Как найти скорость совместного движения. Про разные скорости движения партнеров и отношения на длительной дистанции. Столкновение двух тел

У нас есть множество причин благодарить нашего Бога.
Заметили ли вы, как в каждом году, активно и решительно организация Бога ускоряет ход, предоставляя множество даров!
Небесная колесница определенно находится в движении! На ежегодном собрании было сообщено: "Если вам кажется, что вы не успеваете за колесницей Иеговы пристегнитесь,чтобы не вылететь на повороте!":)
Видно, как благоразумный раб обеспечивает непрерывное движение , открывая для проповеди новые территории, подготавливая учеников и обретая все более полное понимание Божьих замыслов.

Поскольку верный раб полагается не на человеческую силу, а на руководство святого духа, совершенно очевидно, что верного раба ведет Божий дух!!!

Видно, что когда Руководящий совет видит необходимость уточнить какой-либо аспект истины или внести изменения в организационный порядок, он действует без промедления.

В Исаии 60:16 сказано, что народ Бога будет пользоваться молоком народов, что является сегодня передовыми технологиями.

Сегодня в руках организации сайт, который соединяет и объединяет нас с нашим братством, и другие новинки, о которых вы уже наверняка знаете.

Только благодаря тому, что через своего Сына и Мессианское Царство Бог поддерживает и благословляет их, эти несовершенные люди могут одерживать победу над Сатаной и его нечестивой системой вещей.


Сравните тиражи и количество языков декабрьского и январского выпуска журнала "Сторожевой Башни" и "Пробудитесь"за 2014, 2015, 2016 года.


Имеет место беспрецедентное в истории организации, увеличение тиража и ! !! Такого в мире нет ни у одной организации. Какая еще организация проповедует людям всякого рода? И исполняет пророчество то будет проведано для свидетельства всем народам?

А нижес 1962 года.

Синим указан журнал "Сторожевая Башня", а красным журнал "Пробудитесь"



Тираж Сторожевой башни с января 2015 вырос до 58, 987,000 миллионов и уже переводится на 254 языка. На первой странице этого журнала, также появилась план-схема для преподнесения в служении.



Невероятно! А говорят, что чудес не бывает! Такой тираж настоящее чудо!
Какая же у наших публикаций!


С августа прошлого года (2014) рейтинг нашего сайта вырос на 552 позиции, улучшившись таким образом на 30 процентов.

Для некоммерческих сайтов это безусловный рекорд. Еще немного и сможем войти в топ-1000!!!


Иногда, некоторые люди обвиняют Свидетелей Иеговы, что они не занимаются благотворительностью, а главное внимание уделяют делу проповеди.
Почему они так поступают?
Представьте себе тонущий корабль. Там есть помимо всего прочего три группы людей.
Первые пытаются накормить пассажиров.
Вторые предлагают тёплые шубы.
Третьи помогают сесть в шлюпки и выбраться с корабля.
Кажется, что все делают добро. Но какое добро в данной ситуации имеет смысл? Ответ очевиден! Что толку, если кого-то накормить, одеть, а он все равно погибнет. Сначала надо пересесть с тонущего корабля и добраться до безопасного места, а потом уже накормить и обогреть.
Так же поступают Свидетели Иеговы - они делают людям добро, которое имеет смысл.

В то время как этот сосредоточенный на материальном мир чахнет от духовного голода, давайте развивать аппетит к духовной пище.

Не попадемся же в ловушку материализма!


Когда мы молимся о том, чтобы дело проповеди расширялось, в глазах Иеговы «это хорошо и угодно», потому что такие молитвы соответствуют его желанию, «чтобы люди всякого рода спаслись» (1Тм 2:1,3, 4,6)

Павел ТРИ РАЗА указывал на то, к кому и как мы должны проявлять заботу?
1Тм 2:1 Молитвы следует возносить «за людей всякого рода»
1Тм 2:4 Нужно, «чтобы люди всякого рода... пришли к точному знанию истины»
1Тм 2:6 Христос «отдал себя как соответствующий выкуп за всех»
Что поможет нам проявлять глубокую заботу обо всех и достигать проповедью людей всякого рода?
Для этого необходимо одно очень важное качество, которым обладает Иегова - нелицеприятие! (Де 10:34 )

Поистине, Иегова «нелицеприятен» (отношение) и «ни к кому не проявляет лицеприятия» (поступки)

Иисус проповедовал людям всякого рода. Помните, в своих примерах Иисус говорил о людях разного происхождения и социального положения: о земледельце, сеющем семя, о домохозяйке, делающей хлеб, о человеке, работающем в поле, о преуспевающем купце, который торгует жемчугом, о тяжело трудящихся рыбаках, которые закидывают сети (Мф 13:31—33, 44—48)
Факт: Иегова и Иисус желают, чтобы «люди всякого рода спаслись» и получили вечные благословения. Они не ставят одних людей выше других.
Урок для нас: чтобы подражать Иегове и Иисусу, нам нужно проповедовать людям всякого рода, независимо от их расы или жизненных обстоятельств.

Организацией Бога уже было много сделано для тех, кто говорит на иностранном языке, иммигрантов, студентов, беженцев, тех, кто живет в домах престарелых, в охраняемых комплексах, предпринимателей, заключенных, глухих, слепых, приверженцев не христианских религий и других.


]В настоящее время на территории России под надзором филиала в 578 собраний назначены заботиться о проповеди благой вести в исправительных учреждениях, которые закреплены за ними. Во многих из этих мест проводились встречи собрания, групповые и личные изучения Библии. Проповедь в таких местах помогает многим «облечься в новую личность» и служить истинному Богу, Иегове. Да, важно и дальше освящать имя Бога!

Поэтому будем ценить все, что происходит в Божьей организации. Будем учится умело пользоваться публикациями, выпущенными верным рабом, которые оформлены так, чтобы затрагивать сердце людей всякого рода. Ведь как мы обучаем себя, от этого будет зависеть как мы будем обучать других.

Так мы покажем, что проявляем глубокую заботу к «желанным сокровищам из всех народов», которых нужно еще привести.

Несомненно, мы, как и Петр, усвоили урок:

"нам некуда идти" — есть лишь одно место, находясь в котором мы не будем отставать от колесницы Иеговы и будем находится под защитой Бога-Творца,Иеговы(Ин 6:68).

Основные понятия механики. Способы описания движения. Пространство и время.

Физика – наука, занимающаяся изучением фундаментальной структуры материи и основных форм ее движения.

Механика – наука об общих законах движения тел. Механическим движением называется перемещение тел в пространстве относительно друг друга с течением времени.

Законы механики были сформулированы великим английским ученым И.Ньютоном. Было выяснено, что законы Ньютона, как любые другие законы природы, не являются абсолютно точными. Они хорошо описывают движение больших тел, если их скорость мала по сравнению со скоростью света. Механика, основанная на законах Ньютона, называется классической механикой.

Механика включает в себя: статику, кинематику, динамику.

Статика – условия равновесия тел.

Кинематика – раздел механики, изучающий способы описания движений и связь между величинами, характеризующими эти движения.

Динамика – раздел механики, рассматривающий взаимные действия тел друг на друга.

Механическим движением называется изменение пространственного положения тела относительно других тел с течением времени.

Материальная точка – тело, обладающее массой, размером которого можно пренебречь в данной задаче.

Траектория – это воображаемая линия, по которой движется материальная точка.

Положение точки можно задать с помощью радиус-вектора: r = r(t) , где t – время, за которое произошло перемещение материальной точки.

Тело, относительно которого рассматривается движение, называется телом отсчета.

