Какие химические элементы распространены в космосе. Химия и космос. химия земли к сожалению, человек научился использовать только те материалы, которые находятся на поверхности земли, но земные ресурсы. Можно ли найти жизнь на других планетах

Бовыка Валентина Евгеньевна

Скачать:

Предварительный просмотр:

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа № 20 г. Краснодара

Распространение химических элементов на Земле и в космосе. Образование химических элементов в процессе первичного нуклеосинтеза и в недрах звезд.

Реферат по физике

Выполнен ученицей:

10 «Б» класса МБОУ СОШ № 20 г. Краснодара

Бовыка Валентиной

Учитель:

Скрылева Зинаида Владимировна

Краснодар

2016

  1. Химия космоса, что изучает химия космоса.
  2. Некоторые термины.
  3. Химический состав планет Солнечной системы и Луны.
  4. Химический состав комет, метеоритов.
  5. Первичный нуклеосинтез.
  6. Другие химические процессы во вселенной.
  7. Звезды.
  8. Межзвездная среда
  9. Список использованных ресурсов

Химия космоса. Что изучает химия космоса?

Предметом изучения химии космоса является химический состав космических тел (планет, звезд, комет и т.д), межзвездного пространства, а также химические процессы, которые происходят в космосе.

Химия космоса занимается преимущественно процессами, протекающими при атомно-молекулярном взаимодействии веществ, а нуклеосинтезом внутри звезд занимается физика.

Некоторые термины

Для простоты восприятия следующего материала необходим словарь терминов.

Звезды – светящиеся газовые массивные шары, в недрах которых протекают реакции синтеза химических элементов.

Планета – небесные тела, которые вращаются по орбитам вокруг звезд или их остатков.

Кометы – космические тела, которые состоят из замороженных газов, пыли.

Метеориты – малые космические тела, попадающие на Землю из межпланетного пространства.

Метеоры – явления в виде светящегося следа, которое обусловлено попаданием в атмосферу Земли метеорного тела.

Межзвездная среда – разряженное вещество, электромагнитное излучение и магнитное поле, заполняющие пространство между звездами.

Основные компоненты межзвездного вещества: газ, пыль, космические лучи.

Нуклеосинтез – процесс образования ядер химических элементов (тяжелее водорода) в ходе реакций ядерного синтеза.

Химический состав планет Солнечной системы и Луны

Планеты Солнечной системы – это небесные тела, вращающиеся вокруг звезды под названием Солнце.

Солнечная система состоит из 8 планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун.

Рассмотрим каждую планету в отдельности.

Меркурий

Самая близкая планета к Солнцу в Солнечной системе, самая маленькая планета. Диаметр Меркурия составляет примерно 4870 км.

Химический состав

Ядро планеты – железное, ферромагнитное. Содержание железа = 58%

Атмосфера по одним данным состоит большей частью из азота (N 2 ) с примесью углекислого газа (CO 2 ), по другим – из гелия (He), неона (Ne) и аргона (Ar).

Венера

Вторая планета Солнечной системы. Диаметр ≈ 6000 км.

Химический состав

Ядро железное, мантия содержит силикаты, карбонаты.

Атмосфера состоит на 97% из углекислого газа (CO 2 ), остальное приходится на азот (N 2 ), воду (H 2 O) и кислород (O 2 ).

Земля

Третья планета Солнечной системы, единственная планета Солнечной системы с наиболее благоприятными условиями для жизни. Диаметр примерно 12500 км.

Химический состав

Ядро железное. Земная кора содержит кислород O 2 (49%), кремний Si (26%), алюминий Al (4,5%), а также другие химические элементы. Атмосфера на 78% состоит из азота (N 2 ), на 21% из кислорода (O 2 ) и на 0,03% из углекислого газа (CO 2 ), остальное приходится на инертные газы, пары воды и примеси. Гидросфера состоит в большей степени из кислорода O 2 (85,82%), водорода H 2 (10,75%) и других элементов. В состав всех живых существ обязательно входит углерод (C).

Марс

Марс – четвертая планета Солнечной системы. Диаметр примерно 7000 км

Химический состав

Ядро железное. В коре планеты содержатся оксиды железа и силикаты.

Юпитер

Юпитер – пятая планета от Солнца. Самая крупная планета солнечной системы. Диаметр более 140000 км.

Химический состав

Ядро – сжатые водород (H 2 ) и гелий (He). В атмосфере содержатся водород (H 2 ), метан (CH 4 ), гелий (He), аммиак (NH 3 ).

Сатурн

Сатурн – шестая планета от Солнца. Имеет диаметр около 120000 км.

Химический состав

Данных о ядре и земной коре нет. Атмосфера состоит из тех же газов, что и атмосфера Юпитера.

Уран и Нептун

Уран и Нептун – седьмая и восьмая планеты соответственно. Обе планеты имеют примерный диаметр 50000 км.

Химический состав

Данных о ядре и коре нет. Атмосфера образована метаном (CH 4 ), гелием (He), водородом (H 2 ).

Луна

Луна – спутник Земли, ее сырьевая база. Лунный грунт называют реголитом, в ее состав входят оксид кремния (IV), оксид алюминия и оксиды других металлов, много урана, нет воды.

Химический состав комет, метеоритов

Метеориты

Метеориты бывают железными, железно-каменными и каменными. Чаще всего на Землю падают именно каменные метеориты. В среднем по подсчетам на каждый железный метеорит приходится 16 каменных.

Химический состав железных метеоритов: 90% железа (Fe), 8,5% никеля (Ni), 0,6% кобальта (Co) и 0,01% кремния (Si).

Каменные метеориты в основном состоят из кислорода (0 2 ) (41%) и кремния (Si) (21%).

Кометы

Кометы представляют собой твердые тела, которые окружены газовой оболочкой. Ядро состоит из замороженных метана (CH 4 ) и аммиака (NH 3 ) с минеральными примесями. В газовых кометах было обнаружено множество радикалов и ионов. Наиболее современные наблюдения проводились за кометой Хейла-Боппа, в ее состав входили сероводород, вода, тяжелая вода, сернистый газ, формальдегид, метанол, муравьиная кислота, циановодород, метан, ацетилен, этан, фостерит и другие соединения.

Первичный нуклеосинтез

Для рассмотрения первичного нуклеосинтеза обратимся к таблице.

Возраст вселенной

Температура, К

Состояние и состав вещества

0,01 с

10 11

нейтроны, протоны, электроны, позитроны в тепловом равновесии. Число n и p одинаково.

0,1 с

3*10 10

Частицы те же, но отношение числа протонов к числу нейтронов 3:5

10 10

электроны и позитроны аннигилируют, p:n =3:1

13,8 с

3*10 9

Начинают образовываться ядра дейтерия D и гелия 4 Не, исчезают электроны и позитроны, есть свободные протоны и нейтроны.

35 мин

3*10 8

Устанавливается количество D и Не по отношению к числу p и n

4 Не:Н + ≈24-25% по массе

7*10 5 лет

3*10 3

Химической энергии достаточно для образования устойчивых нейтральных атомов. Вселенная прозрачна для излучения. Вещество доминирует над излучением.

Сущность первичного нуклеосинтеза сводится к образованию из нуклонов ядер дейтерия, из ядер дейтерия и нуклонов – ядер гелия с массовым числом 3и трития, а из ядер 3 Не, 3 Н и нуклонов – ядер 4 Не.

Другие химические процессы во Вселенной

При высоких температурах (в околозвездных пространствах температура может достигать порядка нескольких тысяч градусов) все химические вещества начинают распадаться на составляющие – радикалы (СН 3 С 2 , СН и т.д.) и атомы (Н, О и т.д.)

Звезды

Звезды различаются по массе, размерам, температуре, светимости.

Наружные слои звезд состоят в основном из водорода, а также из гелия, кислорода и других элементов (С, Р, N, Ar, F, Mg и т.д)

Звезды субкарлики состоят из более тяжелых элементов: кобальт, скандий, титан, марганец, никель и т.д.

В атмосфере звезд гигантов могут встречаться не только атомы химических элементов, но и молекулы тугоплавких оксидов (например, титана и циркония), а также некоторые радикалы: CN, CO, C 2

Химический состав звезд изучают спектроскопическим методом. Таким образом, на Солнце были найдены железо, водород, кальций и натрий. Гелий был впервые найден именно на Солнце, а позднее уже обнаружен в атмосфере планеты Земля. В настоящее время в спектрах Солнца и других небесных тел найдено 72 элемента, все эти элементы обнаружены и на Земле.

Источником энергии звезд являются термоядерные реакции синтеза.

На первом этапе жизни звезды в ее недрах происходит превращение водорода в гелий

4 1 Н → 4 Не

Затем гелий превращается в углерод и кислород

3 4 Не→ 12 С

4 4 Не→ 16 О

На следующем этапе топливом являются углерод и кислород, в альфа процессах образуются элементы неона до железа. Дальнейшие реакции захвата заряженных частиц являются эндотермическими, поэтому нуклеосинтез останавливается. Из-за остановки термоядерных реакций нарушается равновесие железного ядра, начинается гравитационное сжатие, часть энергии которого расходуется на распад ядра железа на α-частицы и нейтроны. Этот процесс называется гравитационным коллапсом и протекает около 1 с. В результате резкого повышения температуры в оболочке звезды происходят термоядерные реакции горения водорода, гелия, углерода и кислорода. Выделяется огромное количество энергии, что приводит к взрыву и разлету вещества звезды. Это явление называется сверхновой. При взрыве сверхновой выделяется энергия, которая придает частицам большое ускорение, потоки нейтронов бомбардируют ядра элементов, которые образовались ранее. В процессе нейтронных захватов с последующим β-излучением происходит синтез ядер элементов тяжелее железа. До этой стадии доходят только наиболее массивные звезды.

