Сообщение на тему уровни организации живой природы. Организация живой природы. Ее уровни. Популяционно-видовой уровень организации жизни

Всего их 8. Что лежит в основе деления живой природы на уровни? Дело в том, что на каждом уровне есть определенные свойства. Каждый следующий уровень обязательено содержит в себе предыдущий или все предыдущие. Давайте рассмотрим каждый уровень подробно:

1. Молекулярный уровень организации живой природы

· Органические и неорганические вещества,

· процессы синтеза и распада этих веществ,

· выделение и поглощение энергии

Это все химические процессы, которые происходят внутри любой живой системы. Этот уровень нельзя назвать "живым" на 100%. Это скорее "химический уровень" - поэтому он самый первый, самый низший из всех. Но именно этот уровень лег в основу деления Живой природы на царства - по запасному питательному веществу: у растений - углеводы, у грибов - хитин, у животных - белок.

· Биохимия

· Молекулярная биология

· Молекулярная генетика

2. Клеточный уровень организации живой природы

Включает в себя молекулярный уровень организации. На этом уровне уже появляется "мельчайшая неделимая биологическая система - клетка". Свой обмен веществ и энергии. Внутренняя организация клетки - ее органоиды. Жизненные процессы - зарождение, рост, самовоспроизведение (деление)

Науки, изучающие клеточный уровень организации:

· Цитология

· (Генетика)

· (Эмбриология)

В скобочках указаны науки, которые изучают этот уровень, но это не основной объект изучения.

3. Тканевый уровень организации

Включает в себя молекулярный и клеточный уровни. Этот уровень можно назвать "многоклеточным" - ведь ткань представляет собой совокупность клеток со сходным строением и выполняющих одинаковые функции.

Наука, изучающая тканевый уровень организации - гистология.

4. Органный уровень организации жизни

У одноклеточных организмов это органеллы - у каждой свое строение и свои функции

У многоклеточных организмов это органы, которые объединены в системы и четко взаимодействуют между собой

Эти два уровня - тканевый и органный - изучают науки:

· Ботаника - растения,

· зоология - животные,

· Анатомия - человек

· Физиология

· (медицина)

5. Организменный уровень

Включает в себя молекулярный, клеточный, тканевый уровни и органный.

На этом уровне уже живую природу делят на царства - растений, грибов и животных.

Свойства этого уровня:

· Обмен веществ (и на клеточном уровне тоже - видите, каждый уровень содержит в себе предыдущий!)

· Строение организма

· Питание

· Гомеостаз - постоянство внутренней среды

· Размножение

· Взаимодействие между организмами

· Взаимодействие с окружающей средой



· Анатомия

· Генетика

· Морфология

· Физиология

6. Популяционно-видовой уровень организации жизни

Включает в себя молекулярный, клеточный, тканевый уровни, органный и организменный.

Если несколько организмов схожи морфологически (проще говоря, одинаково устроены), и имеют одинаковый генотип, то они образуют один вид или популяцию.

Основные процессы на этом уровне:

· Взаимодействие организмов между собой (либо конкуренция, либо размножение)

· микроэволюция (изменение организма под действием внешних условий)

Науки, изучающие этот уровень:

· Генетика

· Эволюция

· Экология

7. Биогеоценотический уровень организации жизни (от слова биогеоценоз)

На этом уровне уже учитывается почти все:

Взаимодействие организмов между собой - пищевые цепи и сети

Взаимодействие организмов межу собой - конкуренция и размножение

Влияние окружающей среды на организмы и, соответственно, влияние организмов на среду их обитания

Наука, изучающая этот уровень - Экология.

8. Биосферный уровень организации живой природы (последний уровень - высший!)

Он включает в себя:

· Взаимодействие живых и неживых компонентов природы

· Биогеоценозы

· Влияние человека - "антропогенные факторы"

· Круговорот веществ в природе

И изучает все это - Экология!

О клетке в научном мире заговорили практически сразу после изобретения микроскопа.

Кстати, сейчас довольно много видов микроскопов:

Оптический микроскоп - максимально увеличение - ~2000 крат (можно рассмотреть некоторые микроорганизмы, клетки (растительные и животные), кристаллы и т.д.

Электронный микроскоп - увеличивает до до 106 раз. Можно уже изучать частицы как клетки, так и молекул - это уже уровень микроструктур

Первым ученым, который смог увидеть клетки (естественно, в микроскоп) был Роберт Гук (1665 г) - он изучал клеточное строение в основном растений.

А вот впервые об одноклеточных организмах - бактериях, инфузориях заговорил А. Ван Левенгук (1674 г)

Ла-Марк (1809 г) уже стал говорить о клеточной теории

Ну и уже в середине XIX века М.Шлейден и Т.Шванн сформулировали ту клеточную теорию, которая сейчас общепризнана во всем мире.