Например, тело находится в состоянии покоя по отношению к Земле, но движется по отношению к Солнцу.

Совокупность тела отсчета, связанной с ним системы координат и часов называют системой отсчета.

Направленный отрезок, проведенный из начального положения точки в ее конченое положение, называется вектором перемещения или просто перемещением этой точки .

Δ r = r 2 – r 1

Движение точки называется равномерным, если она за любые равные промежутки времен проходит одинаковые пути.

Равномерное движение может быть как прямолинейным, так и криволинейным. Равномерное прямолинейное движение – самый простой вид движения.

Скоростью равномерного прямолинейного движения точки называют величину, равную отношению перемещения точки к промежутку времени, в течение которого это перемещение произошло. При равномерном движении скорость постоянна.



V = Δ r/ Δt

Направлена так же, как и перемещение:

Графическое представление равномерного прямолинейного движения в различных координатах:

Уравнение равномерного прямолинейного движения точки:

r = r о + Vt

При проекции на ось ОХ уравнение прямолинейного движения можно записать так:

Х = Х 0 + V х t

Путь, пройденный точкой определяется по формуле: S = Vt

Криволинейное движение.

Если траектория движения материальной точки представляет собой кривую линию, то такое движение мы будем называть криволинейным.

При таком движении изменяется как по величине, так и по направлению. Следовательно, при криволинейном движении .

Рассмотрим движение материальной точки по криволинейной траектории (рис. 2.11). Вектор скорости движения в любой точке траектории направлен по касательной к ней. Пусть в точке M 0 скорость , а в точке М – . При этом считаем, что промежуток времени Dt при переходе из точки М 0 в точку М настолько мал, что изменением ускорения по величине и направлению можно пренебречь.

Вектор изменения скорости . (В данном случае разность 2 х векторов и будет равна ). Разложим вектор , который характеризует изменение скорости как по величине, так и по направлению на две составляющие и . Составляющая , которая является касательной к траектории в точке М 0 ,характеризует изменение скорости по величине за время Dt, в течение которого была пройдена дуга М 0 М и называется тангенциальной составляющей вектора изменения скорости (). Вектор , направленный в пределе, когда Dt ® 0, по радиусу к центру, характеризует изменение скорости по направлению и называется нормальной составляющей вектора изменения скорости ().

Таким образом, вектор изменения скорости равен сумме двух векторов .

Тогда можно записать, что

При бесконечном уменьшении Dt®0 угол Da при вершине DM 0 АС будет стремиться к нулю. Тогда вектором можно пренебречь по сравнению с вектором , а вектор



будет выражать тангенциальное ускорение и характеризовать быстроту изменения скорости движения по величине. Следовательно, тангенциальное ускорение численно равно производной от модуля скорости по времени и направлено по касательной к траектории.

Вычислим теперь вектор , называемый нормальным ускорением . При достаточно малом Dt участок криволинейной траектории можно считать частью окружности. В этом случае радиусы кривизны M 0 O и MO будут равны между собой и равны радиусу окружности R.

Повторим рисунок. ÐМ 0 ОМ = ÐМСD, как углы со взаимно перпендикулярными сторонами (рис. 2. 12). При малом Dt можно считать |v 0 |=|v|, поэтому DМ 0 ОМ = DМDC подобны как равнобедренные треугольники с одинаковыми углами при вершине.

Поэтому из рис. 2.11 следует

Þ ,

но DS = v ср. ×Dt, тогда .

Переходя к пределу при Dt ® 0 и учитывая, что при этом v ср. = v находим

, т.е. (2.5)

Т.к. при Dt ® 0 угол Da ® 0, то направление этого ускорения совпадает с направлением радиуса R кривизны или с направлением нормали к скорости , т.е. вектор . Поэтому это ускорение часто называют центростремительным . Оно характеризует быстроту изменения скорости движения по направлению.

Полное ускорение определяется векторной суммой тангенциального и нормального ускорений (рис. 2.13). Т.к. вектора этих ускорений взаимно перпендикулярны , то модуль полного ускорения равен ; Направление полного ускорения определяется углом j между векторами и :

Динамические характеристики

Свойства твердого тела при его вращении описываются моментом инерции твёрдого тела. Эта характеристика входит в дифференциальные уравнения, полученные из уравнений Гамильтона или Лагранжа. Кинетическую энергию вращения можно записать в виде:

.

В этой формуле момент инерции играет роль массы, а угловая скорость - роль скорости. Момент инерции выражает геометрическое распределение массы в теле и может быть найден из формулы .

,

где: m i - масса i -й точки, r i - расстояние от i -й точки до оси.

Осевой момент инерции тела является Поворот - геометрическое преобразование

5) Инерциальные системы отсчета. Преобразования Галилея.

При́нцип относи́тельности - фундаментальный физический принцип, согласно которому все физические процессы в инерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.

Отсюда следует, что все законы природы одинаковы во всех инерциальных системах отсчёта.

Различают принцип относительности Эйнштейна (который приведён выше) и принцип относительности Галилея, который утверждает то же самое, но не для всех законов природы, а только для законов классической механики, подразумевая применимость преобразований Галилея, оставляя открытым вопрос о применимости принципа относительности к оптике и электродинамике.

В современной литературе принцип относительности в его применении к инерциальным системам отсчета (чаще всего при отсутствии гравитации или при пренебрежении ею) обычно выступает терминологически как лоренц-ковариантность (или лоренц-инвариантность) .

Отцом принципа относительности считается Галилео Галилей, который обратил внимание на то, что находясь в замкнутой физической системе, невозможно определить, покоится эта система или равномерно движется. Во времена Галилея люди имели дело в основном с чисто механическими явлениями. В своей книге «Диалоги о двух системах мира» Галилей сформулировал принцип относительности следующим образом:

Для предметов, захваченных равномерным движением, это последнее как бы не существует и проявляет своё действие только на вещах, не принимающих в нём участия.

Идеи Галилея нашли развитие в механике Ньютона. Однако с развитием электродинамики оказалось, что законы электромагнетизма и законы механики (в частности, механическая формулировка принципа относительности) плохо согласуются друг с другом, так как уравнения механики в известном тогда виде не менялись после преобразований Галилея, а уравнения Максвелла при применении этих преобразований к ним самим или к их решениям - меняли свой вид и, главное, давали другие предсказания (например, измененную скорость света) . Эти противоречия привели к открытию преобразований Лоренца, которые делали применимым принцип относительности к электродинамике (сохраняя инвариантной скорость света) , и к постулированию их примененимости также к механике, что затем было использовано для исправления механики с их учетом, что выразилось, в частности, в созданной Эйнштейном Специальной теории относительности. После этого обобщённый принцип относительности (подразумевающий применимость и к механике, и к электродинамике, а также к возможным новым теориям, подразумевающий также преобразования Лоренца для перехода между инерциальными системами отсчета) стал называться «принципом относительности Эйнштейна» , а его механическая формулировка - «принципом относительности Галилея» .

Виды сил в механике.

1) Силы тяготения (гравитационные силы )

В системе отсчета, связанной с Землей, на тело массой действует сила ,

называемая силой тяжести – сила, с которой тело притягивается Землей. Под действием этой силы все тела падают на Землю с одинаковым ускорением , называемым ускорением свободного падения.

Весом тела называется сила, с которой тело вследствие тяготения к Земле действует на опору или подвес.