Во время коллапса идет образование нейтронов из протонов и электронов по схеме:

1 1 р + -1 0 е → 1 0 n + v

Образуется нейтронная звезда.

Ядро сверхновой может превратиться в пульсар – ядро, которое вращается с периодом в доли секунды и излучает электромагнитное излучение. Ее магнитное поле достигает колоссальных размеров.

Также возможно, что большая часть оболочки преодолевает силу взрыва и падает на ядро. Получая дополнительную массу, нейтронная звезда начинает сжиматься до образования «черной дыры».

Межзвездная среда

Межзвездная среда состоит из газа, пыли, магнитных полей и космических лучей. Поглощение излучения звезд происходит за счет газа и пыли. Пыль межзвездной среды имеет температуру 100-10 К, температура межзвездного газа может колебаться в пределах от 10 до 10 7 К и зависит от плотности и источников нагрева. Межзвездный газ может быть как нейтральным, так и ионизированным (Н 2 0 , Н 0 , Н + , е - , Не 0 ).

Первое химическое соединение в космосе было обнаружено в 1937 году с помощью спектроскопии. Этим соединением был радикал СН, через несколько лет был найден циан CN, а в 1963 году обнаружили гидроксил ОН.

С применением в спектроскопии радиоволн и инфракрасного излучения стало возможным изучение «холодных» участков космического пространства. Сначала были обнаружены неорганические вещества: вода, аммиак, угарный газ, сероводород, а потом органические: формальдегид, муравьиная кислота, уксусная кислота, уксусный альдегид и муравьиный спирт. В 1974 году в космосе нашли этиловый спирт. Потом японскими учеными был обнаружен метиламин CH 3 -NH 2 .

В межзвездном пространстве движутся потоки атомных ядер – космические лучи. Около 92% из этих ядер составляют ядра водорода, 6% - гелия, 1% - ядра более тяжелых элементов. Считается, что космические лучи образуются вследствие взрыва сверхновых.

Пространство между космическими телами заполнено межзвездным газом. Он состоит из атомов, ионов и радикалов, а также в ее состав входит пыль. Доказано существование таких частиц как: CN, CH, OH, CS, H 2 O, CO, COS, SiO, HCN, HCOOH, CH 3 OH и другие.

Столкновение частиц космического излучения, солнечного ветра и межзвездного газа приводит к образованию разнообразных частиц, в том числе и органических.

При столкновении протонов с атомами углерода образуются углеводороды. Из силикатов, карбонатов и различных оксидов образуется гидроксил OH.

Под действием космических лучей в атмосфере Земли образуются такие изотопы, как: углерод с массовым числом 14 14 С, бериллий, массовое число которого равно 10 10 Ве, и хлор с массовым числом 36 36 Cl.

Изотоп углерода с массовым числом 14 накапливается в растениях, кораллах, сталактитах. Изотоп бериллия с массовым числом 10 – в донных отложениях морей и океанов, полярном льду.

Взаимодействие космического излучения с ядрами земных атомов дает информацию о процессах, протекающих в космосе. Этими вопросами занимается современная наука – экспериментальная палеоастрофизика.

К примеру, протоны космических лучей, сталкиваясь с молекулами азота в воздухе, разбивают молекулу на атомы, и протекает ядерная реакция:

7 14 N + 1 1 H→2 2 4 He + 4 7 Be

В результате этой реакции образуется радиоактивный изотоп бериллия.

Протон в момент столкновения с атомами атмосферы выбивает из этих атомов нейтроны, эти нейтроны взаимодействуют с атомами азота, что приводит к образованию изотопа водорода с массовым числом 3 – трития:

7 14 N + 0 1 n→ 1 3 H + 6 12 C

Тритий, подвергаясь β-распаду, выбрасывает электрон:

1 3 H→ -1 0 e + 2 3 He

Так образуется легкий изотоп гелия.

Радиоактивный изотоп углерода образуется в ходе захвата атомами азота электронов:

7 14 N + -1 0 e → 6 14 C

Распространенность химических элементов в космосе

Рассмотрим распространенность химических элементов в галактике Млечный путь. Данные о наличии тех или иных элементов были получены путем спектроскопии. Для наглядного представления используем таблицу.

Заряд ядра

Элемент

Массовая доля в частях на тысячу

Водород

Гелий

Кислород

10,4

Углерод

Неон

1,34

Железо

Азот

0,96

Кремний

0,65

Магний

0,58

Сера

0,44

Для более наглядного представления обратимся к круговой диаграмме.

Как видно на диаграмме, самым распространенным элементом во Вселенной является водород, вторым по распространенности является гелий, а третьим – кислород. Массовые доли других элементов значительно меньше.

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Распространенность химических элементов на Земле и в космосе. Образование химических элементов в процессе первичного нуклеосинтеза и в недрах звезд Выполнила Ученица 10 «Б» класса МБОУ СОШ №20 Бовыка Валентина Руководитель: Скрылева З.В.

Химия космоса – наука о химическом составе космических тел, межзвездного пространства, а также о химических процессах, которые протекают в космосе.

Необходимые термины Звезды – светящиеся газовые массивные шары, в недрах которых протекают реакции синтеза химических элементов. Планета – небесные тела, которые вращаются по орбитам вокруг звезд или их остатков. Кометы – космические тела, которые состоят из замороженных газов, пыли. Метеориты – малые космические тела, попадающие на Землю из межпланетного пространства. Метеоры – явления в виде светящегося следа, которое обусловлено попаданием в атмосферу Земли метеорного тела. Межзвездная среда – разряженное вещество, электромагнитное излучение и магнитное поле, заполняющие пространство между звездами. Основные компоненты межзвездного вещества: газ, пыль, космические лучи. Нуклеосинтез – процесс образования ядер химических элементов (тяжелее водорода) в ходе реакций ядерного синтеза.

Меркурий Венера Земля Марс

Юпитер Сатурн Уран Нептун

Луна – спутник Земли, ее сырьевая база.

Метеорит Комета

Первичный нуклеосинтез Возраст вселенной Температура, К Состояние и состав вещества 0,01 с 10 11 нейтроны, протоны, электроны, позитроны в тепловом равновесии. Число n и p одинаково. 0,1 с 3*10 10 Частицы те же, но отношение числа протонов к числу нейтронов 3:5 1с 10 10 электроны и позитроны аннигилируют, p:n =3:1 13,8 с 3*10 9 Начинают образовываться ядра дейтерия D и гелия 4 Не, исчезают электроны и позитроны, есть свободные протоны и нейтроны. 35 мин 3*10 8 Устанавливается количество D и Не по отношению к числу p и n 4 Не:Н + ≈24-25% по массе 7*10 5 лет 3*10 3 Химической энергии достаточно для образования устойчивых нейтральных атомов. Вселенная прозрачна для излучения. Вещество доминирует над излучением.

Основные реакции протекающие в недрах звезд 4 1 Н → 4 Не 3 4 Не→ 12 С 4 4 Не→ 16 О +1 1 р + -1 0 е → 1 0 n + v

Основные реакции протекающие за счет компонентов межзвездной среды 7 14 N + 1 1 H →2 2 4 He + 4 7 Be 7 14 N + 0 1 n→ 1 3 H + 6 12 C 1 3 H → -1 0 e + 2 3 He 7 14 N + -1 0 e → 6 14 C

Распространенность химических элементов в галактике Млечный путь

Список использованных ресурсов http://wallpaperscraft.ru/catalog/space/1920x1080 http://www.cosmos-online.ru/planets-of-the-solar-system.html http://www.grandars.ru/shkola/estestvoznanie/merkuriy.html http://www.grandars.ru/shkola/estestvoznanie/venera.html http://dic.academic.ru/pictures/wiki/files/69/Earth_Eastern_Hemisphere.jpg http://spacetimes.ru/img/foto/planeta-mars_big.jpg http://www.shvedun.ru/images/stat/jp/jp.jpg http://spacegid.com/wp-content/uploads/2012/12/1995-49-f.jpg http://v-kosmose.com/wp-content/uploads/2013/12/4_179_br.jpg http://v-kosmose.com/wp-content/uploads/2013/11/Neptune_Full_br.jpg https://upload.wikimedia.org/wikipedia/commons/thumb/e/e1/FullMoon2010.jpg/280px-FullMoon2010.jpg http://www.opoccuu.com/tunm01.jpg https://i.ytimg.com/vi/06xW4UegYZ0/maxresdefault.jpg http://terramia.ru/wp-content/uploads/2013/01/Nocturne-Eruption.jpg http://galspace.spb.ru/index61.file/ic.jpg

— Зверь и птица, звёзды и камень — все мы одно, все одно... — бормотала Кобра, опустив свой клобук и тоже раскачиваясь. — Змея и ребёнок, камень и звезда — все мы одно...

