Мы считаем целесообразным привести здесь эти рекомендации М.Е.Альтовского.
Химико-органические показатели нефтегазоносности, предложенные М.Е.Альтовским (1964) (в обязательном сочетании с другими гидрогеологическими показателями)

Примечание: Все цифровые показатели даны по среднеарифметическим данным.
Следует отметить, что пока нет достаточных оснований относить химико-органические показатели к числу безусловных и прямых. Правильнее их называть, по А.А.Карцеву (1963) предположительными.
В заключение отметим, что задачей дальнейших исследований органического вещства в подземных водах в связи с проблемами нефтяной геологии и гидрогеологии, по нашему мнению, является изучение:
а) общего баланса органического вещества в подземных водах и его индивидуального состава;
б) органических веществ, предположительно исходных для образования нефти и газа;
в) процессов преобразования органического вещества и механизма выделения компонентов нефти из водного раствора;
г) углеводородов, растворенных в подземных водах и мигрирующих с ними;
д) взаимодействия между нефтью нефтяной залежи и контактирующими с ней подземными водами (с учетом состава нефтей и вод, гидродинамических условий, температуры, давления и др.);
е) изменения содержания и состава органического вещества вод по мере удаления от нефтегазовых залежей;
ж) специфики содержания и состава органического вещества, с одной стороны, вод нефтяных, а с другой - газовых месторождений, вод продуктивных и непродуктивных горизонтов, вод пустых структур и структур с залежами нефти и газа;
з) закономерностей количественного содержания и состава органического вещества и влияния на них геологических, гидрогеологических, геохимических, микробиологических, физико-химических и других факторов;
и) изменения содержания и состава органического вещества вод, при их хранении от момента отбора до времени производства анализа и в соответствии с этим методики консервирования проб воды.
Естественно, что решение перечисленных и других задач в области изучения органических веществ в подземных водах невозможно без дальнейшего совершенствования методов их анализа.
ЛИТЕРАТУРА
1. Альтовский М.Е. Органическое вещество и микрофлора подземных вод и их значение для оценки нефтегазоносности. В сб. «Геохим. методы поисков нефт. и газовых месторождений». Изд. АН СССР, 1959.
2. Альтовский М. Е. О гидрохимических и некоторых других показателях нефтеносности. Разведка и охрана недр, № 2, I960.
3. Альтовский М.Е., Кузнецова 3.И., Швец В.М. Образование нефти и формирование ее залежей. Гостоптехиздат, 1958.
4. Альтовский М.Е., Быкова Е.Л., Кузнецова З.И., Швец В.М. Органические вещества и микрофлора подземных вод и их значение в процессах нефтегазообразования. Гостоптехиздат, 1962.
5. Барс Е.А. Гидрохимические исследования при поисках нефти и газа (состояние и задачи). В сб. Геохим. методы поисков нефт. и газовых месторождений. Изд. АН СССР, 1959.
6. Барс Е.А. Растворенное органическое вещество подземных вод и возможность его использования в нефтяной геологии. Геохимия и гидрохимия нефт. месторождений. Изд. АН СССР, 1963.
7. Барс Е.А., Коган С.С. Органическое вещество подземных вод нефтегазоносных областей (методика анализа и интерпретации). Иэд-во «Недра», 1965.
8. Быкова Е.Л. К вопросу изучения органического вещества в подземных водах. Проблемы гидрогеологии. Доклады к собранию Международной ассоциации гидрогеологов, Госгеолтехиздат, 1960.
9. Быкова Е.Л. К вопросу изучения органического вещества подземных вод Дагестанской АССР. Тр. ВСЕГИНГЕО, сб. № 19, Госгеолтехиздат, 1961.
10. Вернадский В.И. История минералов земной коры. т. 2. История природных вод, ч. I, вып. 3, Госхимтехиздат, 1936.
11. Гатальский М А. Подземные воды Белоруссии в связи с оценкой перспектив ее нефтегазоносности. Геология, гидрогеология и нефтеносность Белоруссии. Тр. ВНИГРИ, вып. 25. Гостоптехиздат, 1963..
12. Дудова М.Я. Оценка методов определения нафтеновых кислот. Бюлл. НТИ, № 1 (51). «Недра», 1964.
13. Карцев А.А. Гидрогеология нефтяных и газовых месторождений. Гостоптехиздат, 1963.
14. Карцев А.А., Шугрин В.П. Геохимические методы исследований при поисках нефти и газа. «Недра», 1964.
15. Методическое руководство по гидрогеологическим, гидрохимическим и микробиологическим исследованиям для оценки перспектив нефтегазоносности недр. Гостоптехиздат, 1961.
16. Сvлин В.А. Гидрогеология нефтяных месторождений: Гостоптехиздат. 1948.
17. Швец В.М. Некоторые данные об органическом веществе подземных вод. «Сов. геология», № 6, 1959.
18. Швец В.М. Органическое вещество в грунтовых водах Севера Европейской части СССР. Тр. ВСЕГИНГЕО, сб. № 19. Госгеолтехиздат,1961.
19. Швец В.М. О некоторых закономерностях распространения органических веществ в подземных водах. В сб. «Вопросы геохимии подземных вод». Тр. ВСЕГИНГЕО, нов. сер. № 9, «Недра», 1964.
20. Швец В.М. Органические вещества подземных вод и их использование как показателей нефтегазоносности. В сб. «Прямые методы поисков нефти и газа (нефтепоисковая геохимия)». «Недра», 1964.