Сила тяжести действует всегда , а вес проявляется лишь тогда, когда на тело кроме силы тяжести действуют еще другие силы. Сила тяжести равна весу тела только в том случае, когда ускорение тела относительно земли равно нуля. В противном случае , где - ускорение тела с опорой относительно Земли. Если тело свободно движется в поле силы тяготения, то и вес тела равен нулю, т.е. тело будет невесомым.

2) Сила трения скольжения возникает при скольжении данного тела по поверхности другого: ,

где - коэффициент трения скольжения, зависящий от природы и состояния трущихся поверхностей; - сила нормального давления, прижимающая трущиеся поверхности друг к другу. Сила трения направлена по касательной к трущимся поверхностям в сторону, противоположную движению данного тела относительно другого.

3) Сила упругости возникает в результате взаимодействия тел, сопровождающегося их деформацией. Она пропорциональна смещению частиц из положения равновесия и направлена к равновесному положению. Примером является сила упругой деформации пружины при растяжении или сжатии: ,

где - жесткость пружины; - упругая деформация.

Мощность. КПд

Любая машина, которая используется для выполнения работы, характеризуется особой величиной, которая называется мощностью.

Мощность - это физическая величина, равная отношению работы ко времени, за который эта работа была выполнена. Мощность обозначается буквой N и в Системе Интернациональной измеряется в ваттах, в честь английского ученого 18-19 века Джеймса Уатта. Если мощность известна, то работу, которая выполняется за единицу времени, можно найти как произведение мощности на время. Поэтому за единицу работы можно взять работу, которая выполняется за 1 секунду при мощности 1 ватт. Такая единица работы называется ватт-секундой (Вт с).

Если тело движется равномерно, то его мощность можно рассчитать как произведение силы тяги и скорости движения.

В реальных условиях часть механической энергии всегда теряется, поскольку идет на увеличение внутренней энергии двигателя и других частей машины. Для того чтобы характеризовать эффективность двигателей и устройств, пользуются коэффициентом полезного действия.

Коэффициент полезного действия (КПД) - это физическая величина, равная отношению полезной работы к полной работы. КПД обозначается буквой η и измеряется в процентах. Полезная работа всегда меньше полной. КПД всегда меньше 100%.

Формулировка

Кинетическая энергия механической системы есть энергия движения центра масс плюс энергия движения относительно центра масс:

где - полная кинетическая энергия системы, - кинетическая энергия движения центра масс, - относительная кинетическая энергия системы .

Иными словами, полная кинетическая энергия тела или системы тел в сложном движении равна сумме энергии системы в поступательном движении и энергии системы в её сферическом движении относительно центра масс.

Вывод

Приведём доказательство теоремы Кёнига для случая, когда массы тел, образующих механическую систему , распределены непрерывно .

Найдём относительную кинетическую энергию системы , трактуя её как кинетическую энергию, вычисленную относительно подвижной системы координат. Пусть - радиус-вектор рассматриваемой точки системы в подвижной системе координат. Тогда :

где точкой обозначено скалярное произведение, а интегрирование ведётся по области пространства, занимаемой системой в текущий момент времени.

Если - радиус-вектор начала координат подвижной системы, а - радиус-вектор рассматриваемой точки системы в исходной системе координат, то верно соотношение:

Вычислим полную кинетическую энергию системы в случае, когда начало координат подвижной системы помещено в её центр масс. С учётом предыдущего соотношения имеем:

Учитывая, что радиус-вектор одинаков для всех , можно, раскрыв скобки, вынести за знак интеграла:

Первое слагаемое в правой части этой формулы (совпадающее с кинетической энергией материальной точки, которая помещена в начало координат подвижной системы и имеет массу, равную массе механической системы) может интерпретироваться как кинетическая энергия движения центра масс.

Второе слагаемое равно нулю, поскольку второй сомножитель в нём получается дифференцированием по времени произведения радиус-вектора центра масс на массу системы , но упомянутый радиус-вектор (а с ним и всё произведение) равен нулю:

так как начало координат подвижной системы находится (по сделанному предположению) в центре масс.

Третье же слагаемое, как было уже показано, равно , т. е. относительной кинетической энергии системы .

инетическую энергию материальной точки массой m, движущейся с абсолютной скоростью , определяют по формуле

Кинетическая энергия механической системы равна сумме кинетических энергий всех точек этой системы

Потенциальная инергия

Потенциальная энергия - скалярная физическая величина, представляющая собой часть полной механической энергии системы, находящейся в поле консервативных сил. Зависит от положения материальных точек, составляющих систему, и характеризует работу, совершаемую полем при их перемещении . Другое определение: потенциальная энергия - это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы . Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином.

Единицей измерения энергии в Международной системе единиц (СИ) является джоуль.

Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии .

Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными (потенциальными).

Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля.

Любая физическая система стремится к состоянию с наименьшей потенциальной энергией.

Потенциальная энергия упругой деформации характеризует взаимодействие между собой частей тела.

Потенциальная энергия тела в поле тяготения Земли вблизи поверхности приближённо выражается формулой:

где - масса тела, - ускорение свободного падения, - высота положения центра масс тела над произвольно выбранным нулевым уровнем.

Столкновение двух тел

Закон сохранения энергии позволяет решать механические задачи в тех случаях, когда почему-либо неизвестны действующие на тело хилы. Интересным примером именно такого случая является столкновение двух тел. Этот пример особенно интересен тем, что при его анализе нельзя обойтись одним только законом сохранения энергии. Нужно привлечь еще и закон сохранения импульса (количества движения).
В обыденной жизни и в технике не так уж часто приходится иметь дело со столкновениями тел, но в физике атома и атомных частиц столкновения - очень частое явление.
Для простоты мы сначала рассмотрим столкновение двух шаров массами m 1 и m 2 , из которых второй покоится, а первый движется по направлению ко второму со скоростью v 1 . Будем считать, что движение происходит вдоль линии, соединяющей центры обоих шаров (рис. 205), так что при столкновении шаров имеет место так называемый центральный, или лобовой, удар. Каковы скорости обоих шаров после столкновения?
До столкновения кинетическая энергия второго шара равна нулю, а первого Сумма энергий обоих шаров составляет:

После столкновения первый шар станет двигаться с некоторой скоростью u 1 . Второй шар, скорость которого была равна нулю, также получит какую-то скорость u 2 . Поэтому после столкновения сумма кинетических энергий двух шаров станет равной

По закону сохранения энергии эта сумма должна быть равна энергии шаров до столкновения:

Из этого одного уравнения мы, конечно, не можем найти две неизвестные скорости: u 1 и u 2 . Вот тут-то на помощь и приходит второй закон сохранения - закон сохранения импульса. До столкновения шаров импульс первого шара был равен m 1 v 1 , а импульс второго - нулю. Полный импульс двух шаров был равен:

После столкновения импульсы обоих шаров изменились и стали равными m 1 u 1 и m 2 u 2 , а полный импульс стал

По закону сохранения импульса полный импульс при столкновении измениться не может. Поэтому мы должны написать:

Теперь мы имеем два уравнения:


Такую систему уравнений можно решить и найти неизвестные скорости u 1 и u 2 шаров после столкновения. Для этого перепишем ее следующим образом:

Разделив первое уравнение на второе, получим:

Решая теперь это уравнение совместно со вторым уравнением

(проделайте это самостоятельно), найдем, что первый шар после удара будет двигаться со скоростью

А второй - со скоростью

Если оба шара имеют одинаковые массы (m 1 = m 2), то u 1 = 0, а u 2 = v 1 . Это значит, что первый шар, столкнувшись со вторым, передал ему свою скорость, а сам остановился (рис. 206).
Таким образом, пользуясь законами сохранения энергии и импульса, можно, зная скорости тел до столкновения, определить их скорости после столкновения.
А как обстояло дело во время самого столкновения в тот момент, когда центры шаров максимально сблизились?
Очевидно, что в это время они двигались вместе с некоторой скоростью u. При одинаковых массах тел их общая масса равна 2m. По закону сохранения импульса во время совместного движения обоих шаров их импульс должен быть равен общему импульсу до столкновения:

Отсюда следует, что

Таким образом, скорость обоих шаров при их совместном движении равна половине скорости одного из них до столкновения. Найдем кинетическую энергию обоих шаров для этого момента:

А до столкновения общая энергия обоих шаров была равна

Следовательно, в самый момент столкновения шаров кинетическая энергия уменьшилась вдвое. Куда же пропала половина кинетической энергии? Не происходит ли здесь нарушения закона сохранения энергии?
Энергия, конечно, и во время совместного движения шаров осталась прежней. Дело в том, что во время столкновения оба шара были деформированы и поэтому обладали потенциальной энергией упругого взаимодействия. Именно на величину этой потенциальной энергии и уменьшилась кинетическая энергия шаров.

