Сравнения высших степеней простому модулю. Решение сравнений первой степени. Группы и их свойства

Сравнение чисел по модулю

Подготовила проект: Зутикова Ирина

МАОУ «Лицей №6»

Класс: 10«а»

Научный руководитель: Желтова Ольга Николаевна

Тамбов

2016

  • Проблема
  • Цель проекта
  • Гипотеза
  • Задачи проекта и план их достижения
  • Сравнения и их свойства
  • Примеры задач и их решения
  • Используемые сайты и литература

Проблема:

Большинство учеников редко используют сравнение чисел по модулю для решений нестандартных и олимпиадных заданий.

Цель проекта:

Показать, как с помощью сравнения чисел по модулю можно решать нестандартные и олимпиадные задания.

Гипотеза:

Более глубокое изучение темы «Сравнение чисел по модулю» поможет ученикам решать некоторые нестандартные и олимпиадные задания.

Задачи проекта и план их достижения:

1.Подробно изучить тему «Сравнение чисел по модулю».

2.Решить несколько нестандартных и олимпиадных заданий, используя сравнение чисел по модулю.

3.Создать памятку для учеников на тему «Сравнение чисел по модулю».

4.Провести урок по теме «Сравнение чисел по модулю» в 10«а» классе.

5.Дать классу домашнее задание по теме «Сравнение по модулю».

6.Сравнить время выполнения задания до и после изучения темы «Сравнение по модулю».

7.Сделать выводы.

Прежде чем начать подробно изучать тему «Сравнение чисел по модулю», я решила сравнить, как она представлена в различных учебниках.

  • Алгебра и начала математического анализа. Углубленный уровень. 10 класс (Ю.М.Колягин и др.)
  • Математика: алгебра, функции, анализ данных. 7 класс (Л.Г.Петерсон и др.)
  • Алгебра и начала математического анализа. Профильный уровень. 10 класс (Е.П.Нелин и др.)
  • Алгебра и начала математического анализа. Профильный уровень. 10 класс (Г.К.Муравин и др.)

Как я выяснила, в некоторых учебниках эта тема даже не затрагивается, не смотря на углубленный уровень. А наиболее понятно и доступно тема представлена в учебнике Л.Г.Петерсона (Глава: Введение в теорию делимости), поэтому попробуем разобраться в «Сравнении чисел по модулю», опираясь на теорию из этого учебника.

Сравнения и их свойства.

Определение: Если два целых числа a и b имеют одинаковые остатки при делении на некоторое целое число m (m>0), то говорят, что a и b сравнимы по модулю m , и пишут:

Теорема: тогда и только тогда, когда разность aи bделится на m.

Свойства:

  1. Рефлексивность сравнений. Любое число aсравнимо само с собой по модулю m (m>0; a,m-целые числа).
  2. Симметричность сравнений. Если число a сравнимо с числом b по модулю m, то число b сравнимо с числом a по тому же модулю(m>0; a,b,m-целые числа).
  3. Транзитивность сравнений. Если число a сравнимо с числом b по модулю m, а число b сравнимо с числом cпо тому же модулю, то число a сравнимо с числом c по модулю m(m>0; a,b,c,m-целые числа).
  4. Если число a сравнимо с числом b по модулю m, то число a n сравнимо счислом b n по модулю m(m>0; a,b,m-целые числа;n-натуральное число).

Примеры задач и их решения.

1.Найти последнюю цифру числа 3 999 .

Решение:

Т.к. последняя цифра числа - это остаток от деления на 10, то

3 999 =3 3 *3 996 =3 3 *(3 4 ) 249 =7*81 249 7(mod 10)

(Т.к. 34=81 1(mod 10);81 n 1(mod10) (по свойству))

Ответ:7.

2.Доказать,что 2 4n -1 делится на 15 без остатка. (Физтех2012)

Решение:

Т.к. 16 1(mod 15), то

16 n -1 0(mod 15) (по свойству); 16n= (2 4 ) n

2 4n -1 0(mod 15)

3.Доказать, что 12 2n+1 +11 n+2 делится без остатка на 133.