Памела Треверс. «Мэри Поппинс»

Чтобы установить распространённость химических элементов во Вселенной, нужно определить состав её вещества. А оно сосредоточено не только в крупных объектах — звёздах, планетах и их спутниках, астероидах, кометах. Природа, как известно, не терпит пустоты, поэтому и космическое пространство заполнено межзвёздными газом и пылью. К сожалению, нам для непосредственного изучения доступно лишь земное вещество (и только то, которое «под ногами») да очень небольшое количество лунного грунта и метеориты — обломки некогда существовавших космических тел.

Как же определить химический состав объектов, удалённых от нас на тысячи световых лет? Получать всю необходимую для этого информацию стало возможным после разработки в 1859 г. немецкими учёными Густавом Кирхгофом и Робертом Бунзеном метода спектрального анализа. А в 1895 г. профессор Вюрцбургского университета Вильгельм Конрад Рентген случайно обнаружил неизвестное излучение, которое учёный назвал Х-лучами (ныне они известны как рентгеновские). Благодаря этому открытию появилась рентгеновская спектроскопия, которая позволяет непосредственно по спектру определять порядковый номер элемента.

В основе спектрального и рентгеноспектрального анализа лежит способность атомов каждого химического элемента излучать или поглощать энергию в виде волн строго определённой, только ему одному свойственной длины, что и улавливают специальные приборы — спектрометры. Атом испускает волны видимого света при переходах электронов на внешних уровнях, а за рентгеновское излучение отвечают более «глубинные» электронные слои. По интенсивности определённых линий в спектре и узнают содержание элемента в том или ином небесном теле.

К концу XX в. исследованы спектры многих объектов во Вселенной, накоплен огромный статистический материал. Разумеется, данные о химическом составе космических тел и межзвёздного вещества не окончательны и постоянно уточняются, но благодаря уже собранным сведениям удалось установить среднее содержание элементов в космосе.

Все тела во Вселенной состоят из атомов одних и тех же химических элементов, но содержание их в разных объектах различно. При этом наблюдаются интересные закономерности. Лидеры по распространённости — водород (его атомов в космосе — 88,6 %) и гелий (11,3 %). На долю остальных элементов приходится всего 1 %! В звёздах и планетах распространены также углерод, азот, кислород, неон, магний, кремний, сера, аргон и железо. Таким образом, лёгкие элементы преобладают. Но есть и исключения. Среди них — «провал» в области лития, бериллия и бора и низкое содержание фтора и скандия, причина которого до сих пор не установлена.

Выявленные закономерности можно представить в виде графика. Внешне он напоминает старую пилу, зубья которой сточились по-разному, а некоторые вообще сломались. Верхушки зубьев соответствуют элементам с чётными порядковыми номерами (т. е. тем, у которых количество протонов в ядрах чётное). Данная закономерность носит название правила Олдо — Харкинса в честь итальянского химика Джузеппе Оддо (1865—1954) и американского физика и химика Уильяма Харкинса (1873— 1951). Согласно этому правилу, распространённость элемента с чётным зарядом больше, чем его соседей с нечётным количеством протонов в ядре. Если же у элемента и количество нейтронов чётное, то он встречается ещё чаше и изотопов образует больше. Во Вселенной существует 165 стабильных изотопов, у которых и число нейтронов, и число протонов чётное; 56 изотопов с чётным числом протонов и нечётным — нейтронов; 53 изотопа, у которых число нейтронов чётное, а протонов — нечётное; и всего 8 изотопов с нечётным количеством и нейтронов, и протонов.

Бросается в глаза и ещё один максимум, приходящийся на железо — один из наиболее распространённых элементов. На графике его зубец возвышается, как Эверест. Это связано с большой энергией связи в ядре железа — самой высокой среди всех химических элементов.

А вот и сломанный зуб у нашей пилы — на графике нет значения распространённости технеция, элемента № 43, вместо него здесь пробел. Казалось бы, что в нём такого особенного? Технеций находится в середине периодической системы, распространённость его соседей подчиняется общим закономерностям. А дело вот в чём: этот элемент просто-напросто давно «закончился», период полураспада его самого долгоживущего изотопа 2,12.10 6 лет. Технеций даже не был открыт в традиционном понимании этого слова: его синтезировали искусственно в 1937 г., и то случайно. Но вот что интересно: в 1960 г. в спектре Солнца была обнаружена линия «несуществующего» элемента № 43! Это блестящее подтверждение того факта, что синтез химических элементов в недрах звёзд продолжается и поныне.

Второй сломанный зуб — отсутствие на графике прометия (№ 61), и объясняется оно теми же причинами. Период полураспада самого устойчивого изотопа этого элемента очень мал, всего 18 лет. И пока нигде в космосе он не дал о себе знать.

Совсем нет на графике и элементов с порядковыми номерами больше 83: все они тоже очень нестабильны, и в космосе их исключительно мало.


Космохимия Космохимия- наука о химическом составе космических тел, законах распространённости и распределения химических элементов во Вселенной, процессах сочетания и миграции атомов при образовании космического вещества. Геохимия - наиболее изученная часть космохимии. Космохимия- наука о химическом составе космических тел, законах распространённости и распределения химических элементов во Вселенной, процессах сочетания и миграции атомов при образовании космического вещества. Геохимия - наиболее изученная часть космохимии.


Химия Земли В состав земной коры входят: O – 46.6 % Ca – 3.63 % Al – 8.13 % Na – 2.83 % Si – % K – 2.59 % Fe – 5.0 % Mg – 2.0 % Всего - 98,59%


Химический состав метеорита Химические анализы метеоритов, упавших на нашу планету, дали замечательные результаты. Если подсчитать среднее содержание во всех метеоритах наиболее распространенных на Земле элементов: железа, кислорода, кремния, магния, алюминия, кальция,- то на их долю падает ровно 94%, т. е. их в составе метеоритов равно столько же, сколько в составе земного шара.








Химия межзвёздного пространства Еще не так давно в науке допускалось, что межзвездное пространство представляет собой пустоту. Все вещество Вселенной сосредоточено в звездах, а между ними нет ничего. Лишь в пределах Солнечной системы, где-то по неведомым путям, блуждают метеориты и их загадочные собратья – кометы. Еще не так давно в науке допускалось, что межзвездное пространство представляет собой пустоту. Все вещество Вселенной сосредоточено в звездах, а между ними нет ничего. Лишь в пределах Солнечной системы, где-то по неведомым путям, блуждают метеориты и их загадочные собратья – кометы. Химия межзвездного пространства - удивительно сложна. В космосе были открыты простейшие радикалы: например, метин (CH), гидроксил (OH). Где есть гидроксил, там должна быть и вода, и она была действительно найдена в межзвездном пространстве. В космосе есть вода, органические молекулы (формальдегид), аммиак. Эти соединения, реагируя между собой, могут привести к образованию аминокислот.


Лунная химия Лунные камни особенные – на их составе сказывается недостаток кислорода. На Луне не было ни свободной воды, ни атмосферы. Все летучие соединения, возникшие при магматических процессах, улетели в космос. Каменные метеориты сложены простыми силикатами, число минералов в них едва достигает сотни. В лунных же породах минералов немного больше, чем в метеоритах, – вероятно, несколько сотен. А на поверхности Земли открыто больше 3 тыс. минералов. Это говорит о сложности земных химических процессов по сравнению с лунными.


Химический состав планет Меркурий – самая близкая к Солнцу планета Меркурий покрыт силикатными породами, сходными с земными. Состав атмосферы Венеры углекислого газа (СО2) около 97 %, азота (N2) не более 2 %, водяного пара (Н2О) около 1 %, кислорода (О2) не более 0,1 %.


Химический состав планет Атмосфера этой планеты состоит из углекислоты, есть немного азота, кислорода и водяного пара. Советские и американские ученые отправили автоматические исследовательские станции и на Марс. Марс – холодная безжизненная пыльная пустыня. Самая интересная, удивительная и загадочная планета с точки зрения химии – это Юпитер. На 98 % Юпитер состоит из водорода и гелия. Обнаружены также вода, сероводород, метан и аммиак.


Химический состав планет Атмосфера Урана состоит примерно на 83% из водорода, на 15% из гелия и на 2% из метана. Подобно другим газовым планетам, Уран имеет полосы облаков, которые очень быстро перемещаются. Строение и набор составляющих Нептун элементов, вероятно, подобны Урану: различные "льды" или отвердевшие газы с содержанием около 15% водорода и небольшого количества гелия Атмосфера Сатурна - в основном, водород и гелий.


МЕТАЛЛЫ В КОСМОСЕ Титан сегодня - важнейший конструкционный материал. Это связано с редким сочетанием легкости, прочности и тугоплавкости данного металла. На основе титана создано множество высокопрочных сплавов для авиации, судостроения и ракетной техники. Титан сегодня - важнейший конструкционный материал. Это связано с редким сочетанием легкости, прочности и тугоплавкости данного металла. На основе титана создано множество высокопрочных сплавов для авиации, судостроения и ракетной техники.