Момент силы.

Основы СТО.

Специальная теория относительности (СТО ; также частная теория относительности ) - теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей называется общей теорией относительности.

Описываемые специальной теорией относительности отклонения в протекании физических процессов от предсказаний классической механики называют релятивистскими эффектами , а скорости, при которых такие эффекты становятся существенными, - релятивистскими скоростями . Основным отличием СТО от классической механики является зависимость (наблюдаемых) пространственных и временных характеристик от скорости.

Центральное место в специальной теории относительности занимают преобразования Лоренца, которые позволяют преобразовывать пространственно-временные координаты событий при переходе от одной инерциальной системы отсчета к другой.

Специальная теория относительности была создана Альбертом Эйнштейном в работе 1905 года «К электродинамике движущихся тел». Несколько ранее к аналогичным выводам пришел А. Пуанкаре, который впервые назвал преобразования координат и времени между различными системами отсчёта «преобразования Лоренца».

Постулаты СТО

В первую очередь в СТО, как и в классической механике, предполагается, что пространство и время однородны, а пространство также изотропно. Если быть более точным (современный подход) инерциальные системы отсчета собственно и определяются как такие системы отсчета, в которых пространство однородно и изотропно, а время однородно. По сути существование таких систем отсчета постулируется.

Постулат 1 (принцип относительности Эйнштейна ). Любое физическое явление протекает одинаково во всех инерциальных системах отсчёта. Это означает, что форма зависимости физических законов от пространственно-временных координат должна быть одинаковой во всех ИСО, то есть законы инвариантны относительно переходов между ИСО. Принцип относительности устанавливает равноправие всех ИСО.

Учитывая второй закон Ньютона (или уравнения Эйлера-Лагранжа в лагранжевой механике), можно утверждать, что если скорость некоторого тела в данной ИСО постоянна (ускорение равно нулю), то она должна быть постоянна и во всех остальных ИСО. Иногда это и принимают за определение ИСО.

Формально, принцип относительности Эйнштейна распространил классический принцип относительности (Галилея) с механических на все физические явления. Однако, если учесть, что во времена Галилея физика заключалась собственно в механике, то и классический принцип тоже можно считать распространяющимся на все физические явления. В том числе он должен распространяться и на электромагнитные явления, описываемые уравнениями Максвелла. Однако, согласно последним (и это можно считать эмпирически установленным, так как уравнения выведены из эмпирически выявленных закономерностей), скорость распространения света является определённой величиной, не зависящей от скорости источника (по крайней мере в одной системе отсчёта). Принцип относительности в таком случае говорит, что она не должна зависеть от скорости источника во всех ИСО в силу их равноправности. А значит, она должна быть постоянной во всех ИСО. В этом заключается суть второго постулата:

Постулат 2 (принцип постоянства скорости света ). Скорость света в «покоящейся» системе отсчёта не зависит от скорости источника.

Принцип постоянства скорости света противоречит классической механике, а конкретно - закону сложения скоростей. При выводе последнего используется только принцип относительности Галилея и неявное допущение одинаковости времени во всех ИСО. Таким образом, из справедливости второго постулата следует, что время должно быть относительным - неодинаковым в разных ИСО. Необходимым образом отсюда следует и то, что «расстояния» также должны быть относительны. В самом деле, если свет проходит расстояние между двумя точками за некоторое время, а в другой системе - за другое время и притом с той же скоростью, то отсюда непосредственно следует, что и расстояние в этой системе должно отличаться.

Необходимо отметить, что световые сигналы, вообще говоря, не требуются при обосновании СТО. Хотя неинвариантность уравнений Максвелла относительно преобразований Галилея привела к построению СТО, последняя имеет более общий характер и применима ко всем видам взаимодействий и физических процессов. Фундаментальная константа , возникающая в преобразованиях Лоренца, имеет смысл предельной скорости движения материальных тел. Численно она совпадает со скоростью света, однако этот факт, согласно современной квантовой теории поля (уравнения которой изначально строятся как релятивистски инвариантные) связан с безмассовостью электромагнитных полей. Даже если бы фотон имел отличную от нуля массу, преобразования Лоренца от этого бы не изменились. Поэтому имеет смысл различать фундаментальную скорость и скорость света . Первая константа отражает общие свойства пространства и времени, тогда как вторая связана со свойствами конкретного взаимодействия.

В связи с этим второй постулат следует формулировать как существование предельной (максимальной) скорости движения . По своей сути она должна быть одинаковой во всех ИСО, хотя бы потому, что в противном случае различные ИСО не будут равноправны, что противоречит принципу относительности. Более того, исходя из принципа «минимальности» аксиом, можно сформулировать второй постулат просто как существование некоторой скорости, одинаковой во всех ИСО - фактор Лоренца, . В целях упрощения дальнейшего изложения (а также самих конечных формул преобразования) будем исходить из предп

Итак, допустим, наши тела двигаются в одном направлении. Как ты думаешь, сколько случаев может быть для такого условия? Правильно, два.

Почему так получается? Уверена, что после всех примеров ты с легкостью сам разберешься, как вывести данные формулы.

Разобрался? Молодец! Пришло время решить задачу.

Четвертая задача

Коля едет на работу на машине со скоростью км/ч. Коллега Коли Вова едет со скоростью км/ч. Коля от Вовы живет на расстоянии км.

Через сколько времени Вова догонит Колю, если из дома они выехали одновременно?

Посчитал? Сравним ответы - у меня получилось, что Вова догонит Колю через часа или через минут.

Сравним наши решения...

Рисунок выглядит вот таким образом:

Похож на твой? Молодец!

Так как в задаче спрашивается, через сколько ребята встретились, а выехали они одновременно, то время, которое они ехали, будет одинаковым, так же как место встречи (на рисунке оно обозначено точкой). Составляя уравнения, возьмем время за.

Итак, Вова до места встречи проделал путь. Коля до места встречи проделал путь. Это понятно. Теперь разбираемся с осью передвижения.

Начнем с пути, который проделал Коля. Его путь () на рисунке изображен как отрезок. А из чего состоит путь Вовы ()? Правильно, из суммы отрезков и, где - изначальное расстояние между ребятами, а равен пути, который проделал Коля.

Исходя из этих выводов, получаем уравнение:

Разобрался? Если нет, просто прочти это уравнение еще раз и посмотри на точки, отмеченные на оси. Рисунок помогает, не правда ли?

часа или минут минут.