Перечень находящихся в воде примесей, имеющих органическое происхождение, достаточно разнообразен:

Вид примесей, обладающих свойством растворяться в воде: гуминовые кислоты, их соли - гуматы натрия, калия, аммония; несколько элементов имеют антропогенную природу; несколько видов аминокислот, белки;

Вид примесей, не обладающих свойством водорастворения: фульвокислоты (соли) и гуминовые кислоты, их соли - гуматы кальция, магния, железа; липоиды разной природы; компоненты разнообразной сущности, в т.ч. микроорганизмы.

Уровень насыщенности воды компонентами органического происхождения анализируют путём определения её окисляемости (потреблении сильного окислителя), насыщения органическим углеродом, биохимическим потреблением кислорода и поглощаемости в зоне ультрафиолета.

Значение, которым можно охарактеризовать факт наличия в водах органики и минералов, которые при определённых условиях подвергаются окислению одним из химических окислителей, именуется термином окисляемость. Выделяют следующие виды окисляемости воды: перманганатная, бихроматная, иодатная, цериевая (методы выявления 2-х крайних используются крайне редко). Показатель "окисляемость" высчитывают в миллиграммах реагента, затраченного на окислении находящихся в воде веществ, пересчитанного на эквивалентное количество кислорода.

Известно воздействие окислителей и на минеральные компоненты, таких как ионы Fe 2+ , S 2- , NO 2 - , но зависимость между данными частицами и органикой в воде у поверхности смещено к концентрации элементов органического происхождения, т. е. «органики» значительно больше.

В артезианских источниках под землёй указанная позиция имеет зависимость обратного вида, т.е. компонентов органики значительно меньше, чем представленных частиц. В некоторых скважинах наблюдается практически полное отсутствие органических соединений. При этом, минеральные компоненты можно выявлять при помощи индивидуальных аналитических исследований.

В той ситуации, когда содержание представленных неорганических восстановителей в сумме ниже показателя 0,1 ммоль/л, то их можно упустить, в другой ситуации стоит внести требуемые правки.

Для слабозагрязнённых поверхностных природных вод, а также вод подземных источников рекомендуется вычислять окисляемость перманганатного типа (индекс перманганата); в загрязнённых поверхностных водах и различных сточных водах, выявляют, чаще всего, уровень окисляемости бихроматного типа (ХПК).

Согласно СанПин 2.1.4.1074-01 для питьевых вод показатель "Окисляемость перманганатная" не должен превышать значение в 5 мгО 2 /дм 3 .

Уважаемые господа, если у Вас возникла потребность очистки воды от органических соединений для доведения её качества до определённых нормативов, сделайте запрос специалистам компании Waterman . Мы предложим Вам оптимальную технологическую схему водоочистки.

Органические вещества в природных водах - продукты растений и животных, населяющих водную среду, представленные соединениями углерода с другими элементами. В воде водоемов содержится большое количество самых разнообразных органических соединений.

Углеводороды (нефтепродукты).