Клеточными являются все организмы, кроме вирусов

Клетка - элементарная единица строения и жизнедеятельности всех организмов, обладающая собственным обменом веществ, способная к самостоятельному существованию, самовоспроизведению и развитию. Все живые организмы либо, как многоклеточные животные, растения и грибы, состоят из множества клеток, либо, как многие простейшие и бактерии, являются одноклеточными организмами. Раздел биологии, занимающийся изучением строения и жизнедеятельности клеток, получил название цитологии. В последнее время принято также говорить о биологии клетки, или клеточной биологии.

Клетка - это мини-организм. У нее есть свои "органы" - органойды. Главный органойд клетки - это ядро. По этому признаку все живые организмы делятся на ЭУКАРИОТИЧЕСКИЕ ("карио" - ядро) - содержащие ядро и ПРОКАРИОТИЧЕСКИЕ ("про" -до) - доядерные (без ядра)

Положения клеточной теории Шлейдена-Шванна

1. Все животные и растения состоят из клеток.

2. Растут и развиваются растения и животные путём возникновения новых клеток.

3. Клетка является самой маленькой единицей живого, а целый организм - это совокупность клеток.

Основные положения современной клеточной теории

· Клетка - единица строения, жизнедеятельности, роста и развития живых организмов, вне клетки жизни нет.

· Клетка - единая система, состоящая из множества закономерно связанных друг с другом элементов, представляющих собой определённое целостное образование.

· Ядро − главная составная часть клетки (эукариот).

· Новые клетки образуются только в результате деления исходных клеток.

· Клетки многоклеточных организмов образуют ткани, ткани образуют органы. Жизнь организма в целом обусловлена взаимодействием составляющих его клеток.

Основные органойды клетки - это те компоненты, которые присущи всем клеткам живых организмов - "общий состав":

· ядро: ядрышко;ядерная оболочка;

· плазматическая мембрана;

· эндоплазматическая сеть;

· центриоль;

· комплекс Гольджи;

· лизосома;

· вакуоль;

· митохондрия.

Нуклеиновые кислоты содержатся в клетке абсолютно любого организма. Даже у вирусов.

"Нуклео" - "ядро" - в основном, содержатся в ядре клеток, но так же содержатся и в цитоплазме, и в других органойдах. Нуклиновые кислоты бывают двух типов: ДНК и РНК

ДНК - дезоксирибонуклеиновая кислота

РНК - рибонуклеиновая кислота

Эти молекулы - полимеры, мономерами являются нуклеотиды - соединения, содержащие азотистые основания.

Нуклеотиды ДНК: А - аденин, Т - тимин, Ц - цитозин, Г - гуанин

Нуклеотиды РНК: А - аденин, У - урацил, Ц - цитозин, Г - гуанин

Как видите, в РНК тимина нет, его заменяет урацил - У

Помимо них, в состав нуклеотидов входят:

углеводы: дезоксирибоза - в ДНК, рибоза - в РНК. Фосфат и сахар - входят в состав обеих молекул

Это первичная структура молекул

Вторичная структура - это сама форма молекул. Днк - двойная спираль, РНК - "одинарная" длинная молекула.

Основные функции нуклеиновых кислот

Генетический код - это последовательность нуклеотидов в молекуле ДНК. Это основа любого организма, по сути - это информация о самом организме (как у любого человека ФИО, идентифицирующее личность- это последовательность букв, или последовательность цифр - серия паспорта).

Так вот, основные функции нуклеиновых кислот - в хранении, реализации и передаче наследственной информации, "записанной" в молекулах в виде последовательности определенных нуклеотидов.

Деление клеток - часть процесса жизни абсолютно любого живого организма. Все новые клетки образуются из старых (материнских). Это одно из основных положений клеточной теории. Но существует несколько видов деления, которые напрямую зависят от природы этих клеток.

Деление прокариотических клеток

Чем отличается прокариотическая клетка от эукариотической? Самое главное отличие - отсутствие ядра (собственно поэтому так и называются). Отсутствие ядра означает, что ДНК просто находится в цитоплазме.

Процесс выглядит следующим образом:

репликация (удвоение) ДНК ---> клетка удлиняется ---> образуется поперечная перегородка ---> клетки разделяются и расходятся

Деление эукариотических клеток

Жизнь любой клетки состоит из 3 этапов: рост, подготовка к делению и, собственно, деление.

Как происходит подготовка к делению?

· Во-первых синтезируется белок,

· во-вторых, все важные компоненты клетки удваиваются, чтобы в каждой новой клетке был весь необходимый для жизни набор органелл.

· В третьих, удваивается молекула ДНК и каждая хромосома синтезирует себе копию. Удвоенная хромосома= 2 хроматиды (в каждой по молекуле ДНК).

Этот период подготовки к делкнию называется ИНТЕРФАЗА.

Данный справочник содержит весь теоретический материал по курсу биологии, необходимый для сдачи ЕГЭ. Он включает в себя все элементы содержания, проверяемые контрольно-измерительными материалами, и помогает обобщить и систематизировать знания и умения за курс средней (полной) школы.