Надеюсь, на этом примере ты понял, насколько важную роль играет грамотно составленный рисунок!

А мы плавно переходим, точнее, уже перешли к следующему пункту нашего алгоритма - приведение всех величин к одинаковой размерности.

Правило трех «Р» - размерность, разумность, расчет.

Размерность.

Далеко не всегда в задачах дается одинаковая размерность для каждого участника движения (как это было в наших легких задачках).

Например, можно встретить задачи, где сказано, что тела двигались определенное количество минут, а скорость их передвижения указана в км/ч.

Мы не можем просто взять и подставить значения в формулу - ответ получится неверный. Даже по единицам измерения наш ответ «не пройдет» проверку на разумность. Сравни:

Видишь? При грамотном перемножении у нас также сокращаются единицы измерения, и, соответственно, получается разумный и верный результат.

А что происходит, если мы не переводим в одну систему измерения? Странная размерность у ответа и % неверный результат.

Итак, напомню тебе на всякий случай значения основных единиц измерения длины и времени.

    Единицы измерения длины:

сантиметр = миллиметров

дециметр = сантиметров = миллиметров

метр = дециметров = сантиметров = миллиметров

километр = метров

    Единицы измерения времени:

минута = секунд

час = минут = секунд

сутки = часа = минут = секунд

Совет: Переводя единицы измерения, связанные с временем (минуты в часы, часы в секунды и т.д.) представь в голове циферблат часов. Невооруженным глазом видно, что минут это четверть циферблата, т.е. часа, минут это треть циферблата, т.е. часа, а минута это часа.

А теперь совсем простенькая задача:

Маша ехала на велосипеде из дома в деревню со скоростью км/ч на протяжении минут. Какое расстояние между машиным домом и деревней?

Посчитал? Правильный ответ - км.

минут - это час, и еще минут от часа (мысленно представил себе циферблат часов, и сказал, что минут - четверть часа), соответственно - мин = ч.

Разумность.

Ты же понимаешь, что скорость машины не может быть км/ч, если речь, конечно, идет не о спортивном болиде? И уж тем более, она не может быть отрицательной, верно? Так вот, разумность, это об этом)

Расчет.

Посмотри, «проходит» ли твое решение на размерность и разумность, и только потом проверяй расчеты. Логично же - если с размерностью и разумностью получается несостыковочка, то проще все зачеркнуть и начать искать логические и математические ошибки.

«Любовь к таблицам» или «когда рисунка недостаточно»

Далеко не всегда задачи на движение такие простые, как мы решали раньше. Очень часто, для того, чтобы правильно решить задачу, нужно не просто нарисовать грамотный рисунок, но и составить таблицу со всеми данными нам условиями.

Первая задача

Из пункта в пункт, расстояние между которыми км, одновременно выехал велосипедист и мотоциклист. Известно, что в час мотоциклист проезжает на км больше, чем велосипедист.

Определите скорость велосипедиста, если известно, что он прибыл в пункт на минут позже, чем мотоциклист.

Вот такая вот задача. Соберись, и прочитай ее несколько раз. Прочитал? Начинай рисовать - прямая, пункт, пункт, две стрелочки…

В общем рисуй, и сейчас сравним, что у тебя получилось.

Пустовато как-то, правда? Рисуем таблицу.

Как ты помнишь, все задачи на движения состоят из компонентов: скорость, время и путь . Именно из этих граф и будет состоять любая таблица в подобных задачах.

Правда, мы добавим еще один столбец - имя , про кого мы пишем информацию - мотоциклист и велосипедист.

Так же в шапке укажи размерность , в какой ты будешь вписывать туда величины. Ты же помнишь, как это важно, правда?

У тебя получилась вот такая таблица?

Теперь давай анализировать все, что у нас есть, и параллельно заносить данные в таблицу и на рисунок.

Первое, что мы имеем - это путь, который проделали велосипедист и мотоциклист. Он одинаков и равен км. Вносим!

Возьмем скорость велосипедиста за, тогда скорость мотоциклиста будет …

Если с такой переменной решение задачи не пойдет - ничего страшного, возьмем другую, пока не дойдем до победного. Такое бывает, главное не нервничать!

Таблица преобразилась. У нас осталась не заполнена только одна графа - время. Как найти время, когда есть путь и скорость?

Правильно, разделить путь на скорость. Вноси это в таблицу.

Вот и заполнилась наша таблица, теперь можно внести данные на рисунок.

Что мы можем на нем отразить?

Молодец. Скорость передвижения мотоциклиста и велосипедиста.

Еще раз перечитаем задачу, посмотрим на рисунок и заполненную таблицу.

Какие данные не отражены ни в таблице, ни на рисунке?

Верно. Время, на которое мотоциклист приехал раньше, чем велосипедист. Мы знаем, что разница во времени - минут.

Что мы должны сделать следующим шагом? Правильно, перевести данное нам время из минут в часы, ведь скорость дана нам в км/ч.

Магия формул: составление и решение уравнений - манипуляции, приводящие к единственно верному ответу.

Итак, как ты уже догадался, сейчас мы будем составлять уравнение .

Составление уравнения:

Взгляни на свою таблицу, на последнее условие, которое в нее не вошло и подумай, зависимость между чем и чем мы можем вынести в уравнение?

Правильно. Мы можем составить уравнение, основываясь на разнице во времени!

Логично? Велосипедист ехал больше, если мы из его времени вычтем время движения мотоциклиста, мы как раз получим данную нам разницу.

Это уравнение - рациональное. Если не знаешь, что это такое, прочти тему « ».

Приводим слагаемые к общему знаменателю:

Раскроем скобки и приведем подобные слагаемые:Уф! Усвоил? Попробуй свои силы на следующей задаче.

Решение уравнения:

Из этого уравнения мы получаем следующее:

Раскроем скобки и перенесем все в левую часть уравнения:

Вуаля! У нас простое квадратное уравнение. Решаем!

Мы получили два варианта ответа. Смотрим, что мы взяли за? Правильно, скорость велосипедиста.

Вспоминаем правило «3Р», конкретнее «разумность». Понимаешь о чем я? Именно! Скорость не может быть отрицательной, следовательно, наш ответ - км/ч.

Вторая задача

Два велосипедиста одновременно отправились в -километровый пробег. Первый ехал со скоростью, на км/ч большей, чем скорость второго, и прибыл к финишу на часов раньше второго. Найти скорость велосипедиста, пришедшего к финишу вторым. Ответ дайте в км/ч.

Напоминаю алгоритм решения:

  • Прочитай задачу пару раз - усвой все-все детали. Усвоил?
  • Начинай рисовать рисунок - в каком направлении они двигаются? какое расстояние они прошли? Нарисовал?
  • Проверь, все ли величины у тебя одинаковой размерности и начинай выписывать кратко условие задачи, составляя табличку (ты же помнишь какие там графы?).
  • Пока все это пишешь, думай, что взять за? Выбрал? Записывай в таблицу! Ну а теперь просто: составляем уравнение и решаем. Да, и напоследок - помни о «3Р»!
  • Все сделал? Молодец! У меня получилось, что скорость велосипедиста - км/ч.

-«Какого цвета твоя машина?» - «Она красивая!» Правильные ответы на поставленные вопросы

Продолжим наш разговор. Так какая там скорость у первого велосипедиста? км/ч? Очень надеюсь, что ты сейчас не киваешь утвердительно!

Внимательно прочти вопрос: «Какая скорость у первого велосипедиста?»

Понял, о чем я?

Именно! Полученный - это не всегда ответ на поставленный вопрос!