Решение:

12 2n+1 =12*144 n 12*11 n (mod 133) (по свойству)

12 2n+1 +11 n+2 =12*11 n +11 n *121=11 n *(12+121) =11 n *133

Число (11 n *133)без остатка делится на 133. Следовательно,(12 2n+1 +11 n+2 )делится без остатка на 133.

4.Найти остаток от деления на 15 числа 2 2015 .

Решение:

Т.к.16 1(mod 15), то

2 2015 8(mod 15)

Ответ:8.

5.Найти остаток от деления на 17 числа 2 2015 . (Физтех2015)

Решение:

2 2015 =2 3 *2 2012 =8*16 503

Т.к.16 -1(mod 17), то

2 2015 -8(mod 15)

8 9(mod 17)

Ответ:9.

6.Доказать, что число 11 100 -1 делится на 100 без остатка. (Физтех2015)

Решение:

11 100 =121 50

121 50 21 50 (mod 100) (по свойству)

21 50 =441 25

441 25 41 25 (mod 100) (по свойству)

41 25 =41*1681 12

1681 12 (-19) 12 (mod 100) (по свойству)

41*(-19) 12 =41*361 6

361 6 (-39) 6 (mod 100)(по свойству)

41*(-39) 6 =41*1521 3

1521 3 21 3 (mod100) (по свойству)

41*21 3 =41*21*441

441 41(mod 100) (по свойству)

21*41 2 =21*1681

1681 -19(mod 100) (по свойству)

21*(-19)=-399

399 1(mod 100) (по свойству)

Значит 11 100 1(mod 100)

11 100 -1 0(mod 100) (по свойству)

7.Даны три числа: 1771,1935,2222. Найти число, при делении на которое остатки трёх данных чисел будут равны. (ВШЭ2016)

Решение:

Пусть неизвестное нам число будет равно а,тогда

2222 1935(mod a); 1935 1771(mod a); 2222 1771(mod a)

2222-1935 0(moda) (посвойству); 1935-1771 0(moda) (по свойству); 2222-1771 0(moda) (по свойству)

287 0(mod a); 164 0(mod a); 451 0(mod a)

287-164 0(moda) (по свойству); 451-287 0(moda)(по свойству)

123 0(mod a); 164 0(mod a)

164-123 0(mod a) (посвойству)

41

  • Олимпиада ВШЭ2016
  • Сравнение с одним неизвестным x имеет вид

    Где . Еслиa n не делится на m , то и называется степенью сравнения.

    Решением сравнения называется всякое целое число x 0 , для которого

    Если х 0 удовлетворяет сравнению, то, согласно свойству 9 сравнений, этому сравнению будут удовлетворять все целые числа, сравнимые с x 0 по модулю m . Поэтому все решения сравнения, принадлежащие одному классу вычетов по модулю т , будем рассматривать как одно решение. Таким образом, сравнение имеет столько решений, сколько элементов полной системы вычетов ему удовлетворяет.

    Сравнения, множества решений которых совпадают, называются равносильными.

    2.2.1 Сравнения первой степени

    Сравнение первой степени с одним неизвестным х имеет вид

    (2.2)

    Теорема2.4. Для того чтобы сравнение имело хотя бы одно решение, необходимо и достаточно, чтобы число b делилось на НОД(a , m ).

    Доказательство. Сначала докажем необходимость. Пусть d = НОД(a , m ) и х 0 - решение сравнения. Тогда, то есть разностьах 0 b делится на т. Значит, существует такое целое число q , что ах 0 b = qm . Отсюда b = ах 0 qm . А поскольку d , как общий делитель, делит числа а и т, то уменьшаемое и вычитаемое делятся на d , а значит и b делится на d .

    Теперь докажем достаточность. Пусть d - наибольший общий делитель чисел а и т, и b делится на d . Тогда по определению делимости существуют такие целые числа a 1 , b 1 1 , что.