Фуллерены в космосе фуллерены разветвлённые цепочки углеводородов фуллерены разветвлённые цепочки углеводородов Фуллерены впервые найдены вне Млечного Пути Фуллерены впервые найдены вне Млечного Пути фуллерены были найдены в метеоритах фуллерены были найдены в метеоритах

Природа щедро разбросала свои материальные ресурсы по нашей планете. Но нетрудно заметить зависимость: чаще всего человек использует те веще­ства, запасы сырья которых ограничены, и наоборот, крайне слабо использует такие химические элементы и их соединения, сырьевые ресурсы которых почти без­граничны. В самом деле, 98,6% массы физически доступного слоя Земли со­ставляют всего восемь химических элементов: железо (4,6%) , кислород (47%), кремний (27,5%), магний (2,1%), алюминий (8,8%), кальций (3,6%), натрий (2,6%), калий (2,5%), никель. Более 95% всех металлических изделий, конст­рукций самых разнообразных машин и механиз­мов, транспортных путей произ­водятся из железорудного сырья. Ясно, что такая практика расточительна с точки зрения как ис­черпания ресурсов железа, так и энергетических затрат на пер­вичную обработку железорудного сырья.

Глядя на приведенные здесь данные о распространенности восьми названных химических элементов, можно смело утвер­ждать о больших возможностях в ис­пользовании алюминия, а затем магния и, может быть, кальция в создании ме­таллических материалов ближайшего будущего,но для этого должны быть раз­работаны энергоэкономичные методы производства алюминия с целью получе­ния хлорида алюминия и восстановле­ния последнего до металла. Этот метод был уже опробован в ря­де стран и дал основание для проектирования алюми­ниевых за­водов большой мощности. Но выплавка алюминия в масштабах, со­поставимых с производством чугуна, стали и ферросплавов, еще не может быть реализована в самое ближайшее время, по­тому что эта задача должна решаться параллельно с разработкой соответствующих алюминиевых сплавов, способных конкуриро­вать с чугуном, сталью и другими материалами из железорудного сы­рья.

Широкая распространенность кремния служит посто­янным укором человече­ству в смысле чрезвычайно низкой сте­пени использования этого химического элемента в производстве материалов. Силикаты составляют 97% всей массы земной коры. И это дает основание утверждать, что именно они должны быть основным сырьем для производства практически всех строительных материалов и полуфабрикатов при изготовлении керамики, способной конкурировать с ме­таллами. Надо, кроме того, принимать во внимание еще и огромные скопления промышленных отходов силикатного характера, таких, как "пустая порода" при добыче угля, "хвосты" при добыче металлов из руд, зола и шлаки энергетиче­ского и металлургического производст­ва. И как раз эти силикаты необходимо в первую очередь превращать в сырье для строительных материалов. С одной стороны, это обещает большие выгоды, так как сырье не надо добывать, оно в готовом виде ждет своего потребителя. А с другой - его утилизация является мерой борьбы с загрязнением окружающей среды.

В космосе наиболее широко распространены лишь два элемента - водород и гелий, все остальные элементы можно рассматри­вать только как дополнение к ним.

Вопрос 54. Развитие представлений о химическом строение вещества. Химиче­ские соединения.

Химией называют науку о химических элементах и их соедине­ниях.

История развития химических концепций начинается с древних времен. Де­мокрит, Эпикур высказывали гениальные мысли о том, что все тела состоят из атомов различной величины и разной формы, что и обусловливает их качест­венное различие. Аристо­тель и Эмпедокл считали, что в телах сочетаются

Первый по-настоящему действенный способ определения свойств вещества был предложен во второй половине XVII в. английским ученым Р. Бойлем (1627-1691).Результаты экспериментальных исследований Р. Бойля пока­зали, что качества и свойства тел зависят от того, из каких ма­териальных элементов они состоят.

В 1860 г. выдающимся русским химиком А.М. Бутлеровым (1828-1886) была создана теория химического строения вещества - возник более высокий уровень развития химических знаний - структурная химия.

В этот период зарождалась технология органических веществ.

Под влиянием новых требований производства возникло учение о химиче­ских процессах, в котором учитывалось изменение свойств вещества под влия­нием температуры, давления, раство­рителей и других факторов, заменяющих дерево и металл в строительных работах, пищевое сырье в производстве олифы, лаков, моющих средств и смазочных материалов.

В 1960-1970 гг. появился следующий, более высокий, уровень химических знаний - эволюционная химия. В основе ее лежит принцип самоорганизации химических систем, т. е. принцип применения химического опыта высокоорга­низованной живой природы.

До недавнего времени химики считали ясным, что следует относить к хими­ческим соединениям, а что - к смесям. Еще в 1800-1808 гг. французский уче­ный Ж. Пруст (1754-1826) установил закон постоянства состава: любое инди­видуальное химическое соединение обладает строго определенным, неизмен­ным составом, прочным притяжением составных частей (атомов) и тем отлича­ется от смесей

С конца XIX в. возобновились исследования, подвергавшие сомнению абсо­лютизацию закона постоянства состава. Выдаю­щийся русский химик Н.С. Кур­наков (1860-1941) в результате исследований интерметалличе­ских соедине­ний, т. е. соединений, состоящих из двух металлов, установил образование на­стоящих индивидуаль­ных соединений переменного состава и нашел границы их од­нородности на диаграмме "состав-свойство", отделив от них об­ласти сущест­вования соединений стехиометрического состава. Химические соединения пе­ременного состава он назвал бертоллидами , а за соединения­ми постоянного со­става оставил названиедальтониды .

Как показали результаты физических исследований, суть проблемы химиче­ских соединений состоит не столько в посто­янстве или непостоянстве химиче­ского состава, сколько в физи­ческой природе химических связей, объединяю­щих атомы в единую квантово-механическую систему - молекулу.

Число химических соединений огромно. Они отличаются как составом, так и химическими и физическими свойствами. Но все же химическое соединение - качественно определенное веще­ство, состоящее из одного или нескольких хи­мических элемен­тов.

Муниципальное Общебразовательное Учреждение

Средняя Общеобразовательная Школа №7

г.Бугуруслан Оренбургской области

Реферат

на тему:

«Химия космоса»

Выполнил

Утегенов Тимур

Ученик 7А класса

2011
План:
Введение;


  1. Химия Земли;

  2. Химический состав метеоритов;

  3. Химический состав звезд;

  4. Химия межзвездного пространства;

  5. Начало лунной химии;

  6. Химический состав планет;
Список литературы.

Введение
Если ты любишь смотреть на звездное небо,

Если оно привлекает тебя своей гармонией

И поражает своей необъятностью-

Значит, у тебя в груди бьется живое сердце,

Значит оно сможет отзвучать на сокровенные,

слова о жизни космоса.


Химия космоса - звучит забавно, однако химия имеет прямое отношение ко многим достижениям человека в освоении космоса.

Б
ез усилий многочисленных ученых-химиков, технологов, инженеров-химиков не были бы созданы удивительные конструкционные материалы, которые позволяют космическим кораблям преодолеть земное притяжение, сверхмощное горючее, помогающее двигателям развить необходимую мощность, точнейшие приборы, инструменты и устройства, которые обеспечивают работу космических орбитальных станций.

К сожалению, человек научился использовать только те материалы, которые находятся на поверхности Земли, но земные ресурсы истощаемы. Оттуда вопрос: «Существуют ли в космосе какие-нибудь химические элементы, хотя бы немного похожие на земные и можно ли их использовать в своих целях?». В этом и заключается актуальность выбранной мной темы.

Цели работы:

1.Исследоват химию планет, звезд, межзвездного пространства.

2.Познакомится с наукой Космохимией.

3.Узнат и рассказать о новых и интересных фактах, касающихся космической химии.

4. Использовать полученные знания в дальнейшем.

На сегодняшний день существует даже отдельная наука, космохимия. Космохимия- наука о химическом составе космических тел, законах распространённости и распределения химических элементов во Вселенной, процессах сочетания и миграции атомов при образовании космического вещества. Наиболее изученная часть Космохимии - геохимия. Космохимия исследует преимущественно «холодные» процессы на уровне атомно-молекулярных взаимодействий веществ, в то время как «горячими» ядерными процессами в космосе - плазменным состоянием вещества, нуклеогенезом (процессом образования химических элементов) внутри звёзд и др. - в основном занимается физика. Космохимия - новая область знания, получившая значительное развитие во 2-й половине 20 в. главным образом благодаря успехам космонавтики. Ранее исследования химических процессов в космическом пространстве и состава космических тел осуществлялись в основном путём спектрального анализа излучения Солнца, звёзд и, отчасти, внешних слоев атмосфер планет. Этот метод позволил открыть элемент гелий на Солнце ещё до того, как он был обнаружен на Земле.

1. Химия Земли.

Для геологов, исследующих нашу планету, наиболее важно знать самые общие законы, определяющие поведение вещества на поверхности земной коры, в ее толще и в глубинах земного шара. Геолог не может искать вслепую. Он заранее должен знать, где он может найти железо, где – уран, где – фосфор, где – калий. Он должен знать, какие условия создают на Земле залежи углерода: где надо искать уголь, где – графит и где – алмазы. Геологу нужно знать, какие элементы сопутствуют друг другу в земной коре, он должен знать законы образования совместных месторождений различных элементов.

В сложных, грандиозных химических процессах, протекающих в земной коре и на ее поверхности сотни миллионов лет, продолжающихся и в наши дни, сходные своим положением в периодической системе элементы обладают сходной геохимической судьбой. Это позволяет геохимикам проследить их движение в земной коре и выяснить законы, распределяющие их на поверхности Земли.