Теоретический материал изложен в краткой, доступной форме. Каждый раздел сопровождается примерами тестовых заданий, позволяющими проверить свои знания и степень подготовленности к аттестационному экзамену. Практические задания соответствуют формату ЕГЭ. В конце пособия приводятся ответы к тестам, которые помогут школьникам и абитуриентам проверить себя и восполнить имеющиеся пробелы.

Пособие адресовано школьникам, абитуриентам и учителям.

Уровни организации живых систем отражают сопод– чиненность, иерархичность структурной организации жизни. Уровни жизни отличаются друг от друга сложностью организации системы. Клетка устроена проще по сравнению с многоклеточным организмом или популяцией.

Уровень жизни – это форма и способ ее существования. Например, вирус существует в виде молекулы ДНК или РНК, заключенной в белковую оболочку. Это форма существования вируса. Однако свойства живой системы вирус проявляет, только попав в клетку другого организма. Там он размножается. Это способ его существования.

Молекулярно-генетический уровень представлен отдельными биополимерами (ДНК, РНК, белками, липидами, углеводами и другими соединениями); на этом уровне жизни изучаются явления, связанные с изменениями (мутациями) и воспроизведением генетического материала, обменом веществ.

Клеточный – уровень, на котором жизнь существует в форме клетки – структурной и функциональной единицы жизни. На этом уровне изучаются такие процессы, как обмен веществ и энергии, обмен информацией, размножение, фотосинтез, передача нервного импульса и многие другие.

Организменный – это самостоятельное существование отдельной особи – одноклеточного или многоклеточного организма.

Популяционно-видовой – уровень, который представлен группой особей одного вида – популяцией; именно в популяции происходят элементарные эволюционные процессы – накопление, проявление и отбор мутаций.

Биогеоценотический – представлен экосистемами, состоящими из разных популяций и среды их обитания.

2) энергетического обмена веществ

3) питания и дыхания

4) гомеостаза

А8. Какой из терминов является синонимом понятия «обмен веществ »?

1) анаболизм 3) ассимиляция

2) катаболизм 4) метаболизм

Часть В

В1. Выберите процессы, изучаемые на молекулярно-генетическом уровне жизни

1) репликация ДНК

2) наследование болезни Дауна

3) ферментативные реакции

4) строение митохондрий

5) структура клеточной мембраны

6) кровообращение

В2. Соотнесите характер адаптации организмов с условиями, к которым они вырабатывались

Выделяют следующие уровни организации жизни: молекулярный, клеточный, органно-тканевой (иногда их разделяют), организменный, популяционно-видовой, биогеоценотический, биосферный. Живая природа представляет собой систему, а различные уровни ее организации формируют ее сложное иерархическое строение, когда нижележащие более простые уровни определяют свойства вышележащих.

Так сложные органические молекулы входят в состав клеток и определяют их строение и жизнедеятельность. У многоклеточных организмов клетки организованы в ткани, несколько тканей образуют орган. Многоклеточный организм состоит из систем органов, с другой стороны, организм сам является элементарной единицей популяции и биологического вида. Сообщество представляется собой взаимодействующие популяции разных видов. Сообщество и окружающая среда формируют биогеоценоз (экосистему). Совокупность экосистем планеты Земля образует ее биосферу.

На каждом уровне возникают новые свойства живого, отсутствующие на нижележащем уровне, выделяются свои элементарные явления и элементарные единицы. При этом во многом уровни отражают ход эволюционного процесса.

Выделение уровней удобно для изучения жизни как сложного природного явления.

Рассмотрим подробнее каждый уровень организации жизни.

Молекулярный уровень

Хотя молекулы состоят из атомов, отличие живой материи от неживой начинает проявляться только на уровне молекул. Только в состав живых организмов входит большое количество сложных органических веществ – биополимеров (белков, жиров, углеводов, нуклеиновых кислот). Однако молекулярный уровень организации живого включает и неорганические молекулы, входящие в клетки и играющие важную роль в их жизнедеятельности.

Функционирование биологических молекул лежит в основе живой системы. На молекулярном уровне жизни проявляется обмен веществ и превращение энергии как химические реакции, передача и изменение наследственной информации (редупликация и мутации), а также ряд других клеточных процессов. Иногда молекулярный уровень называют молекулярно-генетическим.

Клеточный уровень жизни

Именно клетка является структурной и функциональной единицей живого. Вне клетки жизни нет. Даже вирусы могут проявлять свойства живого, лишь оказавшись в клетке хозяина. Биополимеры в полной мере проявляют свою реакционную способность будучи организованы в клетку, которую можно рассматривать как сложную систему взаимосвязанных в первую очередь различными химическими реакциями молекул.

На этом клеточном уровне проявляется феномен жизни, сопрягаются механизмы передачи генетической информации и превращения веществ и энергии.

Органно-тканевой

Ткани есть только у многоклеточных организмов. Ткань представляет собой совокупность сходных по строению и функциям клеток.

Ткани образуются в процессе онтогенеза путем дифференцировки клеток имеющих одну и ту же генетическую информацию. На этом уровне происходит специализация клеток.