    Расширенным алгоритмом Евклида найдем линейное представление числа 1 = НОД(a 1 , m 1 ):

    для некоторых x 0 , y 0 . Домножим обе части последнего равенства на b 1 d :

    или, что то же самое,

    ,

    то есть , и- решение сравнения. □

    Пример2.10. Сравнение 9х = 6 (mod 12) имеет решение, так как НОД(9, 12) = 3 и 6 делится на 3. □

    Пример2.11. Сравнение = 9 (mod 12) не имеет решений, так как НОД(6, 12) = 6, а 9 не делится на 6. □

    Теорема 2.5. Пусть сравнение (2.2) разрешимо и d = НОД(a , m ). Тогда множество решений сравнения (2.2) состоит из d классов вычетов по модулю т, а именно, если х 0 - одно из решений, то все другие решения - это

    Доказательство. Пусть х 0 - решение сравнения (2.2), то есть и, . Значит, существует такое q , что ах 0 b = qm . Подставляя теперь в последнее равенство вместо х 0 произвольное решение вида, где, получаем выражение

    , делящееся на m . □

    Пример 2.12. Сравнение 9х =6 (mod 12) имеет ровно три решения, так как НОД(9, 12)=3. Эти решения: х 0 = 2, х 0 + 4 = 6, х 0 + 2∙4=10.□

    Пример2.13. Сравнение 11х =2 (mod 15) имеет единственное решение х 0 = 7,таккакНОД(11,15)=1.□

    Покажем, как решать сравнение первой степени. Не умаляя общности, будем считать, что НОД(a , т) = 1. Тогда решение сравнения (2.2) можно искать, например, по алгоритму Евклида. Действительно, используя расширенный алгоритм Евклида, представим число 1 в виде линейной комбинации чисел a и т :

    Умножим обе части этого равенства на b , получим: b = abq + mrb , откуда abq - b = - mrb , то есть a ∙ (bq ) = b (mod m ) и bq - решение срав­нения (2.2).

    Еще один путь решения - использовать теорему Эйлера. Опять считаем, что НОД(а, т) = 1. Применяем теорему Эйлера: . Умножим обе части сравнения наb : . Переписывая последнее выражение в виде , получаем, что- решение сравнения (2.2).

    Пусть теперь НОД(a , m ) = d >1. Тогда a = a t d , m = m t d , где НОД(а 1 , m 1) = 1. Кроме того, необходимо b = b 1 d , для того чтобы сравнение было разрешимо. Если х 0 - решение сравнения а 1 x = b 1 (mod m 1), причем единственное, поскольку НОД(а 1 , m 1) = 1, то х 0 будет решением и сравнения а 1 xd = db 1 (mod m 1), то есть исходного сравнения (2.2). Остальные d - 1 решений находим по теореме 2.5.

    Рассмотрим сравнение вида x 2 ≡a (mod p α), где p – простое нечетное число. Как было показано в п.4 §4, решение этого сравнения можно отыскать, решив сравнение x 2 ≡a (mod p ). Причем сравнение x 2 ≡a (mod p α) будет иметь два решения, если a является квадратичным вычетом по модулю p .

    Пример:

    Решить квадратичное сравнение x 2 ≡86(mod 125).

    125 = 5 3 , 5 – простое число. Проверим, является ли 86 квадратом по модулю 5.

    Исходное сравнение имеет 2 решения.

    Найдем решение сравнения x 2 ≡86(mod 5).

    x 2 ≡1(mod 5).

    Это сравнение можно было бы решить способом, указанным в предыдущем пункте, но мы воспользуемся тем, что квадратный корень из 1 по любому модулю есть ±1, а сравнение имеет ровно два решения. Таким образом, решение сравнения по модулю 5 есть

    x ≡±1(mod 5) или, иначе, x =±(1+5t 1).

    Подставим получившееся решение в сравнение по модулю 5 2 =25:

    x 2 ≡86(mod 25)

    x 2 ≡11(mod 25)

    (1+5t 1) 2 ≡11(mod 25)

    1+10 t 1 +25 t 1 2 ≡11(mod 25)

    10 t 1 ≡10(mod 25)

    2 t 1 ≡2(mod 5)

    t 1 ≡1(mod 5), или, что то же самое, t 1 =1+5t 2 .