В состав земной коры входят:


Всего - 98,59%

Если сравнить имеющиеся на всей Земле количества железа, кобальта и никеля - элементов, стоящих рядом в восьмой группе периодической системы, то окажется, что земной шар состоит из железа (атомный номер 26) на 36,9%, кобальта (атомный номер 27) на 0,2%, никеля (атомный номер 28) на 2,9%.

Геохимическое поведение различных элементов определяется, прежде всего, строением внешних электронных оболочек в их атомах, размерами атомов и соответствующих ионов. Элементы с завершенными внешними электронными оболочками (благородные газы) существуют только в атмосфере; они не вступают в природных условиях в химические соединения. Даже гелий и радон, образующиеся при радиоактивном распаде, не захватываются полностью горными породами, а непрерывно поступают из них в атмосферу. Редкие земли, стоящие в одной клетке таблицы, встречаются в природе почти всегда вместе. В одних и тех же рудах всегда присутствуют совместно и цирконий и гафний.

Геологи хорошо знают, что осмий и иридий нужно искать там же, где и платину. В периодической таблице Менделеева они стоят вместе в восьмой группе, и так же неразлучны в природе. Месторождения никеля и кобальта сопутствуют железу, и в таблице они в одной группе и в одном периоде.

Основная толща земной коры состоит из немногих минералов; все это химические соединения элементов, расположенных главным образом в коротких периодах и в начале и в конце каждого из длинных периодов таблицы. Причем преобладают среди них легкие элементы с малыми порядковыми номерами. Эти элементы составляют основную массу силикатных горных пород.

Элементы, стоящие в периодической системе в середине длинных периодов, образуют рудные, чаще всего сульфидные, месторождения. Многие их этих элементов встречаются в самородном состоянии.

И распространенность, и геохимическое поведение элемента (его миграция в земной коре) определяются его положением в периодической системе. Распространенность зависит от строения атомного ядра, геохимическое поведение – от строения электронной оболочки.

Поэтому периодическая система элементов необходима геохимику. Без нее не могла бы возникнуть и развиваться геохимия. Эта наука устанавливает общие закономерности во взаимном сосуществовании химических элементов в горных породах и рудах. Она дает возможность геологу находить в земной коре месторождения полезных ископаемых.

Периодический закон Менделеева – надежный и испытанный компас геохимика и геолога.

В начале своей работы я сказал, что речь пойдет о химии космоса, но почему- то начала говорить о химическом составе Земли… Но, во-первых, Земля - тоже небесное тело, и, во-вторых, нужно знать химический состав Земли, чтобы сравнить его с составом метеоритов и других космических тел, прилетающих к нам на Землю из таинственных глубин космического пространства.


2. Химический состав метеоритов.
Точнейшие химические анализы огромного числа метеоритов, упавших на нашу планету, дали замечательные результаты. Оказалось, что если подсчитать среднее содержание во всех метеоритах наиболее распространенных на Земле элементов: железа, кислорода, кремния, магния, алюминия, кальция,- то на их долю падает ровно 94%, т. е. их в составе метеоритов равно столько же, сколько в составе земного шара.

К

роме того, выяснилось, что в железных метеоритах

железа 91,0%,

кобальта 0,6%,

никеля 8,4%.

Если сравнить эти числа с относительным распространением этих элементов на земном шаре, приведенным выше, то получается совершенно поразительное совпадение: оказывается, что на Земле из этих трех элементов приходится на долю

железа 92%,

кобальта 0,5%,

никеля 7,5%,

т
. е. и на Земле и в метеоритах эти элементы находятся приблизительно в одинаковых соотношениях. Эти и многие другие обнаруженные совпадения дали ученым основание сделать вывод: вещество на Земле и вещество в небесном пространстве одинаково. Оно состоит из одних и тех же элементов.

Каждый из элементов и на Земле и в метеоритах имеет почти одинаковый изотопный состав. Например, неоднократно проводившиеся анализы изотопного состава серы, добытой из пепла и лавы многочисленных вулканов, находящихся в различных частях земного шара, показали, что сера одинакова повсюду. Всюду отношение между количествами стабильных изотопов серы -32 и ссры-34 одно и то же. Оно равно 22,200. Изотопный состав серы из метеоритов - единственных представителей Космоса, доступных прямому изучению, совершенно такой же, как и на Земле.

Далее оказалось, что наиболее распространенные элементы одни и те же. Даже соотношение между ними и тут и там одно и то же. Чередование элементов с четными и нечетными порядковыми номерами в периодической таблице также соблюдается одинаково и тут и там. Можно было бы, конечно, привести еще очень много примеров, показывающих большое сходство в поведении химических элементов на Земле и в космическом пространстве, отметить еще очень много общих закономерностей.

Может ли это быть случайным? Конечно, нет.

Откуда бы ни прилетали к нам на Землю случайные гости из Вселенной - быть может, это части комет, принадлежавших солнечной системе; быть может, это обломки малых планет; быть может, это вестники из чужого звездного мира, - важно одно: по своему химическому составу, по соотношению между элементами, по тем химическим соединениям, которые найдены в метеоритах, они сообщают нам, что действие великого закона Менделеева не ограничивается пределами нашей планеты. Он является единым для всей Вселенной, где могут существовать атомы с их электронной оболочкой. Из этого вывод: «Материя всюду едина».

3. Химический состав звезд.


Элемент

Количество (примерно)

Водород

8300

Гелий

1700

Углерод

1,5

Азот

0,9

Кислород

9,0

Фтор

0,028

Неон

3,4

Магний

0,49

Алюминий

0,05

Кремний

0,77

Фосфор

0,0028

Сера

0,25

Хлор

0,014

Аргон

0,07


В данной таблице приведены лишь примерные числа, но существуют звезды, имеющие повышенное содержание того или иного элемента. Так, известны звезды с по повышенным содержанием кремния (кремниевые звезды), звезды, в которых много железа (железные звезды), марганца (марганцевые), углерода (углеродные) и т. п. Звезды с аномальным составом элементов довольно разнообразны. В молодых звездах типа красных гигантов обнаружено повышенное содержание тяжелых элементов. В одной из них найдено повышенное содержание молибдена, в 26 раз превышающее его содержание в Солнце.

В недрах звезд, при немыслимых для Земли условиях, при температуре в сотни миллионов кельвинов и непостижимо огромных давлениях, протекает множество разнообразных ядерно-химических реакций.

В наши дни уже существует обширная область науки, увлекательная химия недоступного – ядерная астрохимия. Она выясняет важнейшие для всей науки вопросы: как образовались во Вселенной элементы, где и какие элементы возникают, какова их судьба в вечном развитии мироздания.

Методы этой науки необычны. Она пользуется и наблюдением – изучает с помощью спектроскопии состав звездных атмосфер, и экспериментом – исследует реакции быстрых частиц в земных ускорителях. Теоретические расчеты позволяют ученым заглянуть в недра звезд, где уже открыто немало интересного и кроется много загадочного.

Выяснено, например, что в центральных областях звезд, при сверхвысоких температурах и давлениях, где скорость «выгорания» водорода особенно велика, где количество его мало, а содержание гелия велико, возможны реакции между ядрами гелия. Там рождаются загадочные ядра бериллия – 8 (на Земле они совсем не могут существовать), там возникают и самые прочные ядра: углерод – 12, кислород – 16, неон – 20 и другие ядра «гелиевого» цикла.

Найдены в звездах и такие ядерно-химические реакции, при которых возникают нейтроны. А уж если есть нейтроны, то можно понять, каким путем появляются в звездах и почти все остальные элементы. Но очень много загадок стоит еще перед наукой на этом пути. Непостижимо огромно многообразие звезд во Вселенной.

В
ероятно, во всех доступных нашему наблюдению звездах преобладает водород, но содержанием других элементов звезды очень сильно различаются: в некоторых звездах обнаружено такое высокое содержание отдельных элементов по сравнению с обычными звездами, что их даже так и принято называть в астрофизике: «магниевые», «кремниевые», «железные», «стронциевые», «углеродные» звезды. Недавно обнаружены даже «литиевые» и «фосфорные» звезды. Эти таинственные различия в составах звезд еще ждут объяснения.

Удалось проследить и удивительные механизмы образования новых ядер. Оказывается, что не только благодаря сверхвысоким температурам ядра обладают настолько высокой энергией, что способны преодолевать электростатическое отталкивание и реагировать между собой. Очень многие элементы таким путем вообще не могли бы образовываться.

Дейтерий, литий, бериллий, бор при высокой температуре, существующей внутри звезд, очень быстро реагируют с водородом и мгновенно разрушаются. Эти элементы в мироздании «варятся» в холодных «кухнях», возможно, на поверхности звезд в звездных атмосферах, где возникают мощные электрические и магнитные поля, ускоряющие частицы до сверхвысоких энергий.

Звездные «фабрики», где создаются элементы, ставят перед учеными странные загадки, связанные с таинственными частицами нейтрино. Ученые начинают подозревать, что роль этих неуловимых частичек-призраков далеко не так безразлична, как это казалось совсем недавно. Выяснилось, что возможны такие ядерно-химические процессы, при которых большая часть энергии, образующаяся в звезде, уносится не в виде излучения, а только с нейтрино.