У растений и животных выделяют разные типы тканей. Так у растений это меристема, защитная, основная и проводящая ткани. У животных - эпителиальная, соединительная, мышечная и нервная. Ткани могут включать перечень подтканей.

Орган обычно состоит из нескольких тканей, объединенных между собой в структурно-функциональное единство.

Органы формируют системы органов, каждая из которых отвечает за важную для организма функцию.

Органный уровень у одноклеточных организмов представлен различными органеллами клетки, выполняющими функции переваривания, выделения, дыхания и др.

Организменный уровень организации живого

Наряду с клеточным на организменном (или онтогенетическом) уровне выделяются обособленной структурные единицы. Ткани и органы не могут жить независимо, организмы и клетки (если это одноклеточный организм) могут.

Многоклеточные организмы состоят из систем органов.

На организменном уровне проявляются такие явления жизни как размножение, онтогенез, обмен веществ, раздражимость, нервно-гуморальная регуляция, гомеостаз. Другими словами, его элементарные явления составляют закономерные изменения организма в индивидуальном развитии. Элементарной единицей является особь.

Популяционно-видовой

Организмы одного вида, объединенные общим местообитанием, формируют популяцию. Вид обычно состоит из множества популяций.

Популяции имеют общий генофонд. В пределах вида они могут обмениваться генами, т. е. являются генетически открытыми системами.

В популяциях происходят элементарные эволюционные явления, приводящие в конечном итоге к видообразованию. Живая природа может эволюционировать только в надорганизменных уровнях.

На этом уровне возникает потенциальное бессмертие живого.

Биогеоценотический уровень

Биогеоценоз представляет собой взаимодействующую совокупность организмов разных видов с различными факторами среды их обитания. Элементарные явления представлены вещественно-энергетическими круговоротами, обеспечиваемыми в первую очередь живыми организмами.

Роль биогеоценотического уровня состоит в образовании устойчивых сообществ организмов разных видов, приспособленных к совместному проживанию в определенной среде обитания.

Биосфера

Биосферный уровень организации жизни - это система высшего порядка жизни на Земле. Биосфера охватывает все проявления жизни на планете. На этом уровне происходит глобальный круговорот веществ и поток энергии (охватывающий все биогеоценозы).

1) Основателем экологии считается немецкий биолог Э. Геккель (1834- 1919 гг.), который впервые в 1866 г. употребил термин «экология». Он писал: «Под экологией мы подразумеваем общую науку об отношении организма и окружающей среды, куда мы относим все "условия существования" в широком смысле этого слова. Они частично являются органической частично неорганической природы».

Первоначально этой наукой была биология, изучающая популяции животных и растений в среде их обитания.

Экология изучает системы уровня выше отдельного организма. Основными объектами ее изучения являются:

    популяция - группа организмов, относящихся к одному или сходным видам и занимающих определенную территорию;

    экосистема , включающая биотическое сообщество (совокупность популяций на рассматриваемой территории) и среду обитания;

    биосфера- область распространения жизни на Земле.

Взаимодействие Человека с Природой имеет свою специфику. Человек наделен разумом, и это дает ему возможность осознать свое место в природе и предназначение на Земле. С начала развития цивилизации Человек задумывался о своей роли в природе. Являясь, безусловно, частью природы, человек создал особую среду обитания, которая называется человеческой цивилизацией. По мере развития она все больше вступала в противоречие с природой. Сейчас человечество уже подошло к осознанию того, что дальнейшая эксплуатация природы может угрожать его собственному существованию. Цели и задачи современной экологии

Одной из главных целей современной экологии как науки является изучение основных закономерностей и развитие теории рационального взаимодействия в системе «человек - общество - природа», рассматривая человеческое общество как неотъемлемую часть биосферы.

Главнейшая цель современной экологии на данном этапе развития человеческого общества - вывести Человечество из глобального экологического кризиса на путь устойчивого развития, при котором будет достигнуто удовлетворение жизненных потребностей нынешнего поколения без лишения такой возможности будущих поколении.

Для достижения этих целей экологической науке предстоит решить ряд разнообразных и сложных задач, в том числе:

    разработать теории и методы оценивания устойчивости экологических систем на всех уровнях;

    исследовать механизмы регуляции численности популяций и биотического разнообразия, роли биоты (флоры и фауны) как регулятора устойчивости биосферы;

    изучить и создать прогнозы изменений биосферы под влиянием естественных и антропогенных факторов;

    оценивать состояния и динамики природных ресурсов и экологических последствий их потребления;

    разрабатывать методы управления качеством окружающей среды;

    формировать понимание проблем биосферы и экологическую культуру общества.