Нефтепродукты относятся к числу наиболее распространенных и опасных веществ, загрязняющих поверхностные воды. Большие количества нефтепродуктов поступают в поверхностные воды при перевозке нефти водным путем, со сточными водами предприятий нефтедобывающей, нефтеперерабатывающей, химической, металлургической и других отраслей промышленности, с хозяйственно-бытовыми водами. Некоторые количества углеводородов поступают в воду в результате прижизненных выделений растительными и животными организмами, а также в результате их посмертного разложения.

Метан принадлежит к газам биохимического происхождения. Основным источником его образования служат дисперсные органические вещества в породах. В чистом виде он иногда присутствует в болотах, образуясь при гниении болотной растительности.

Бензол представляет собой бесцветную жидкость с характерным запахом.В поверхностные воды бензол поступает с предприятий и производств основного органического синтеза, нефтехимической, химико-фармацевтической промышленности, производства пластмасс, взрывчатых веществ, ионообменных смол, лаков и красок, искусственных кож, а также со сточными водами мебельных фабрик.

Фенолы представляют собой производные бензола с одной или несколькими гидроксильными группами. Фенолы в естественных условиях образуются в процессах метаболизма водных организмов, при биохимическом распаде и трансформации органических веществ, протекающих как в водной толще, так и в донных отложениях.Фенолы являются одним из наиболее распространенных загрязнений, поступающих в поверхностные воды со стоками предприятий нефтеперерабатывающей, сланцеперерабатывающей, лесохимической, коксохимической, анилинокрасочной промышленности и др.

Гидрохинон

В поверхностные воды гидрохинон попадает со сточными водами производства пластмасс, кинофотоматериалов, красителей, предприятий нефтеперерабатывающей промышленности.

Метанол попадает в водоемы со сточными водами производств получения и применения метанола.

Этиленгликоль

Этиленгликоль попадает в поверхностные воды со сточными водами производств, где он получается или применяется (текстильная, фармацевтическая, парфюмерная, табачная, целлюлозно-бумажная промышленности).

Органические кислоты

Органические кислоты относятся к числу наиболее распространенных компонентов природных вод различного происхождения и нередко составляют значительную часть всего органического вещества в этих водах. Состав органических кислот и их концентрация определяются с одной стороны внутриводоемными процессами, связанными с жизнедеятельностью водорослей, бактерий и животных организмов, с другой -- поступлением этих веществ извне.

Органические кислоты образуются за счет следующих внутриводоемных процессов:

  • · прижизненных выделений в результате нормальных физиологических процессов здоровых клеток;
  • · посмертных выделений, связанных с отмиранием и распадом клеток;
  • · выделений сообществами, связанных с биохимическим взаимодействием различных организмов, например водорослей и бактерий;
  • · ферментативного разложения высокомолекулярных органических веществ типа углеводородов, протеинов и липидов.

Поступление органических кислот в водные объекты извне возможно с поверхностным стоком, особенно в период половодья и паводков, с атмосферными осадками, промышленными и хозяйственно-бытовыми сточными водами и с водами, сбрасываемыми с орошаемых полей.

Муравьиная кислота

В природных водах в небольших количествах муравьиная кислота образуется в процессах жизнедеятельности и посмертного разложения водных организмов и биохимической трансформации содержащихся в воде органических веществ. Ее повышенная концентрация связана с поступлением в водные объекты сточных вод предприятий, производящих формальдегид и пластические массы на его основе.

Пропионовая кислота

Пропионовая кислота может поступать в природные воды со стоками химической промышленности.

Молочная кислота

В природных водах молочная кислота в микрограммовых концентрациях присутствует в результате образования в процессах жизнедеятельности и посмертного разложения водных организмов.

Бензойная кислота

В незагрязненных природных водах, бензойная кислота в небольших количествах образуется в процессах жизнедеятельности водных организмов и их посмертного разложения. Основным источником поступления больших количеств бензойной кислоты в водоемы являются стоки промышленных предприятий, так как бензойная кислота и различные ее производные широко используются при консервировании пищевых продуктов, в парфюмерной промышленности, для синтеза красителей и т.д.

Гумусовые кислоты

Гуминовые и фульвокислоты, объединяемые под названием гумусовые кислоты, нередко составляют значительную долю органического вещества природных вод и представляют собой сложные смеси биохимически устойчивых высокомолекулярных соединений. Главным источником поступления гумусовых кислот в природные воды являются почвы и торфяники, из которых они вымываются дождевыми и болотными водами. Значительная часть гумусовых кислот вносится в водоемы вместе с пылью и образуется непосредственно в водоеме в процессе трансформации "живого органического вещества".