Но для звезды это означает катастрофу. Звезда существует в состоянии равновесия благодаря давлению звездного газа и световому давлению, которые уравновешивают силы тяготения. Если же энергия начинает уноситься из внутренности звезды только с нейтрино, которые пронизывают толщи звездных тел без сопротивления, со скоростью света, то звезда мгновенно будет сжата силами гравитационного притяжения.

Быть может, так и образуются пока непостижимые звезды – белые карлики, плотность вещества в которых может достигать многих тысяч тонн на 1 см3. Быть может, такие процессы дают начало и тем гигантским катастрофам, при которых рождаются Сверхновые звезды.

Но нет сомнения, что и эта, одна из величайших тайн природы, будет разгадана. Мы узнаем и тайну запасов водорода в звездах и в мировом пространстве, будут найдены процессы, ведущие к его образованию и к образованию «молодых» водородных звезд.

Вопрос о появлении Сверхновых звезд в мироздании исключительно важен. Должна быть решена загадка, как рождается такое колоссальное количество энергии, которое способно разметать звезду и превратить ее в туманность. Именно это произошло, например, в 1054 г. В созвездии Тельца вспыхнула Сверхновая звезда и, затухая, превратилась в Крабовидную туманность.

В наше время эта туманность уже простирается на сотни биллионов (1012) километров. Самое интересное – то, что вспышка Сверхновой звезды, постепенно угасая, теряет свою яркость так, как если бы она состояла из изотопа калифорния – 254. Его период полураспада – 55 сут. – точно совпадает с периодом уменьшения яркости Сверхновых звезд.

Но, пожалуй, главная задача астрохимии – выяснить, как возникает во Вселенной водород. Ведь в бесчисленном множестве звездных миров происходит непрерывное уничтожение водорода, и его общие запасы во Вселенной должны убывать.

И многие ученые на Западе пришли к тяжелому и мрачному выводу о «водородной смерти» Вселенной. Они считают, что во Вселенной одна за другой гаснут звезды, исчерпавшие свои запасы водорода. И эти ранее ярко сиявшие светила одно за другим превращаются в холодные мертвые миры, которым суждено вечно носиться в космическом пространстве.

Мрачный вывод о «водородной смерти» Вселенной логически порочен и неверен. Он опровергается опытными фактами, достижениями науки наших дней – химии Вселенной.

Достижения науки, познакомившие нас с тайнами недоступных звезд, с их составом, природой, таинственными процессами, происходящими в их недрах, основаны на знаниях природы атома, его строения. Эти знания воплощены в периодическом законе Менделеева. Но не следует думать, что периодический закон навсегда останется застывшим и неизменным. Нет, он и сам развивается, включая в себя все большее и большее содержание, все глубже и точнее отражая истину законов природы.

Закон периодичности свойствен и строению атомных ядер. Это позволяет надеяться на окончательное решение об относительной устойчивости элементов в мире и о составе всех небесных тел.


4. Химия межзвездного пространства.

Еще не так давно в науке допускалось, что межзвездное пространство представляет собой пустоту. Все вещество Вселенной сосредоточено в звездах, а между ними нет ничего. Лишь в пределах Солнечной системы, где-то по неведомым путям, блуждают метеориты и их загадочные собратья – кометы.

Удивительно сложны и неожиданны пути зарождения одной из наук будущего – химии космического пространства. В глухие и страшные годы фашистской оккупации в маленьком голландском городке Лейдене на тайном собрании подпольного научного кружка юный студент Ван де Холст сделал доклад. Исходя из теории строения атома (которая, как мы уже знаем, была развита наукой на основе периодического закона Менделеева), он рассчитал, какова должна быть самая длинная волна в спектре излучения водорода. Оказалось, что длина этой волны 21 см. Она относится к коротким радиоволнам. В отличие от хорошо изученного видимого спектра, излучаемого раскаленным водородом, его радиоизлучение может происходить и при низких температурах.

Ван де Холст рассчитал, что на Земле такое излучение в атоме водорода маловероятно. Нужно ждать много миллионов лет, пока в атоме водорода произойдет перемещение электронов, которое сопровождается излучением радиоволн длиной 21 см.

В своем докладе молодой ученый сделал предположение: если в безграничном мировом пространстве присутствует водород, можно надеяться обнаружить его по излучению по волне 21 см. Это предсказание оправдалось. Оказалось, что из необъятных глубин Вселенной к нам на Землю всегда, не прекращаясь ни ночью, ни днем, приходят на волне 21 см поразительные радиосообщения о тайнах мироздания, которые приносит нам межзвездный водород.

Волна в 21 см мчится к нашей планете из столь отдаленных уголков Вселенной, что требуются тысячи и миллионы лет, пока она дойдет до антенн радиотелескопов. Она рассказала ученым, что в космосе нет пустоты, что в нем существуют невидимые глазу облака космического водорода, которые простираются от одной звездной системы к другой. Оказалось возможным даже определить протяженность и форму этих скоплений водорода. Для волны в 21 см в мировом пространстве нет преград. Даже черные, непроницаемые облака космической пыли, скрывающие от взора исследователя огромные области Млечного Пути, совершенно прозрачны для холодного излучения водорода. И эти волны помогают теперь ученым понять природу вещества, из которого построены далекие звезды не только Млечного Пути, но и самых отдаленных туманностей, лежащих на самом краю доступной нам части Вселенной.

Необъятные звездные миры, разобщенные расстояниями в пустом безграничном пространстве, теперь оказываются связанными в единое целое гигантскими водородными облаками. Трудно проследить преемственность в развитии научных идей, но несомненно, что есть прямая и непрерывная связь между смелым предсказанием юного голландского студента и великой идеей Менделеева. Так был найден в межзвездном пространстве водород.

Безграничное мировое пространство нельзя считать пустым. Теперь уже кроме водорода в нем найдено много других элементов.

Химия космоса весьма своеобразна. Это химия сверхвысокого вакуума. Средняя плотность вещества в пространстве всего только 10-24 г/см3. Такой вакуум пока нельзя создать в лабораториях физиков. Важнейшую роль в химии космического пространства играет атомный водород. Следующий по распространенности – гелий, его раз в десять меньше; найдены уже кислород, неон, азот, углерод, кремний – их в космическом пространстве ничтожно мало.

Выяснилось, что роль межзвездного вещества в мироздании огромна. На его долю приходится, по крайней мере в пределах нашей Галактики, почти половина всего вещества, остальная часть находится в звездах.

В химии межзвездного пространства за последние годы сделаны совершенно поразительные открытия. Все началось с того, что в космосе неожиданно обнаружили сложную молекулу цеаноацетилена (HC3N). Не успели космохимики объяснить, каким путем в межзвездном пространстве возникает органическая молекула столь сложного состава и строения, как вдруг с помощью радиотелескопа в созвездии Стрельца были открыты гигантские облака самого обыкновенного на Земле и совершенно неожиданного для космоса химического соединения – муравьиной кислоты (HCOOH). Следующее открытие было еще более неожиданным. Оказалось, что в космическом пространстве существуют облака формальдегида (HCOH). Это само по себе уже достаточно удивительно, но совсем необъяснимым остается тот факт, что разные космические формальдегидные облака имеют разный изотопный состав. Как будто бы история межзвездной среды в разных частях Галактики различна.

Затем последовало еще более странное открытие: в небольшом облаке межзвездной пыли, лежащем где-то по направлению к центру нашей Галактики, обнаружили аммиак (NH3). По интенсивности радиоизлучения космического аммиака удалось даже измерить температуру этой области космоса (25 К). Загадка космического аммиака заключается в том, что он в этих условиях неустойчив и разрушается под действием ультрафиолетового излучения. Значит, он интенсивно возникает – образуется в космосе. Но как? Пока это неизвестно.

Химия межзвездного пространства оказалась удивительно сложной. Уже найдены молекулы формамида – шестиатомные молекулы, состоящие из атомов четырех разных элементов. Как они возникают? Какова их судьба? Были еще найдены молекулы метилцеанида (CH 3 CN), сероуглерода (CS 2), сероокиси углерода (COS), окиси кремния (SiO).

Кроме того, в космосе были открыты простейшие радикалы: например, метин (CH), гидроксил (OH). Когда установили существование гидроксила, были предприняты поиски воды. Где есть гидроксил, там должна быть и вода, и она была действительно найдена в межзвездном пространстве. Это открытие особенно интересно и важно. В космосе есть вода, есть органические молекулы (формальдегид), есть аммиак. Эти соединения, реагируя между собой, могут привести к образованию аминокислот, что и было подтверждено на опыте в земных условиях.

Что же будет еще обнаружено в межзвездной «пустоте»? В ней найдено более 20 сложных химических соединений. Наверное, будут открыты и аминокислоты. Удивительные космические облака органических соединений, как, например, облако цианоацетилена в созвездии Стрельца, достаточно плотны и обширны. Расчет показывает, что такие облака должны сжиматься под действием сил тяготения. Не может ли оказаться вероятным совершенно фантастическое предположение, что планеты во время своего образования уже содержат сложные органические соединения – основу примитивных форм жизни? Пожалуй, становится вполне допустимым серьезное обсуждение, казалось бы, совершенно невозможного вопроса: «Что же старше – планеты или жизнь на них?» Конечно, трудно угадать, каким будет ответ на него. Ясно одно – для науки неразрешимых вопросов нет.