    Тогда решение сравнения по модулю 25 есть x =±(1+5(1+5t 2))=±(6+25t 2). Подставим получившееся решение в сравнение по модулю 5 3 =125:

    x 2 ≡86(mod 125)

    (6+25t 2) 2 ≡86(mod 125)

    36+12·25t 2 +625t 2 2 ≡86(mod 125)

    12·25t 2 ≡50(mod 125)

    12t 2 ≡2(mod 5)

    2t 2 ≡2(mod 5)

    t 2 ≡1(mod 5), или t 2 =1+5t 3 .

    Тогда решение сравнения по модулю 125 есть x =±(6+25(1+5t 3))=±(31+125t 3).

    Ответ: x ≡±31(mod 125).

    Рассмотрим теперь сравнение вида x 2 ≡a (mod 2 α). Такое сравнение не всегда имеет два решения. Для такого модуля возможны случаи:

    1) α=1. Тогда сравнение имеет решение только тогда, когда a ≡1(mod 2), и решением будет x ≡1(mod 2) (одно решение).

    2) α=2. Сравнение имеет решения только тогда, когда a ≡1(mod 4), и решением будет x ≡±1(mod 4) (два решения).

    3) α≥3. Сравнение имеет решения только тогда, когда a ≡1(mod 8), и таких решений будет четыре. Сравнение x 2 ≡a (mod 2 α) при α≥3 решается так же, как сравнения вида x 2 ≡a (mod p α), только в качестве начального решения выступают решения по модулю 8: x ≡±1(mod 8) и x ≡±3(mod 8). Их следует подставить в сравнение по модулю 16, затем по модулю 32 и т. д. вплоть до модуля 2 α .

    Пример:

    Решить сравнение x 2 ≡33(mod 64)

    64=2 6 . Проверим, имеет ли исходное сравнение решения. 33≡1(mod 8), значит сравнение имеет 4 решения.

    По модулю 8 эти решения будут: x ≡±1(mod 8) и x ≡±3(mod 8), что можно представить как x =±(1+4t 1). Подставим это выражение в сравнение по модулю 16

    x 2 ≡33(mod 16)

    (1+4t 1) 2 ≡1(mod 16)

    1+8t 1 +16t 1 2 ≡1(mod 16)

    8t 1 ≡0 (mod 16)

    t 1 ≡0 (mod 2)

    Тогда решение примет вид x =±(1+4t 1)=±(1+4(0+2t 2))=±(1+8t 2). Подставим получившееся решение в сравнение по модулю 32:

    x 2 ≡33(mod 32)

    (1+8t 2) 2 ≡1(mod 32)

    1+16t 2 +64t 2 2 ≡1(mod 32)

    16t 2 ≡0 (mod 32)

    t 2 ≡0 (mod 2)

    Тогда решение примет вид x =±(1+8t 2) =±(1+8(0+2t 3)) =±(1+16t 3). Подставим получившееся решение в сравнение по модулю 64:

    x 2 ≡33(mod 64)

    (1+16t 3) 2 ≡33(mod 64)

    1+32t 3 +256t 3 2 ≡33(mod 64)

    32t 3 ≡32 (mod 64)

    t 3 ≡1 (mod 2)

    Тогда решение примет вид x =±(1+16t 3) =±(1+16(1+2t 4)) =±(17+32t 4). Итак, по модулю 64 исходное сравнение имеет четыре решения: x ≡±17(mod 64)и x ≡±49(mod 64).

    Теперь рассмотрим сравнение общего вида: x 2 ≡a (mod m ), (a ,m )=1, - каноническое разложение модуля m . Согласно Теореме из п.4 §4, данному сравнению равносильна система

    Если каждое сравнение этой системы разрешимо, то разрешима и вся система. Найдя решение каждого сравнения этой системы, мы получим систему сравнений первой степени, решив которую по китайской теореме об остатках, получим решение исходного сравнения. При этом количество различных решений исходного сравнения (если оно разрешимо) есть 2 k , если α=1, 2 k +1 , если α=2, 2 k +2 , если α≥3.

    Пример:

    Решить сравнение x 2 ≡4(mod 21).