Окружающая нас живая среда не является беспорядочным и случайным сочетанием живых существ. Она представляет собой устойчивую и организованную систему, сложившуюся в процессе эволюции органического мира. Любые системы поддаются моделированию, т.е. можно предсказать, как та или иная система отреагирует на внешнее воздействие.Системный подход - основа изучения проблем экологии. Место экологии в системе естественных наук. Современная экология относится к тому типу наук, которые возникли на стыке многих научных направлений. Она отражает как глобальность современных задач, стоящих перед человечеством, так и различные формы интеграции методов направлений и научного поиска. Превращение экологии из сугубо биологической дисциплины в отрасль знания, включившую также общественные и технические науки, в сферу деятельности, основанную на решении ряда сложнейших политических, идеологических, экономических, этических и других вопросов, обусловило ей значительное место в современной жизни, сделало ее своеобразным узлом, в котором объединяются различные направления науки и человеческой практики. Экология, на мой взгляд, все больше становится одной из наук о человеке и интересует многие научные направления. И хотя этот процесс еще весьма далек от завершения, его основные тенденции уже достаточно отчетливо просматриваются в наше время.

2) Предмет, задачи и методы экологии Экология (греч. oikos - жилище, местопребывание, logos - наука)- биологическая наука о взаимоотношениях между живыми организмами и средой их обитания.

Объектами экологии являются преимущественно системы выше уровня организмов, т. е. изучение организации и функционирования надорганизменных систем: популяций, биоценозов (сообществ), биогеоценозов (экосистем) и биосферы в целом. Другими словами, главным объектом изучения в экологии являются экосистемы, т. е. единые природные комплексы, образованные живыми организмами и средой обитания.

Задачи экологии меняются в зависимости от изучаемого уровня организации живой материи. Популяционная экология исследует закономерности динамики численности и структуры популяций, а также процессы взаимодействий (конкуренция, хищничество) между популяциями разных видов. В задачи экологии сообществ (биоценологии) входит изучение закономерностей организации различных сообществ, или биоценозов, их структуры и функционирования (круговорот веществ и трансформация энергии в цепях питания).

Главная же теоретическая и практическая задача экологии - раскрыть общие закономерности организации жизни и на этой основе разработать принципы рационального использования природных ресурсов в условиях все возрастающего влияния человека на биосферу.

В круг проблем экологии включены также вопросы экологического воспитания и просвещения, морально-этические, философские и даже правовые вопросы. Следовательно, экология становится наукой не только биологической, но и социальной. Методы экологии подразделяются на полевые (изучение жизни организмов и их сообществ в естественных условиях, т. е. длительное наблюдение в природе с помощью различной аппаратуры) и экспериментальные (эксперименты в стационарных лабораториях, где имеется возможность не только варьировать, но и строго контролировать влияние на живые организмы любых факторов по заданной программе). При этом экологи оперируют не только биологическими, но и современными физическими и химическими методами, используют моделирование биологических явлений, т. е. воспроизведение в искусственных экосистемах различных процессов, происходящих в живой природе. Посредством моделирования можно изучить поведение любой системы с целью оценки возможных последствий применения различных стратегий и методов управления ресурсами, т. е. для экологического прогнозирования. 3) В истории развития экологии как науки можно выделить три основных этапа.Первый этап - зарождение и становление экологии как науки (до 1960-х годов), когда накапливались данные о взаимосвязи живых организмов со средой их обитания, были сделаны первые научные обобщения. В этот же период французский биолог Ламарк и английский священник Мальтус впервые предупреждают человечество о возможных негативных последствиях воздействия человека на природу.

Второй этап - оформление экологии в самостоятельную отрасль знаний (после 1960-х до 1950-х годов). Начало этапа ознаменовалось выходом в свет работ русских ученыхК.Ф. Рулье, Н.А. Северцева, В.В. Докучаева, впервые обосновавших ряд принципов и понятий экологии. После исследований Ч. Дарвина в области эволюции органического мира немецкий зоолог Э. Геккель первый понял, что Дарвин называл «борьбой за существование», представляет собой самостоятельную область биологии,и назвал ее экологией (1866 г.).

Как самостоятельная наука экология окончательно оформилась в начале XX столетия. В этот период американский ученый Ч. Адаме создал первую сводку по экологии, публикуются и другие важные обобщения. Крупнейший русский ученый XX в. В.И. Вернадский создает фундаментальноеучение о биосфере.

В 1930-1940-е годы сначала английский ботаник А. Тенсли (1935 г.) выдвинулпонятие «экосистема» , а несколько позжеВ. Я. Сукачев (1940 г.) обосновал близкое ему представлениео биогеоценозе.

Третий этап (1950-е годы - до настоящего времени) - превращение экологии в комплексную науку, включающую в себя науки об охране окружающей человека среды. Одновременно с развитием теоретических основ экологии решались и прикладные вопросы, связанные с экологией.

В нашей стране в 1960-1980-е годы практически ежегодно правительство принимало постановления об усилении охраны природы; были изданы земельный, водный, лесной и иные кодексы. Однако, как показала практика их применения, они не дали требуемых результатов.

Сегодня Россия переживает экологический кризис: около 15% территории фактически являются зонами экологического бедствия; 85% населения дышат воздухом, загрязненным существенно выше ПДК. Растет число «экологически обусловленных» заболеваний. Наблюдается деградация и сокращение природных ресурсов.

Аналогичное положение сложилось и в других странах мира. Вопрос о том, что произойдет с человечеством в случае деградации природных экологических систем и утраты биосферой способности поддерживать биохимические циклы, становится одним из наиболее актуальных.

4) 1. Молекулярный уровень организации живой природы

    Химический состав клеток: органические и неорганические вещества,

    Обмен веществ(метаболизм): процессы диссимиляции и ассимиляции,

    поглощение и выделение энергии.

Молекулярный уровень затрагивает все биохимические процессы, которые происходят внутри любого живого организма - от одно- до многоклеточных.

Этот уровень сложно назвать «живым» . Это скорее «биохимический» уровень - поэтому он является основой для всех остальных уровней организации живой природы. Поэтому именно он лег в основу классификации Живой природына царства - какоепитательное вещество является основным у организма:у животных - белок, у грибов - хитин, у растений это- углеводы.

Науки, которые изучают живые организмы именно на этом уровене:

2. Клеточный уровень организации живой природы

Включает в себя предыдущий - молекулярный уровень организации.

На этом уровне уже появляется термин «клетка» как «мельчайшая неделимая биологическая система»

    Обмен веществ и энергии данной клетки (разный в зависимости от того, к какому царству принадлежит организм);

    Органойды клетки;

    Жизненные циклы - зарождение, рост и развитие и деление клеток

Науки, изучающие клеточный уровень организации :

Генетика и эмбриология изучают этот уровень, но это не основной объект изучения.

3. Тканевый уровень организации:

Включает в себя 2 предыдущих уровня - молекулярный и клеточный .

Этот уровень можно назвать « многоклеточным » - ведь ткань представляет собой совокупность клеток со сходным строением и выполняющих одинаковые функции.

Наука - Гистология

4. Органнный (ударение на первый слог) уровень организации жизни

    У одноклеточных органы - это органеллы - есть общие органеллы - характерные для всех эукариотическихили прокариотических клеток, есть отличающиеся.

    У многоклеточных организмов клетки общего строения и функций объединены в ткани, а те, соответственно, в органы, которые, в свою очередь, объединены в системы и должны слаженно взаимодействовать между собой.

Тканевый и органный уровни организации - изучают науки:

5. Организменный уровень

Включает в себя все предыдущие уровни: молекулярный , клеточный, тканевый уровни и органный .

На этом уровне идет деление Живой природы на царства - животных, растений и грибов.

Характеристики этого уровня:

    Обмен веществ (как на уровне организма, так и на клеточном уровне тоже)

    Строение (морфология) организма

    Питание (обмен веществ и энергии)

    Гомеостаз

    Размножение

    Взаимодействие между организмами (конкуренция, симбиоз и т.д.)

    Взаимодействие с окружающей средой

6. Популяционно-видовой уровень организации жизни

Включает молекулярный , клеточный, тканевый уровни, органный и организменный .

Если несколько организмов схожи морфологически (проще говоря, одинаково устроены), и имеют одинаковый генотип, то они образуют один вид или популяцию.

Основные процессы на этом уровне:

    Взаимодействие организмов между собой (конкуренция или размножение)

    микроэволюция (изменение организма под действием внешних условий)

Науки, изучающие этот уровень:

7. Биогеоценотический уровень организации жизни

На этом уровне уже учитывается почти все:

    Пищевое взаимодействие организмов между собой - пищевые цепи и сети

    Меж- и внутривидовое взаимодействие организмов - конкуренция и размножение

    Влияние окружающей среды на организмы и, соответственно, влияние организмов на среду их обитания

Наука, изучающая этот уровень - Экология

Ну и последний уровень - высший!

8. Биосферный уровень организации живой природы

Он включает в себя:

    Взаимодействие, как живых, так и неживых компонентов природы

    Биогеоценозы

    Влияние человека - «антропогенные факторы»

    Круговорот веществ в природе

5) Экологическая система, или экосистема, - основная функциональная единица в экологии, так как в нее входят организмы и

неживая среда - компоненты, взаимно влияющие на свойства друг друга, и необходимые условия для поддержания жизни в той ее форме, которая существует на Земле. Терминэкосистема впервые был предложен в 1935 г. английским экологомА. Тенсли.

Таким образом, под экосистемой понимается совокупность живых организмов (сообществ) и среды их обитания, образующих благодаря круговороту веществ, устойчивую систему жизни.

Сообщества организмов связаны с неорганической средой теснейшими материально- энергетическими связями. Растения могут существовать только за счет постоянного поступления в них углекислого газа, воды, кислорода, минеральных солей. Гетеротрофы живут за счет автотрофов, но нуждаются в поступлении таких неорганических соединений, как кислород и вода.

В любом конкретном месте обитания запасов неорганических соединений, необходимых для поддержания жизнедеятельности населяющих его организмов, хватило бы ненадолго, если бы эти запасы не возобновлялись. Возврат биогенных элементов в среду происходит как в течение жизни организмов (в результате дыхания, экскреции, дефекации), так и после их смерти, в результате разложения трупов и растительных остатков.

Следовательно, сообщество образует с неорганической средой определенную систему, в которой поток атомов, вызываемый жизнедеятельностью организмов, имеет тенденцию замыкаться в круговорот.

Рис. 8.1. Структура биогеоценоза и схема взаимодействия между компонентами

В отечественной литературе широко применяется термин «биогеоценоз», предложенный в 1940 г.B. Н Сукачевым. По его определению, биогеоценоз - «совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, почвы и гидрологических условий), имеющая особую специфику взаимодействий этих слагающих ее компонентов и определенный тип обмена веществом и энергией их между собой и другими явлениями природы и представляющая собой внутренне противоречивое диалектическое единство, находящееся в постоянном движении, развитии».

В биогеоценозе В.Н. Сукачев выделял два блока:экотоп - совокупность условий абиотической среды ибиоценоз - совокупность всех живых организмов (рис. 8.1). Экотоп часто рассматривают как абиотическую среду, не преобразованную растениями (первичный комплекс факторов физико-географической среды), а биотоп - как совокупность элементов абиотической среды, видоизмененных средообразующей деятельностью живых организмов.

Существует мнение, что термин «биогеоценоз» в значительно большей степени отражает структурные характеристики изучаемой макросистемы, тогда как в понятие «экосистема» вкладывается, прежде всего, ее функциональная сущность. Фактически же между этими терминами различий нет.

Следует указать, что совокупность специфического физико-хи- мического окружения (биотопа) с сообществом живых организмов (биоценозом) и образует экосистему:

Экосистема = Биотоп + Биоценоз.

Равновесное (устойчивое) состояние экосистемы обеспечивается на основе круговоротов веществ (см. п. 1.5). В этих круговоротах непосредственно участвуют все составные части экосистем.

Для поддержания круговорота веществ в экосистеме необходимо наличие запаса неорганических веществ в усвояемой форме и трех функционально различных экологических групп организмов: продуцентов, консументов и редуцентов.

Продуцентами выступают автотрофные организмы, способные строить свои тела за счет неорганических соединений (рис. 8.2).

Рис. 8.2. Продуценты

Консументы - гетеротрофные организмы, потребляющие органическое вещество продуцентов или других консументов и трансформирующие его в новые формы.

Редуценты живут за счет мертвого органического вещества, переводя его вновь в неорганические соединения. Классификация эта относительная, так как и консументы, и сами продуценты выступают частично в роли редуцентов в течение жизни, выделяя в окружающую среду минеральные продукты обмена веществ.

В принципе круговорот атомов может поддерживаться в системе и без промежуточного звена - консументов, за счет деятельности двух других групп. Однако такие экосистемы встречаются скорее как исключения, например на тех участках, где функционируют сообщества, сформированные только из микроорганизмов. Роль консументов выполняют в природе в основном животные, их деятельность по поддержанию и ускорению циклической миграции атомов в экосистемах сложна и многообразна.

Масштабы экосистемы в природе весьма различны. Неодинакова также степень замкнутости поддерживаемых в них круговоротов вещества, т.е. многократность вовлечения одних и тех же элементов в циклы. В качестве отдельных экосистем можно рассматривать, например, и подушку лишайников на стволе дерева, и разрушающийся пень с его населением, и небольшой временный водоем, луг, лес, степь, пустыню, весь океан и, наконец, всю поверхность Земли, занятую жизнью.

В некоторых типах экосистем вынос вещества за их пределы настолько велик, что их стабильность поддерживается в основном за счет притока такого же количества вещества извне, тогда как внутренний круговорот малоэффективен. Таковы проточные водоемы, реки, ручьи, участки на крутых склонах гор. Другие экосистемы имеют значительно более полный круговорот веществ и относительно автономны (леса, луга, озера и т.п.).

Экосистема - практически замкнутая система. В этом состоит принципиальное отличие экосистем от сообществ и популяций, являющиеся открытыми системами, обменивающимися со средой обитания энергией, веществом и информацией.

Однако ни одна экосистема Земли не имеет полностью замкнутого круговорота, поскольку минимальный обмен массой со средой обитания все-таки происходит.

Экосистема является совокупностью взаимосвязанных энергопотребителей, совершающих работу по поддержанию ее неравновесного состояния относительно среды обитания за счет использования потока солнечной энергии.

В соответствии с иерархией сообществ жизнь на Земле проявляется и в иерархичности соответствующих экосистем. Экосистемная организация жизни является одним из необходимых условий ее существования. Как уже отмечалось, запасы биогенных элементов, необходимых для жизни организмов на Земле в целом и на каждом конкретном участке на ее поверхности, небезграничны. Лишь система круговоротов могла придать этим запасам свойство бесконечности, необходимое для продолжения жизни.

Поддерживать и осуществлять круговорот могут только функционально различные группы организмов. Функционально-экологическое разнообразие живых существ и организация потока извлекаемых из окружающей среды веществ в циклы - древнейшее свойство жизни.

С этой точки зрения устойчивое существование многих видов в экосистеме достигается за счет постоянно происходящих в ней естественных нарушений местообитаний, позволяющих новым поколениям занимать вновь освободившееся пространство.

Экосистема (экологическая система) - основная функциональная единица экологии, представляющая собой единство живых организмов и среды их обитания, организованное потоками энергии и биологическим круговоротом веществ. Это фундаментальная общность живого и среды его обитания, любая совокупность совместно обитающих живых организмов и условий их существования (рис. 8).

Рис. 8. Различные экосистемы: а - пруда средней полосы (1 - фитопланктон; 2 - зоопланктон; 3 - жуки-плавунцы (личинки и взрослые особи); 4- молодые карпы; 5 - щуки; 6 - личинки хорономид (комаров-дергунцов); 7- бактерии; 8 - насекомые прибрежной растительности; б - луга (I - абиотические вещества, т.е. основные неорганические и органические слагаемые); II- продуценты (растительность); III- макроконсументы (животные): А - травоядные (кобылки, полевые мыши и т.д.); В - косвенные или питающиеся детритом консументы, или сапробы (почвенные беспозвоночные); С- «верховые» хищники (ястребы); IV- разлагатели (гнилостные бактерии и грибы)

С функциональной точки зрения экосистему целесообразно анализировать в следующих направлениях:

1) потоки энергии;

2) пищевые цепи;

3) структура пространственно-временного разнообразия;

4) биогеохимические круговороты;

5) развитие и эволюция;

6) управление (кибернетика);

Можно также классифицировать экосистемы по:

· Структуре;

· Продуктивности;

· Устойчивости;

Типы экосистем (по Комову):

· Аккумулятивные (верховые болота);

· Транзитные (мощный вынос вещества);

Проявления жизни на нашей планете чрезвычайно многообразны. В связи с этим выделяют различные уровни организации живой материи, которые отражают соподчиненность, иерархичность структурной организации жизни. В основе представлений об уровнях организации лежит принцип дискретности.

Молекулярный уровень. Элементарными единицами этого уровня организации жизни являются химические вещества: нуклеиновые кислоты, белки, углеводы, липиды и др. На этом уровне в основном проявляются такие важнейшие процессы жизнедеятельности, как передача наследственной информации, биосинтез, превращение энергии и др. Основная стратегия жизни на молекулярном уровне - способность создавать живое вещество и кодировать информацию, приобретенную в меняющихся условиях среды.

На клеточном уровне организации структурными элементами выступают различные органеллы. Способность к воспроизведению себе подобных, включение различных химических элементов Земли в состав клетки, регуляция химических реакций, запасание и потребление энергии - основные процессы этого уровня. Стратегия жизни на клеточном уровне - вовлечение химических элементов Земли и энергии Солнца в живые системы.

Организменный уровень организации присущ одноклеточным и многоклеточным биосистемам (растениям, грибам, животным, в том числе человеку и разнообразным микроорганизмам). У живых организмов проявляются такие свойства, как питание, дыхание, выделение, раздражимость, рост и развитие, размножение, поведение, продолжительность жизни, взаимоотношения с окружающей средой. Все перечисленные процессы в совокупности характеризуют организм как целостную саморегулирующуюся биосистему. Основная стратегия жизни на этом уровне - ориентация организма (особи) на выживание в постоянно меняющихся условиях среды.

Популяционно-видовой уровень организации характеризуется объединением родственных особей в популяции, а популяций - в виды, что приводит к возникновению новых свойств системы. Основные свойства этого уровня: рождаемость, смертность, выживание, структура (половая, возрастная, экологическая), плотность, численность, функционирование в природе. Основная стратегия популяционно-видового уровня проявляется в более полном использовании возможностей среды обитания, в стремлении к возможно более длительному существованию, в сохранении свойств вида и самостоятельном развитии.

На биогеоценотическом (экосистемном) уровне организации основными структурными элементами являются популяции разных видов. Данный уровень характеризуется множеством свойств. К ним относятся: структура экосистемы, видовой и количественный состав ее населения, типы биотических связей, пищевые цепи и сети, трофические уровни, продуктивность, энергетика, устойчивость и др. Организующие свойства проявляются в круговороте веществ и потоке энергии, саморегулировании и устойчивости, автономности, открытости системы, сезонных изменениях. Основная стратегия этого уровня - активное использование всего многообразия окружающей среды и создание благоприятных условий развития и процветания жизни во всем ее многообразии.

Самым высоким уровнем организации жизни является биосферный . Основными структурными единицами этого уровня являются биогеоценозы (экосистемы) и окружающая их среда, т.е. географическая оболочка Земли (атмосфера, гидросфера, почва, солнечная радиация и др.) и антропогенное воздействие. Для этого уровня орган и организации характерны: активное взаимодействие живого и неживого вещества планеты; биологический круговорот веществ и потоки энергии с входящими в него геохимическими циклами; хозяйственная и этнокультурная деятельность человека. Основная стратегия жизни на биосферном уровне - стремление обеспечить динамичную устойчивость биосферы как самой большой экосистемы нашей планеты.