На наших глазах зарождается новая наука. Трудно предвидеть пути ее развития и предсказать, к каким еще более удивительным открытиям приведет космическая химия.


5. Начало лунной химии.

М

ного лет назад, в 1609 г., Галилео Галилей впервые направил телескоп в небо. Лунные «моря» представились ему в обрамлении берегов из белого камня. После наблюдений Галилея еще долгое время думали, что лунные «моря» наполнены водой. Говорили даже, что на Луне жить приятнее, чем на Земле. Знаменитый астроном XVIII в. Вильям Гершель писал: «Что касается меня, то, если бы мне пришлось выбирать, жить ли на Земле или Луне, я, не колеблясь ни одной минуты, выбрал бы Луну».

Шло время. Сведения о Луне становились все точнее. В 1840 г. лунная поверхность была впервые отображена на фотопластинке. В октябре 1959 г. советская космическая станция «Луна – 3» передала на Землю изображение обратной стороны Луны. И вот 21 июля 1969 г. на поверхности Луны отпечатался след человека. Американские космонавты, а затем и советские автоматические станции привезли на Землю лунные камни.

Лунные камни особенные – на их составе сказывается недостаток кислорода. Металлы не встречаются в их высших степенях окисления, железо встречается только двухвалентное. На Луне не было ни свободной воды, ни атмосферы. Все летучие соединения, возникшие при магматических процессах, улетели в космос, и вторичная атмосфера возникнуть не могла. Кроме того, на Луне процесс выплавления (образования коры) шел очень быстро и при более высоких температурах: 1200 - 1300оС, в то время как эти процессы на Земле шли при 1000 - 1100оС.

Луна все время повернута к Земле одной стороной. На ней в ясную ночь можно разглядеть темные пятна – лунные «моря», которые и открыл Галилей. Они занимают около трети видимой стороны Луны. Вся остальная ее поверхность – высокогорья. Причем на обратной, невидимой нам стороне «морей» почти нет. Породы, слагающие высокогорную обратную сторону ночного светила и «материки» видимой нам стороны, светлее, чем породы «морей».

Н
а Луне нет длинных линейных хребтов, как на Земле. Там возвышаются кольцевые структуры – высокие (до нескольких километров) стенки громадных вулканических цирков – кратеров. Крупные кратеры, диаметром несколько километров, ведут свою родословную от вулканов. Их лава, излившись в пониженные места, образовала колоссальные лавовые озера – это и есть лунные «моря». Многие кратеры диаметром меньше километра возникли, вероятно, при падении метеоритов или камней, поднятых взрывным вулканизмом Луны. Предположение это подтвердилось в 1972 г. На Луну упал метеорит и образовал новый кратер диаметром 100м. Метеорит привел в действие сейсмические приборы, установленные на Луне. Это дает возможность определить мощность лунной коры и узнать о ее глубинном строении.

И Лунные горы, и кратеры, и лунные «моря» образуют «лунный ландшафт». Очень возможно, что и Земля в раннюю эпоху своей геологической истории была изъедена кратерами и по ландшафту была похожа на теперешнюю Луну. Но мощные процессы разрушения горных пород, присущие Земле, похоронили первичный рельеф под толщей осадков. Разрушение земных горных пород – выветривание – идет под воздействием воды, живых организмов, кислорода, углекислоты и других химических факторов, а также смены температур. На Луне нет атмосферы, нет воды, нет и организмов, а это значит, что процесс окисления, как и другие химические реакции, там почти отсутствует. Поэтому лунные породы в основном испытывают физико-механическое дробление, а земные, разрушаясь, претерпевают глубокую химическую перестройку. Лунные породы превращаются в пыль под влиянием резкой смены температур между лунным днем и лунной ночью. На породы действует и галактическое излучение, и «солнечный ветер» – радиация Солнца. Нельзя забывать и метеориты, с огромной скоростью врезающиеся в поверхность Луны. В результате всех этих процессов на плотных породах Луны и возник слой мелкозернистого лунного грунта. Он мощным слоем покрывает «моря». Есть он и на поверхности высокогорных, материковых областей Луны.

Галактическое излучение примерно на метр проникает в тело Луны, и в породах под воздействием протонов происходят ядерные превращения. Благодаря бомбардировке протонами на Луне обычны радиоактивные изотопы (23AI, 22Na и др.), которых почти нет в земных породах. Есть и другие отличия. Например, в лунных породах содержится больше аргона, чем в земных. И еще одна химическая особенность – на Луне, по всей вероятности, нет месторождений полезных ископаемых. Дело в том, что для формирования рудных тел необходимы гидротермальные растворы, а свободной воды в толще Луны никогда не было. Зато некоторые лунные породы содержат около 10% титана.

Камни из космоса – метеориты знакомы людям давно. Но первые кусочки горных пород Луны попали к нам совсем недавно. Их доставили на Землю космонавты американских космических кораблей «Аполлон» и советские автоматические станции «Луна – 16» и «Луна – 20». Удивительно держать в руках кусок Луны! О лунном камне веками рассуждали ученые, его воспевали поэты, о нем столько написано! И только в наши дни человеку представилась исключительная возможность сравнить вещественный состав земных, метеоритных и лунных камней.

Каменные метеориты в основном сложены простыми силикатами, число минералов в них едва достигает сотни. В лунных же породах минералов немного больше, чем в метеоритах, – вероятно, несколько сотен. А на поверхности Земли открыто больше 3 тыс. минералов. Это говорит о сложности земных химических процессов по сравнению с лунными.

Тут уместно напомнить, что химический элементарный состав каменных метеоритов (хондритов) очень похож на состав Солнца. В каменных метеоритах и на Солнце практически одинаковы распространенность химических элементов и соотношения между ними (за исключением газов, которые при образовании метеоритов улетучились). Все химические элементы, обнаруженные на Солнце, найдены и в метеоритах. Кроме того, соотношение Si/Mg одинаково и на Солнце, и в метеоритах, и близко к единице. Когда выяснилось, что камни, доставленные из лунных «морей», оказались фрагментами базальтовых пород, стало ясно, что у лунной коры немало общего с Землей.

Базальты Луны, излившиеся при лунном вулканизме, несколько иного химического состава, чем хондриты. Так, соотношение Si/Mg в них равно не единице, а примерно 6 (как и в земных базальтах). Состав этих пород уже не соответствует первичному составу Солнца, однако они выплавились из лунного вещества, очень близкого к каменным метеоритам. Достаточно сказать, что средняя плотность Луны такая же, как каменных метеоритов – 3,34 г/см3. Земля же имеет плотность более 5, а ведь земная кора в основном сложена базальтами. Значит, Луна, вероятно, лишена тяжелого железного ядра.

И

так, лунные «моря» сложены базальтовой лавой и покрыты мелкозернистым грунтом того же состава. Но в деталях одно «море» отличается от другого. Море Изобилия, например, состоит из базальтов, где титана около 3 %, а в базальтах Моря Спокойствия титана до 10 %. Он находится здесь в виде минерала ильменита. Морские лунные базальты богаты железом – до 18 %, в земных же базальтах его обычно около 7 %. В лунных базальтах по сравнению с земными повышенное содержание урана, тория и калия. Эти радиоактивные элементы и обуславливают лунный вулканизм.

В высокогорьях Луны преобладают не базальты, а другие породы, так называемые анортозиты, состоящие главным образом из минерала анортита. На Земле такие породы встречаются среди самых древних пород на горных щитах. У земных анортозитов почтенный возраст – им до 3,5 млрд. лет. Все анортозиты, в том числе и лунные, содержат много алюминия и кальция и немного железа, ванадия, марганца, а также титан. А между тем в «морских» лунных базальтах содержание железа и титана весьма высокое.

Открытие способа образования лунных анортозитов прояснило бы земные геологические процессы далекого прошлого. Можно предположить, что анортозиты возникают при кристаллизационной дифференциации габбро-базальтовой магмы. На Луне анортозит кристализуется при очень быстром излиянии магмы в космическом вакууме. Все говорит о том, что для образования анортозита нужна вода и высокая температура. Лунная магма была горячей, однако, есть признаки того, что в ней было мало летучих компонентов: воды, газов, углекислоты. Правда, такие летучие соединения могли легко уходить с Луны в космос.

В происхождении анортозитов еще много неясного, а между тем находка этих пород в лунных высокогорьях воскресила старые геологические идеи о первичной анортозитовой коре Земли.

Очень интересна концентрация никеля в породах Луны. В монолитных морских базальтах его мало. Но в грунте (измельченной породе) его на полпорядка больше. А анортозиты материковых областей Луны содержат много никеля не только в грунте, но и в кусочках породы. И самое интересное – в грунте было обнаружено распыленное металлическое железо, содержащее никель. По всей вероятности, это частицы металлической фазы метеоритов. Удалось рассчитать, что в лунном грунте находится 0,25 % этого железного сплава, или 2,5 % каменного метеоритного вещества. Это значит, что многие миллионы тонн вещества привнесены на Луну из космоса. С помощью лунных камней, доставленных на Землю, определили абсолютный «геологический» возраст нашего ночного светила. Оказалось, что Луне около 4,6 * 109 лет, т.е. она ровесница Земли. Вместе с тем, отдельные кристаллические породы (главным образом базальты лунных «морей») на миллиард лет моложе: им около 3,0 * 109 лет.