Вдумчиво читай вопросы - возможно, после нахождения тебе нужно будет произвести еще некоторые манипуляции, например, прибавить км/ч, как в нашей задаче.

Еще один момент - часто в задачах все указывается в часах, а ответ просят выразить в минутах, или же все данные даны в км, а ответ просят записать в метрах.

Смотри за размерностью не только в ходе самого решения, но и когда записываешь ответы.

Задачи на движение по кругу

Тела в задачах могут двигаться не обязательно прямо, но и по кругу, например, велосипедисты могут ехать по круговой трассе. Разберем такую задачу.

Задача №1

Из пункта круговой трассы выехал велосипедист. Через минут он еще не вернулся в пункт и из пункта следом за ним отправился мотоциклист. Через минут после отправления он догнал велосипедиста в первый раз, а еще через минут после этого догнал его во второй раз.

Найдите скорость велосипедиста, если длина трассы равна км. Ответ дайте в км/ч.

Решение задачи №1

Попробуй нарисовать рисунок к этой задаче и заполнить для нее таблицу. Вот что получилось у меня:

Между встречами велосипедист проехал расстояние, а мотоциклист - .

Но при этом мотоциклист проехал ровно на один круг больше, это видно из рисунка:

Надеюсь, ты понимаешь, что по спирали они на самом деле не ездили - спираль просто схематически показывает, что они ездят по кругу, несколько раз проезжая одни и те же точки трассы.

Разобрался? Попробуй решить самостоятельно следующие задачи:

Задачи для самостоятельной работы:

  1. Два мо-то-цик-ли-ста стар-ту-ют од-но-вре-мен-но в одном на-прав-ле-нии из двух диа-мет-раль-но про-ти-во-по-лож-ных точек кру-го-вой трас-сы, длина ко-то-рой равна км. Через сколь-ко минут мо-то-цик-ли-сты по-рав-ня-ют-ся в пер-вый раз, если ско-рость од-но-го из них на км/ч боль-ше скорости дру-го-го?
  2. Из одной точки кру-го-вой трас-сы, длина ко-то-рой равна км, од-н-времен-но в одном на-прав-ле-нии стар-то-ва-ли два мотоциклиста. Ско-рость пер-во-го мотоцикла равна км/ч, и через минут после стар-та он опе-ре-дил вто-рой мотоцикл на один круг. Най-ди-те ско-рость вто-ро-го мотоцикла. Ответ дайте в км/ч.

Решения задач для самостоятельной работы:

  1. Пусть км/ч — ско-рость пер-во-го мо-то-цик-ли-ста, тогда ско-рость вто-ро-го мо-то-цик-ли-ста равна км/ч. Пусть пер-вый раз мо-то-цик-ли-сты по-рав-ня-ют-ся через часов. Для того, чтобы мо-то-цик-ли-сты по-рав-ня-лись, более быст-рый дол-жен пре-одо-леть из-на-чаль-но раз-де-ля-ю-щее их рас-сто-я-ние, рав-ное по-ло-ви-не длины трас-сы.

    Получаем, что время равно часа = минут.

  2. Пусть ско-рость вто-ро-го мотоцикла равна км/ч. За часа пер-вый мотоцикл про-шел на км боль-ше, чем вто-рой, соответственно, получаем уравнение:

    Скорость второго мотоциклиста равна км/ч.

Задачи на течение

Теперь, когда ты отлично решаешь задачи «на суше», перейдем в воду, и рассмотрим страаашные задачи, связанные с течением.

Представь, что у тебя есть плот, и ты спустил его в озеро. Что с ним происходит? Правильно. Он стоит, потому что озеро, пруд, лужа, в конце концов, - это стоячая вода.

Скорость течения в озере равна .

Плот поедет, только если ты сам начнешь грести. Та скорость, которую он приобретет, будет собственной скоростью плота. Неважно куда ты поплывешь - налево, направо, плот будет двигаться с той скоростью, с которой ты будешь грести. Это понятно? Логично же.

А сейчас представь, что ты спускаешь плот на реку, отворачиваешься, чтобы взять веревку…, поворачиваешься, а он … уплыл...

Это происходит потому что у реки есть скорость течения , которая относит твой плот по направлению течения.

Его скорость при этом равна нулю (ты же стоишь в шоке на берегу и не гребешь) - он движется со скоростью течения.

Разобрался?

Тогда ответь вот на какой вопрос - «С какой скоростью будет плыть плот по реке, если ты сидишь и гребешь?» Задумался?

Здесь возможно два варианта.

1-й вариант - ты плывешь по течению.

И тогда ты плывешь с собственной скоростью + скорость течения. Течение как бы помогает тебе двигаться вперед.

2-й вариант - ты плывешь против течения.

Тяжело? Правильно, потому что течение пытается «откинуть» тебя назад. Ты прилагаешь все больше усилий, чтобы проплыть хотя бы метров, соответственно скорость, с которой ты передвигаешься, равна собственная скорость - скорость течения.

Допустим, тебе надо проплыть км. Когда ты преодолеешь это расстояние быстрее? Когда ты будешь двигаться по течению или против?

Решим задачку и проверим.

Добавим к нашему пути данные о скорости течения - км/ч и о собственной скорости плота - км/ч. Какое время ты затратишь, двигаясь по течению и против него?

Конечно, ты без труда справился с этой задачей! По течению - час, а против течения аж часа!

В этом и есть вся суть задач на движение с течением .

Несколько усложним задачу.

Задача №1

Лодка с моторчиком плыла из пункта в пункт часа, а обратно - часа.

Найдите скорость течения, если скорость лодки в стоячей воде - км/ч

Решение задачи №1

Обозначим расстояние между пунктами, как, а скорость течения - как.

Путь S Скорость v,
км/ч
Время t,
часов
A -> B (против течения) 3
B -> A (по течению) 2

Мы видим, что лодка проделывает один и тот же путь, соответственно:

Что мы брали за?

Скорость течения. Тогда это и будет являться ответом:)

Скорость течения равна км/ч.

Задача №2

Байдарка в вышла из пункта в пункт, расположенный в км от. Пробыв в пункте час минут, байдарка отправилась назад и вернулась в пункт в.

Определите (в км/ч) собственную скорость байдарки, если известно, что скорость течения реки км/ч.

Решение задачи №2

Итак, приступим. Прочитай задачу несколько раз и сделай рисунок. Думаю, ты без труда сможешь решить это самостоятельно.

Все величины у нас выражены в одном виде? Нет. Время отдыха у нас указано и в часах, и в минутах.

Переведем это в часы:

час минут = ч.

Теперь все величины у нас выражены в одном виде. Приступим к заполнению таблицы и поиску того, что мы возьмем за.

Пусть - собственная скорость байдарки. Тогда, скорость байдарки по течению равна, а против течения равна.

Запишем эти данные, а так же путь (он, как ты понимаешь, одинаков) и время, выраженное через путь и скорость, в таблицу:

Путь S Скорость v,
км/ч
Время t,
часов
Против течения 26
По течению 26

Посчитаем, сколько времени байдарка затратила на свое путешествие:

Все ли часов она плыла? Перечитываем задачу.

Нет, не все. У нее был отдых час минут, соответственно, из часов мы вычитаем время отдыха, которое, мы уже перевели в часы:

ч байдарка действительно плыла.

Приведем все слагаемые к общему знаменателю:

Раскроем скобки и приведем подобные слагаемые. Далее решаем получившееся квадратное уравнение.

С этим, я думаю, ты тоже справишься самостоятельно. Какой ответ у тебя получился? У меня км/ч.