Азот органический

Под "органическим азотом" понимают азот, входящий в состав органических веществ, таких как протеины и протеиды, полипептиды (высокомолекулярные соединения), аминокислоты, амины, амиды, мочевина (низкомолекулярные соединения). Значительная часть азотсодержащих органических соединений поступает в природные воды в процессе отмирания организмов, главным образом фитопланктона, и распада их клеток.

Мочевина

Мочевина (карбамид), будучи одним из важных продуктов жизнедеятельности водных организмов, присутствует в природных водах в заметных концентрациях: до 10-50% суммы азотсодержащих органических соединений в пересчете на азот. Значительные количества мочевины поступают в водные объекты с хозяйственно-бытовыми сточными водами, с коллекторными водами, а также с поверхностным стоком в районах использования ее в качестве азотного удобрения. Карбамид может накапливаться в природных водах в результате естественных биохимических процессов как продукт обмена веществ водных организмов, продуцироваться растениями, грибами, бактериями как продукт связывания аммиака, образующегося в процессе диссимиляции белков.

Анилин относится к ароматическим аминам и представляет собой бесцветную жидкость с характерным запахом. В поверхностные воды анилин может поступать со сточными водами химических (получение красителей и пестицидов) и фармацевтических предприятий.

Диметилсульфид

Диметилсульфид выделяется водорослями в ходе нормальных физиологических процессов, имеющих существенное значение в круговороте серы. В поверхностные воды диметилсульфид может поступать также со стоками предприятий целлюлозной промышленности.

Карбонильные соединения

В природных водах карбонильные соединения могут появляться в результате прижизненных выделений водорослей, биохимического и фотохимического окисления спиртов и органических кислот, распада органических веществ типа лигнина, обмена веществ бактериобентоса. Постоянное присутствие карбонильных соединений среди кислородных соединений нефти и в воде, контактирующей с залежами углеводородов, позволяет рассматривать последние в качестве одного из источников обогащения природных вод этими веществами. Источником карбонильных соединений являются также наземные растения, в которых образуются альдегиды и кетоны алифатического ряда и фурановые производные. Значительная часть альдегидов и кетонов поступает в природные воды в результате деятельности человека.

В природные воды ацетон поступает со сточными водами фармацевтических, лесохимических производств, производства лаков и красок, пластмасс, кинопленки, ацетилена, ацетальдегида, уксусной кислоты, оргстекла, фенола, ацетона.

Формальдегид

Формальдегид поступает в водную среду с промышленными и коммунальными сточными водами. Он содержится в сточных водах производств основного органического синтеза, пластмасс, лаков, красок, лекарственных препаратов, предприятий кожевенной, текстильной и целлюлозно-бумажной промышленности.

Углеводы

Под углеводами понимают группу органических соединений, которая объединяет моносахариды, их производные и продукты конденсации -- олигосахариды и полисахариды. В поверхностные воды углеводы поступают главным образом вследствие процессов прижизненного выделения водными организмами и их посмертного разложения. Значительные количества растворенных углеводов попадают в водные объекты с поверхностным стоком в результате вымывания их из почв, торфяников, горных пород, с атмосферными осадками, со сточными водами дрожжевых, пивоваренных, сахарных, целлюлозно-бумажных и других заводов.

Окисляемость воды - величина, характеризующая содержание в воде органических веществ, окисляемых одним из самых сильных химических окислителей при определенных условиях.

Окисляемость воды выражается в миллиграммах атомарного кислорода, пошедшего на окисление веществ, содержащихся в литре воды.

Количество органических веществ в воде принято определять косвенным методом - по потребному для окисления кислороду. Отсюда, чем больше в воде органических веществ, тем больше кислорода идет на окисление, тем выше окисляемость воды. Следует отметить, что при анализе не полностью окисляются органические вещества и в то же время могут частично окислятся некоторые минеральные соединения (нитриты, сульфаты и закись железа). Поэтому окисляемость воды дает только представление о количестве находящихся в воде легкоокисляющихся веществ, не указывая их природы и фактического содержания.