6. Химический состав планет.

С

ведения о химии планет растут очень быстро. За последние годы мы много узнали о законах химических превращений вещества и о его составе на таинственных далеких мирах – наших соседях во Вселенной.

Меркурий – самая близкая к Солнцу планета. Но что происходит на планете, мы пока знаем весьма приближенно. Его масса слишком мала (0,054 земной), температура на солнечной стороне слишком велика (больше 400оС), и молекулы любого газа с огромной скоростью покидают поверхность планеты, улетая в космическое пространство. Наверное, Меркурий покрыт силикатными породами, сходными с земными.

На Венеру советские ученые отправили несколько автоматических лабораторий.

Т
еперь получены достоверные сведения о химическом составе ее атмосферы и об условиях на ее поверхности.

Посланные с Земли советские автоматические межпланетные станции «Венера – 4», «Венера – 5» и «Венера – 6» сделали прямой анализ состава атмосферных газов, измерили давление и температуру. Полученные сведения были переданы на Землю.

теперь достоверно известен состав атмосферы этой планеты:

углекислого газа (СО 2 ) около 97 %,

азота (N 2) не более 2 %,

водяного пара (Н 2 О) около 1 %,

кислорода (О 2) не более 0,1 %.

На поверхности Венеры жизнь невозможна. Термометр космической лаборатории показал температуру около 500 о С, а давление оказалось около 100 атм.

Поверхность Венеры (почти наверное) – раскаленная каменистая пустыня.

С
оветские и американские ученые отправили автоматические исследовательские станции и на Марс . Даже будучи разделены десятками миллионов миль пустого пространства, Марс и Земля находятся в таинственной связи. Установлено, что атмосфера этой планеты состоит почти из углекислоты, есть немного азота, кислорода и водяного пара. Атмосфера Марса очень разрежена, ее давление на поверхности в 100 с лишним раз меньше, чем на Земле. На Марсе преобладают температуры ниже 0 о С, огромные суточные колебания температуры становятся причиной страшных пыльных бурь. Поверхность планеты, как на Луне, покрыта множеством кратеров. Марс – холодная безжизненная пыльная пустыня.

Самая интересная, удивительная и загадочная планета с точки зрения химии – это Юпитер . Недавно было открыто радиоизлучение Юпитера. Какие процессы могут порождать радиоволны на этом холодном гиганте – загадка. Теоретики подсчитали, что ядро планеты должно быть жидким. Оно окружено оболочкой из металлического водорода, там царствуют давления в миллион атмосфер. Ученые настойчиво пытаются получить металлический водород в лабораториях. Основываясь на термодинамических расчетах, они уверены в успехе.

Юпитер окутан плотной атмосферой, толщиной в десятки тысяч километров. Химики открыли в атмосфере Юпитера много различных соединений. Все они, конечно, построены в полном соответствии с периодическим законом. На 98 % Юпитер состоит из водорода и гелия. Обнаружены также вода и сероводород. Найдены признаки метана и аммиака. Средняя плотность Юпитера очень мала – 1,37 г/см3.

Ф

изики рассчитали, что внутреннее ядро Юпитера должно быть очень горячим. От Солнца он получает мало тепла – в 27 раз меньше, чем Земля, и при этом 40 % отражает обратно в космос. Но излучает он в четыре раза больше, чем поглощает. Откуда Юпитер берет лишнюю энергию, как она возникает – неизвестно. Термоядерные процессы на нем невозможны. Быть может, эта избыточная энергия является энергией сжатия планеты?

Внешняя поверхность Юпитера очень холодная – от -90 до -120оС. Следовательно, внутри его атмосферы должны быть области, где условия мало отличаются от земных. Толщина такой зоны отнюдь не мала, около 3000 км. В этой зоне температурные колебания лежат в пределах от -5 до +100оС. Вода здесь должна быть жидкой, а другие соединения атмосферы – газообразными.

Астрономы считают, что снаружи Юпитер покрыт облачной оболочкой, состоящей из твердых частиц льда и аммиака. Поэтому он так ярко блестит на небе. В телескоп на поверхности Юпитера отчетливо видны полосы загадочных облаков, плывущих с гигантскими скоростями. Это царство ураганов и чудовищных гроз.

Ученые пытались воссоздать в лаборатории условия атмосферы Юпитера. Результаты получились неожиданными. Под действием электрических разрядов (грозы), ионизирующего и ультрафиолетового излучений (солнечный свет и космические лучи) в газовой среде, подобной по составу атмосфере Юпитера, возникали сложные органические соединения: мочевина, аденин, углекислота, даже некоторые аминокислоты и сложные углеводороды. Кроме того, были получены цианополимеры красного и оранжевого цвета. Их спектры оказались сходными со спектром загадочного красного пятна на Юпитере. Перед учеными возник вопрос: есть ли на Юпитере жизнь? Для наших земных организмов атмосфера этой планеты – яд. Но может быть, это зона первичных форм жизни, океан добиологических соединений, необходимых для возникновения самых примитивных, простейших форм жизни? А может быть, они там уже возникли?

С
иний цвет Урана является результатом поглощения красного света метаном в верхней части атмосферы. Вероятно, существуют облака других цветов, но они прячутся от наблюдателей перекрывающим слоем метана. Атмосфера Урана (но не Уран в целом!) состоит примерно на 83% из водорода, на 15% из гелия и на 2% из метана. Подобно другим газовым планетам, Уран имеет полосы облаков, которые очень быстро перемещаются. Но они слишком плохо различимы и видимы только на снимках с большим разрешением, сделанных "Вояджером 2". Недавние наблюдения с HST позволили рассмотреть большие облака. Есть предположение о том, что эта возможность появилась в связи с сезонными эффектами, ведь как не трудно сообразить, зима от лета на Уране сильно разняться: целое полушарие зимой на несколько лет прячется от Солнца! Однако, Уран получает в 370 раз меньше тепла от Солнца, чем Земля, так что летом там тоже не бывает жарко. К тому же, Уран излучает тепла не больше, чем получает от Солнца, следовательно, и, скорее всего, он холоден внутри

С
троение и набор составляющих Нептун элементов, вероятно, подобны Урану: различные "льды" или отвердевшие газы с содержанием около 15% водорода и небольшого количества гелия Как и Уран, и в отличие от Юпитера с Сатурном, Нептун, возможно, не имеет четкого внутреннего расслоения. Но наиболее вероятно, у него есть небольшое твердое ядро (равное по массе Земле). Атмосфера Нептуна - это, по большей части, метан: синий цвет Нептуна является результатом поглощения красного света в атмосфере этим газом, как на Уране Подобно типичной газовой планете, Нептун славен большими бурями и вихрями, быстрыми ветрами, дующими на ограниченных полосах, параллельным экватору. На Нептуне самые быстрые в Солнечной системе ветры, они разгоняются до 2 200 км/час. Ветры дуют на Нептуне в западном направлении, против вращения планеты. Заметьте, что у планет-гигантов скорость потоков и течений в их атмосферах увеличивается с расстоянием от Солнца. Эта закономерность не имеет пока никакого объяснения. На снимках Вы видите облака в атмосфере Нептуна Подобно Юпитеру и Сатурну, Нептун имеет внутренний источник тепла - он излучает более чем в два с половиной раза больше энергии, нежели получает от Солнца.

Химический состав Плутона также не известен, но его плотность (около 2 г/см3) показывает, что он, вероятно, состоит из смеси 70% горных пород и 30% водяного льда, практически также, как Тритон. Светлые области на поверхности, возможно, покрыты азотным льдом небольшими добавками (твердых) метана, этана и угарного газа. Состав темных областей поверхности Плутона не известен, но он может быть создан из первичного органического материала или в ходе фотохимических реакций вызванных космическими лучами. Об атмосфере Плутона известно совсем немного, но, вероятно, она состоит в основном из азота с небольшими примесями угарного газа и метана.

А

тмосфера Сатурна - в основном, водород и гелий. Но из-за особенности образования планеты большая, нежели на Юпитере, часть Сатурна приходится на другие вещества. "Вояджер 1" выяснил, что около 7 процентов объема верхней атмосферы Сатурна - гелий (по сравнению с 11-ю процентами в атмосфере Юпитера), в то время как почти все остальное – водород.

Поразительные достижения космической химии позволили начать исследования процессов, протекающих на поверхности далеких, пока еще недоступных миров. Это приводит к очень важному выводу: самая прекрасная планета – наша родная Земля. Долг каждого человека – бережно относиться ко всем ее богатствам и красоте.

Заключение

Наши знания химического состава Вселенной получены в результате спектроскопических исследований излучений Солнца и звезд, анализа метеоритов и на основании того, что мы знаем о составе Земли и других планет. Спектроскопические наблюдения позволяют установить элементы, ответственные за излучения, а на основании тщательного анализа интенсивностей спектральных линий можно сделать грубые оценки относительных количеств различных элементов, присутствующих во внешних частях излучаемого тела. Полученные таким образом данные подтверждают предположение, что Вселенная состоит из одних и тех же элементов. И приведенные данные доказывают это.

Список литературы.

1. Интернет;

2. Г. Хэнкок, Р. Бьювэл, Дж. Григзби «Тайны Марса»

3. В. Н. Демин «Тайны Вселенной»