Подведем итоги


ПРОДВИНУТЫЙ УРОВЕНЬ

Задачи на движение. Примеры

Рассмотрим примеры с решениями для каждого типа задач.

Движение с течением

Одни из самых простых задач - задачи на движение по реке . Вся их суть в следующем:

  • если движемся по течению, к нашей скорости прибавляется скорость течения;
  • если движемся против течения, из нашей скорости вычитается скорость течения.

Пример №1:

Катер плыл из пункта A в пункт B часов а обратно - часа. Найдите скорость течения, если скорость катера в стоячей воде км/ч.

Решение №1:

Обозначим расстояние между пунктами, как AB, а скорость течения - как.

Все данные из условия занесем в таблицу:

Путь S Скорость v,
км/ч
Время t, часов
A -> B (против течения) AB 50-x 5
B -> A (по течению) AB 50+x 3

Для каждой строки этой таблицы нужно записать формулу:

На самом деле, можно не писать уравнения для каждой из строк таблицы. Мы ведь видим, что расстояние, пройденное катером туда и обратно одинаково.

Значит, расстояние мы можем приравнять. Для этого используем сразу формулу для расстояния:

Часто приходится использовать и формулу для времени:

Пример №2:

Против течения лодка проплывает расстояние в км на час дольше, чем по течению. Найдите скорость лодки в стоячей воде, если скорость течения равна км/ч.

Решение №2:

Попробуем сразу составить уравнение. Время против течения на час больше, чем время по течению.

Это записывается так:

Теперь вместо каждого времени подставим формулу:

Получили обычное рациональное уравнение, решим его:

Очевидно, что скорость не может быть отрицательным числом, значит, ответ: км/ч.

Относительное движение

Если какие-то тела движутся друг относительно друга, часто бывает полезно посчитать их относительную скорость. Она равна:

  • сумме скоростей, если тела движутся навстречу друг другу;
  • разности скоростей, если тела движутся в одном направлении.

Пример №1

Из пунктов A и B одновременно навстречу друг другу выехали два автомобиля со скоростями км/ч и км/ч. Через сколько минут они встретятся. Если расстояние между пунктами км?

I способ решения:

Относительная скорость автомобилей км/ч. Это значит, что если мы сидим в первом автомобиле, то он нам кажется неподвижным, но второй автомобиль приближается к нам со скоростью км/ч. Так как между автомобилями изначально расстояние км, время, через которое второй автомобиль проедет мимо первого:

II способ решения:

Время от начала движения до встречи у автомобилей, очевидно, одинаковое. Обозначим его. Тогда первый автомобиль проехал путь, а второй - .

В сумме они проехали все км. Значит,

Другие задачи на движение

Пример №1:

Из пункта А в пункт В выехал автомобиль. Одновременно с ним выехал другой автомобиль, который ровно половину пути ехал со скоростью на км/ч меньшей, чем первый, а вторую половину пути он проехал со скоростью км/ч.

В результате автомобили прибыли в пункт В одновременно.

Найдите скорость первого автомобиля, если известно, что она больше км/ч.

Решение №1:

Слева от знака равно запишем время первого автомобиля, а справа - второго:

Упростим выражение в правой части:

Поделим каждое слагаемое на АВ:

Получилось обычное рациональное уравнение. Решив его, получим два корня:

Из них только один больше.

Ответ: км/ч.

Пример №2

Из пункта A круговой трассы выехал велосипедист. Через минут он еще не вернулся в пункт А и из пункта А следом за ним отправился мотоциклист. Через минут после отправления он догнал велосипедиста в первый раз, а еще через минут после этого догнал его во второй раз. Найдите скорость велосипедиста, если длина трассы равна км. Ответ дайте в км/ч.

Решение:

Здесь будем приравнивать расстояние.

Пусть скорость велосипедиста будет, а мотоциклиста - . До момента первой встречи велосипедист был в пути минут, а мотоциклист - .

При этом они проехали равные расстояния:

Между встречами велосипедист проехал расстояние, а мотоциклист - . Но при этом мотоциклист проехал ровно на один круг больше, это видно из рисунка:

Надеюсь, ты понимаешь, что по спирали они на самом деле не ездили- спираль просто схематически показывает, что они ездят по кругу, несколько раз проезжая одни и те же точки трассы.

Полученные уравнения решаем в системе:

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

1. Основная формула

2. Относительное движение

  • Это сумма скоростей, если тела движутся навстречу друг другу;
  • разность скоростей, если тела движутся в одном направлении.

3. Движение с течением :

  • Если движемся по течению, к нашей скорости прибавляется скорость течения;
  • если движемся против течения, из скорости вычитается скорость течения.

Мы помогли тебе разобраться с задачами на движение...

Теперь твой ход...

Если ты внимательно прочитал текст и прорешал самостоятельно все примеры, готовы спорить, что ты все понял.

И это уже половина пути.

Напиши внизу в комментариях разобрался ли ты с задачами на движение?

Какие вызывают наибольшие трудности?

Понимаешь ли ты, что задачи на "работу" - это почти тоже самое?

Напиши нам и удачи на экзаменах!

§ 1 Формула одновременного движения

С формулами одновременного движения мы сталкиваемся при решении задач на одновременное движение. Умение решать ту или иную задачу на движение зависит от некоторых факторов. Прежде всего, необходимо различать основные типы задач.

Задачи на одновременное движение условно делятся на 4 типа: задачи на встречное движение, задачи на движение в противоположных направлениях, задачи на движение вдогонку и задачи на движение с отставанием.

Основными компонентами этих типов задач являются:

пройденный путь - S, скорость - ʋ, время - t.

Зависимость между ними выражается формулами:

S = ʋ · t, ʋ = S: t, t = S: ʋ.

Помимо названных основных компонентов при решении задач на движение мы можем столкнуться с такими компонентами, как: скорость первого объекта - ʋ1, скорость второго объекта - ʋ2, скорость сближения - ʋсбл., скорость удаления - ʋуд., время встречи - tвстр., первоначальное расстояние - S0 и т.д.

§ 2 Задачи на встречное движение

При решении задач данного типа применяются следующие компоненты: скорость первого объекта - ʋ1; скорость второго объекта - ʋ2; скорость сближения - ʋсбл.; время до встречи - tвстр.; путь (расстояние), пройденный первым объектом - S1; путь (расстояние), пройденный вторым объектом - S2; весь путь, пройденный обоими объектами - S.

Зависимость между компонентами задач на встречное движение выражается следующими формулами:

1.первоначальное расстояние между объектами можно вычислить по следующим формулам: S = ʋсбл. · tвстр. или S = S1 + S2;

2.скорость сближения находится по формулам: ʋсбл. = S: tвстр. или ʋсбл. = ʋ1 + ʋ2;

3.время встречи вычисляется следующим образом:

Два теплохода плывут навстречу друг другу. Скорости теплоходов 35 км/ч и 28 км/ч. Через какое время они встретятся, если расстояние между ними 315 км?

ʋ1 = 35 км/ч, ʋ2 = 28 км/ч, S = 315 км, tвстр. = ? ч.

Чтобы найти время встречи, необходимо знать первоначальное расстояние и скорость сближения, так как tвстр. = S: ʋсбл. Поскольку расстояние известно по условию задачи, найдем скорость сближения. ʋсбл. = ʋ1 + ʋ2 = 35 + 28 = 63 км/ч. Теперь можем найти и искомое время встречи. tвстр. = S: ʋсбл = 315: 63 = 5 ч. Получили, что теплоходы встретятся через 5 часов.

§ 3 Задачи на движение вдогонку

При решении задач данного типа применяются следующие компоненты: скорость первого объекта - ʋ1; скорость второго объекта - ʋ2; скорость сближения - ʋсбл.; время до встречи - tвстр.; путь (расстояние), пройденный первым объектом - S1; путь (расстояние), пройденный вторым объектом - S2; первоначальное расстояние между объектами - S.

Схема к задачам такого типа выглядит следующим образом:

Зависимость между компонентами задач на движение вдогонку выражается следующими формулами:

1.Первоначальное расстояние между объектами можно вычислить по следующим формулам:

S = ʋсбл. · tвстр.илиS = S1 - S2;

2.скорость сближения находится по формулам: ʋсбл. = S: tвстр. или ʋсбл. = ʋ1 - ʋ2;

3.Время встречи вычисляется следующим образом:

tвстр. = S: ʋсбл., tвстр. = S1: ʋ1 или tвстр. = S2: ʋ2.

Рассмотрим применение данных формул на примере следующей задачи.

Тигр погнался за оленем и догнал его через 7 минут. Каково первоначальное расстояние между ними, если скорость тигра равна 700 м/мин, а скорость оленя - 620 м/мин?

ʋ1 = 700 м/мин, ʋ2 = 620 м/мин, S = ? м, tвстр. = 7 мин.

Чтобы найти первоначальное расстояние между тигром и оленем, необходимо знать время встречи и скорость сближения, так как S =tвстр. · ʋсбл. Поскольку время встречи известно по условию задачи, найдем скорость сближения. ʋсбл. = ʋ1 - ʋ2 = 700 - 620 = 80 м/мин. Теперь можем найти и искомое первоначальное расстояние. S =tвстр. · ʋсбл = 7 · 80 = 560 м. Получили, что первоначальное расстояние между тигром и оленем составляло 560 метров.

§ 4 Задачи на движение в противоположных направлениях

При решении задач данного типа применяются следующие компоненты: скорость первого объекта - ʋ1; скорость второго объекта - ʋ2; скорость удаления - ʋуд.; время в пути - t.; путь (расстояние), пройденный первым объектом - S1; путь (расстояние), пройденный вторым объектом - S2; первоначальное расстояние между объектами - S0; расстояние, которое будет между объектами через определенное время - S.

Схема к задачам такого типа выглядит следующим образом:

Зависимость между компонентами задач на движение в противоположных направлениях выражается следующими формулами:

1.Конечное расстояние между объектами можно вычислить по следующим формулам:

S = S0 + ʋуд.· tили S = S1 + S2 + S0; а первоначальное расстояние - по формуле: S0 = S - ʋуд. · t.

2.Скорость удаления находится по формулам:

ʋуд. = (S1 + S2) : t илиʋуд. = ʋ1 + ʋ2;

3.Время в пути вычисляется следующим образом:

t = (S1 + S2) : ʋуд., t = S1: ʋ1или t = S2: ʋ2.

Рассмотрим применение данных формул на примере следующей задачи.

Два автомобиля выехали из автопарков одновременно в противоположных направлениях. Скорость одного - 70 км/час, другого - 50 км/час. Какое расстояние будет между ними через 4 часа, если расстояние между автопарками составляет 45 км?

ʋ1 = 70 км/ч, ʋ2 = 50 км/ч, S0 = 45 км, S = ? км, t = 4 ч.

Чтобы найти расстояние между автомобилями в конце пути, необходимо знать время в пути, первоначальное расстояние и скорость удаления, так как S = ʋуд. · t+ S0Поскольку время и первоначальное расстояние известны по условию задачи, найдем скорость удаления. ʋуд. = ʋ1 + ʋ2 = 70 + 50 = 120 км/ч. Теперь можем найти и искомое расстояние. S = ʋуд. · t+ S0 = 120 · 4 + 45 = 525 км. Получили, что через 4 часа между автомобилями будет расстояние в 525 км

§ 5 Задачи на движение с отставанием

При решении задач данного типа применяются следующие компоненты: скорость первого объекта - ʋ1; скорость второго объекта - ʋ2; скорость удаления - ʋуд.; время в пути - t.; первоначальное расстояние между объектами - S0; расстояние, которое станет между объектами через определенное количество времени - S.

Схема к задачам такого типа выглядит следующим образом:

Зависимость между компонентами задач на движение с отставанием выражается следующими формулами:

1.Первоначальное расстояние между объектами можно вычислить по следующей формуле: S0 = S - ʋуд.· t; а расстояние, которое станет между объектами через определенное время, - по формуле: S = S0 + ʋуд. · t;

2.Скорость удаления находится по формулам: ʋуд.= (S - S0) : t или ʋуд. = ʋ1 - ʋ2;

3.Время вычисляется следующим образом: t = (S - S0) : ʋуд.

Рассмотрим применение данных формул на примере следующей задачи:

Из двух городов в одном направлении выехали две машины. Скорость первой - 80 км/ч, скорость второй - 60 км/ч. Через сколько часов между машинами будет 700 км, если расстояние между городами 560 км?

ʋ1 = 80 км/ч, ʋ2 = 60 км/ч, S = 700 км, S0 = 560 км, t = ? ч.

Чтобы найти время, необходимо знать первоначальное расстояние между объектами, расстояние в конце пути и скорость удаления, так как t = (S - S0) : ʋуд. Поскольку оба расстояния известны по условию задачи, найдем скорость удаления. ʋуд. = ʋ1 - ʋ2 = 80 - 60 = 20 км/ч. Теперь можем найти и искомое время. t = (S - S0) : ʋуд = (700 - 560) : 20 = 7ч. Получили, что через 7 часов между машинами будет 700 км.

§ 6 Краткие итоги по теме урока

При одновременном встречном движении и движении вдогонку расстояние между двумя движущимися объектами уменьшается (до встречи). За единицу времени оно уменьшается на ʋсбл., а за все время движения до встречи оно уменьшится на первоначальное расстояние S. Значит, в обоих случаях первоначальное расстояние равно скорости сближения, умноженной на время движения до встречи: S = ʋсбл. · tвстр.. Разница лишь в том, что при встречном движении ʋсбл. = ʋ1 + ʋ2, а при движении вдогонку ʋсбл. = ʋ1 - ʋ2.

При движении в противоположных направлениях и с отставанием расстояние между объектами увеличивается, поэтому встреча не произойдет. За единицу времени оно увеличивается на ʋуд., а за все время движения оно увеличится на значение произведения ʋуд.· t. Значит, в обоих случаях расстояние между объектами в конце пути равно сумме первоначального расстояния и произведения ʋуд.· t. S = S0 + ʋуд.· t.Разница лишь в том, что при противоположном движении ʋуд. = ʋ1 + ʋ2, а при движении с отставанием ʋуд. = ʋ1 - ʋ2.

Список использованной литературы:

  1. Петерсон Л.Г. Математика. 4 класс. Часть 2. / Л.Г. Петерсон. – М.: Ювента, 2014. – 96 с.: ил.
  2. Математика. 4 класс. Методические рекомендации к учебнику математики «Учусь учиться» для 4 класса / Л.Г. Петерсон. – М.: Ювента, 2014. – 280 с.: ил.
  3. Зак С.М. Все задания к учебнику математики для 4 класса Л.Г. Петерсон и комплекту самостоятельных и контрольных работ. ФГОС. – М.: ЮНВЕС, 2014.
  4. CD-ROM. Математика. 4 класс. Сценарии уроков к учебнику к 2 части Петерсон Л.Г. – М.: Ювента, 2013.

Использованные изображения: