Решение квадратных уравнений. Решение квадратных уравнений Корни квадратного уравнения

29.11.2023 Досуг 

{ (3 * x – 1) = 0;

-(3 * x – 1) = 0;

Отсюда получаем, что имеется одно уравнение 3 * x – 1 = 0.

Получили линейное уравнение в виде 3 * x – 1 = 0

Для того, чтобы решить уравнение, определим какие свойства имеет уравнение:

  • Уравнение является линейным, и записывается в виде a * x + b = 0, где a и b - любые числа;
  • При a = b = 0, уравнение имеет бесконечное множество решений;
  • Если a = 0, b ≠ 0, уравнение не имеет решения;
  • Если a ≠ 0, b = 0, уравнение имеет решение: x = 0;
  • Если, а и b - любые числа, кроме 0, то корень находится по следующей формуле x = - b/a.

Отсюда получаем, что a = 3, b = - 1, значит, уравнение имеет один корень.

Проверка решения уравнения

Подставим найденное значение х = 1/3 в изначальное выражение |3 * x - 1| = 0, тогда получим:

|3 * 1/3 - 1| = 0;

Для того, чтобы найти значение выражения, сначала в порядке очереди вычисляем умножение или деление, потом проводятся действия сложения или вычитания. То есть получаем:

Значит, х = 1/3 является корнем уравнения |3 * x - 1| = 0.

|3 * x - 1| = 0;

Модуль раскрывается со знаком плюс и минус. Получим 2 уравнения:

1) 3 * x - 1 = 0;

Известные значения переносим на одну сторону, а неизвестные на другую сторону. При переносе значений, их знаки меняются на противоположный знак. То есть получаем:
3 * x = 0 + 1;
3 * x = 1;
x = 1/3;

2) - (3 * x - 1) = 0;

Раскрываем скобки. Так как, перед скобками стоит знак минус, то при ее раскрытии, знаки значений меняются на противоположный знак. То есть получаем:
- 3 * x + 1 = 0;
- 3 * x = - 1;
x = - 1/(- 3);
x = 1/3;
Ответ: х = 1/3.

Предлагаем вам удобный бесплатный онлайн калькулятор для решения квадратных уравнений. Вы сможете быстро получить и разобраться, как они решаются, на понятных примерах.
Чтобы произвести решение квадратного уравнения онлайн , вначале приведите уравнение к общему виду:
ax 2 + bx + c = 0
Заполните соответственно поля формы:

Как решить квадратное уравнение

Как решить квадратное уравнение: Виды корней:
1. Привести квадратное уравнение к общему виду:
Общий вид Аx 2 +Bx+C=0
Пример: 3х - 2х 2 +1=-1 Приводим к -2х 2 +3х+2=0

2. Находим дискриминант D.
D=B 2 -4*A*C .
Для нашего примера D= 9-(4*(-2)*2)=9+16=25.

3. Находим корни уравнения.
x1=(-В+D 1/2)/2А.
Для нашего случая x1=(-3+5)/(-4)=-0,5
x2=(-В-D 1/2)/2А.
Для нашего примера x2=(-3-5)/(-4)=2
Если В - четное число, то дискриманант и корни удобнее считать по формулам:
D=К 2 -ac
x1=(-K+D 1/2)/А
x2=(-K-D 1/2)/А,
Где K=B/2

1. Действительные корни. Причем. x1 не равно x2
Ситуация возникает, когда D>0 и A не равно 0.

2. Действительные корни совпадают. x1 равно x2
Ситуация возникает, когда D=0. Однако при этом, ни А, ни В, ни С не должны быть равны 0.

3. Два комплексных корня. x1=d+ei, x2=d-ei, где i=-(1) 1/2
Ситуация возникает, когда D
4. Уравнение имеет одно решение.
A=0, B и C нулю не равны. Уравнение становиться линейным.

5. Уравнение имеет бесчисленное множество решений.
A=0, B=0, C=0.

6. Уравнение решений не имеет.
A=0, B=0, C не равно 0.


Для закрепления алгоритма, вот еще несколько показательных примеров решений квадратных уравнений .

Пример 1. Решение обычного квадратного уравнения с разными действительными корнями.
x 2 + 3x -10 = 0
В этом уравнении
А=1, B = 3, С=-10
D=B 2 -4*A*C = 9-4*1*(-10) = 9+40 = 49
квадратный корень будем обозначать, как число 1/2 !
x1=(-В+D 1/2)/2А = (-3+7)/2 = 2
x2=(-В-D 1/2)/2А = (-3-7)/2 = -5

Для проверки подставим:
(x-2)*(x+5) = x2 -2x +5x – 10 = x2 + 3x -10

Пример 2. Решение квадратного уравнения с совпадением действительных корней.
х 2 – 8x + 16 = 0
А=1, B = -8, С=16
D = k 2 – AC = 16 – 16 = 0
X = -k/A = 4

Подставим
(x-4)*(x-4) = (x-4)2 = X 2 – 8x + 16

Пример 3. Решение квадратного уравнения с комплексными корнями.
13х 2 – 4x + 1 = 0
А=1, B = -4, С=9
D = b 2 – 4AC = 16 – 4*13*1 = 16 - 52 = -36
Дискриминант отрицательный – корни комплексные.

X1=(-В+D 1/2)/2А = (4+6i)/(2*13) = 2/13+3i/13
x2=(-В-D 1/2)/2А = (4-6i)/(2*13) = 2/13-3i/13
, где I – это квадратный корень из -1

Вот собственно все возможные случаи решения квадратных уравнений.
Надеемся, что наш онлайн калькулятор окажется весьма полезным для вас.
Если материал был полезен, вы можете

I. Линейные уравнения

II. Квадратные уравнения

ax 2 + bx + c = 0, a ≠ 0, иначе уравнение становится линейным

Корни квадратного уравнения можно вычислять различными способами, например:

Мы хорошо умеем решать квадратные уравнения. Многие уравнения более высоких степеней можно привести к квадратным.

III. Уравнения, приводимые к квадратным.

замена переменной: а) биквадратное уравнение ax 2n + bx n + c = 0, a ≠ 0, n ≥ 2

2) симметрическое уравнение 3 степени – уравнение вида

3) симметрическое уравнение 4 степени – уравнение вида

ax 4 + bx 3 + cx 2 + bx + a = 0, a ≠ 0, коэффициенты a b c b a или

ax 4 + bx 3 + cx 2 – bx + a = 0, a ≠ 0, коэффициенты a b c (–b) a

Т.к. x = 0 не является корнем уравнения, то возможно деление обеих частей уравнения на x 2 , тогда получаем: .

Произведя замену решаем квадратное уравнение a (t 2 – 2) + bt + c = 0

Например, решим уравнение x 4 – 2x 3 – x 2 – 2x + 1 = 0, делим обе части на x 2 ,

, после замены получаем уравнение t 2 – 2t – 3 = 0

– уравнение не имеет корней.

4) Уравнение вида (x – a )(x – b )(x – c )(x – d ) = Ax 2 , коэффициенты ab = cd

Например, (x + 2 )(x +3 )(x + 8 )(x + 12 ) = 4x 2 . Перемножив 1–4 и 2–3 скобки, получим (x 2 + 14x + 24)(x 2 +11x + 24) = 4x 2 , разделим обе части уравнения на x 2 , получим:

Имеем (t + 14)(t + 11) = 4.

5) Однородное уравнение 2 степени – уравнение вида Р(х,у) = 0, где Р(х,у) – многочлен, каждое слагаемое которого имеет степень 2.

Ответ: -2; -0,5; 0

IV. Все приведенные уравнения узнаваемы и типичны, а как быть с уравнениями произвольного вида?

Пусть дан многочлен P n (x ) = a n x n + a n-1 x n-1 + ...+a 1 x + a 0 , где a n ≠ 0

Рассмотрим метод понижения степени уравнения.

Известно, что, если коэффициенты a являются целыми числами и a n = 1 , то целые корни уравнения P n (x ) = 0 находятся среди делителей свободного члена a 0 . Например, x 4 + 2x 3 – 2x 2 – 6x + 5 = 0, делителями числа 5 являются числа 5; –5; 1; –1. Тогда P 4 (1) = 0, т.е. x = 1 является корнем уравнения. Понизим степень уравнения P 4 (x ) = 0 с помощью деления “уголком” многочлена на множитель х –1, получаем

P 4 (x ) = (x – 1)(x 3 + 3x 2 + x – 5).

Аналогично, P 3 (1) = 0, тогда P 4 (x ) = (x – 1)(x – 1)(x 2 + 4x +5), т.е. уравнение P 4 (x) = 0 имеет корни x 1 = x 2 = 1. Покажем более короткое решение этого уравнения (с помощью схемы Горнера).

1 2 –2 –6 5
1 1 3 1 –5 0
1 1 4 5 0

значит, x 1 = 1 значит, x 2 = 1.

Итак, (x – 1) 2 (x 2 + 4x + 5) = 0

Что мы делали? Понижали степень уравнения.

V. Рассмотрим симметрические уравнения 3 и 5 степени.

а) ax 3 + bx 2 + bx + a = 0, очевидно, x = –1 корень уравнения, далее понижаем степень уравнения до двух.

б) ax 5 + bx 4 + cx 3 + cx 2 + bx + a = 0, очевидно, x = –1 корень уравнения, далее понижаем степень уравнения до двух.

Например, покажем решение уравнения 2x 5 + 3x 4 – 5x 3 – 5x 2 + 3x + = 0

2 3 –5 –5 3 2
–1 2 1 –6 1 2 0
1 2 3 –3 –2 0
1 2 5 2 0

x = –1

Получаем (x – 1) 2 (x + 1)(2x 2 + 5x + 2) = 0. Значит, корни уравнения: 1; 1; –1; –2; –0,5.

VI. Приведем список различных уравнений для решения в классе и дома.

Предлагаю читателю самому решить уравнения 1–7 и получить ответы…

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант .

Дискриминант

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант — это просто число D = b 2 − 4ac .

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Первое уравнение:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left(-1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left(-1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax 2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c /a ) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (−c /a ) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c /a ) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c /a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

В курсе математики 7 класса впервые встречаются с уравнениями с двумя переменными , но изучаются они лишь в контексте систем уравнений с двумя неизвестными. Именно поэтому из поля зрения выпадает целый ряд задач, в которых на коэффициенты уравнения введены некоторые условия, их ограничивающие. Кроме того, остаются без внимания и методы решения задач типа «Решить уравнение в натуральных или целых числах», хотя в материалах ЕГЭ и на вступительных экзаменах задачи такого рода встречаются все чаще и чаще.

Какое уравнение будет называться уравнением с двумя переменными?

Так, например, уравнения 5x + 2y = 10, x 2 + y 2 = 20 или xy = 12 являются уравнениями с двумя переменными.

Рассмотрим уравнение 2x – y = 1. Оно обращается в верное равенство при x = 2 и y = 3, поэтому эта пара значений переменных является решением рассматриваемого уравнения.

Таким образом, решением любого уравнения с двумя переменными является множество упорядоченных пар (x; y), значений переменных, которые это уравнение обращают в верное числовое равенство.

Уравнение с двумя неизвестными может:

а) иметь одно решение. Например, уравнение x 2 + 5y 2 = 0 имеет единственное решение (0; 0);

б) иметь несколько решений. Например, (5 -|x|) 2 + (|y| – 2) 2 = 0 имеет 4 решения: (5; 2), (-5; 2), (5; -2), (-5; -2);

в) не иметь решений. Например, уравнение x 2 + y 2 + 1 = 0 не имеет решений;

г) иметь бесконечно много решений. Например, x + y = 3. Решениями этого уравнения будут являться числа, сумма которых равна 3. Множество решений данного уравнения можно записать в виде (k; 3 – k), где k – любое действительное число.

Основными методами решения уравнений с двумя переменными являются методы, основанные на разложении выражений на множители, выделение полного квадрата, использование свойств квадратного уравнения, ограниченности выражений, оценочные методы. Уравнение, как правило, преобразовывают к виду, из которого можно получить систему для нахождения неизвестных.

Разложение на множители

Пример 1.

Решить уравнение: xy – 2 = 2x – y.

Решение.

Группируем слагаемые с целью разложения на множители:

(xy + y) – (2x + 2) = 0. Из каждой скобки вынесем общий множитель:

y(x + 1) – 2(x + 1) = 0;

(x + 1)(y – 2) = 0. Имеем:

y = 2, x – любое действительное число или x = -1, y – любое действительное число.

Таким образом, ответом являются все пары вида (x; 2), x € R и (-1; y), y € R.

Равенство нулю неотрицательных чисел

Пример 2.

Решить уравнение: 9x 2 + 4y 2 + 13 = 12(x + y).

Решение.

Группируем:

(9x 2 – 12x + 4) + (4y 2 – 12y + 9) = 0. Теперь каждую скобку можно свернуть по формуле квадрата разности.

(3x – 2) 2 + (2y – 3) 2 = 0.

Сумма двух неотрицательных выражений равна нулю, только если 3x – 2 = 0 и 2y – 3 = 0.

А значит, x = 2/3 и y = 3/2.

Ответ: (2/3; 3/2).

Оценочный метод

Пример 3.

Решить уравнение: (x 2 + 2x + 2)(y 2 – 4y + 6) = 2.

Решение.

В каждой скобке выделим полный квадрат:

((x + 1) 2 + 1)((y – 2) 2 + 2) = 2. Оценим значение выражений, стоящих в скобках.

(x + 1) 2 + 1 ≥ 1 и (y – 2) 2 + 2 ≥ 2, тогда левая часть уравнения всегда не меньше 2. Равенство возможно, если:

(x + 1) 2 + 1 = 1 и (y – 2) 2 + 2 = 2, а значит x = -1, y = 2.

Ответ: (-1; 2).

Познакомимся с еще одним методом решения уравнений с двумя переменными второй степени. Этот метод заключается в том, что уравнение рассматривается как квадратное относительно какой-либо переменной .

Пример 4.

Решить уравнение: x 2 – 6x + y – 4√y + 13 = 0.

Решение.

Решим уравнение как квадратное относительно x. Найдем дискриминант:

D = 36 – 4(y – 4√y + 13) = -4y + 16√y – 16 = -4(√y – 2) 2 . Уравнение будет иметь решение только при D = 0, т. е. в том случае, если y = 4. Подставляем значение y в исходное уравнение и находим, что x = 3.

Ответ: (3; 4).

Часто в уравнениях с двумя неизвестными указывают ограничения на переменные .

Пример 5.

Решить уравнение в целых числах: x 2 + 5y 2 = 20x + 2.

Решение.

Перепишем уравнение в виде x 2 = -5y 2 + 20x + 2. Правая часть полученного уравнения при делении на 5 дает в остатке 2. Следовательно, x 2 не делится на 5. Но квадрат числа, не делящегося на 5, дает в остатке 1 или 4. Таким образом, равенство невозможно и решений нет.

Ответ: нет корней.

Пример 6.

Решить уравнение: (x 2 – 4|x| + 5)(y 2 + 6y + 12) = 3.

Решение.

Выделим полные квадраты в каждой скобке:

((|x| – 2) 2 + 1)((y + 3) 2 + 3) = 3. Левая часть уравнения всегда больше или равна 3. Равенство возможно при условии |x| – 2 = 0 и y + 3 = 0. Таким образом, x = ± 2, y = -3.

Ответ: (2; -3) и (-2; -3).

Пример 7.

Для каждой пары целых отрицательных чисел (x; y), удовлетворяющих уравнению
x 2 – 2xy + 2y 2 + 4y = 33, вычислить сумму (x + y). В ответе указать наименьшую из сумм.

Решение.

Выделим полные квадраты:

(x 2 – 2xy + y 2) + (y 2 + 4y + 4) = 37;

(x – y) 2 + (y + 2) 2 = 37. Так как x и y – целые числа, то их квадраты также целые числа. Сумму квадратов двух целых чисел, равную 37, получим, если складываем 1 + 36. Следовательно:

(x – y) 2 = 36 и (y + 2) 2 = 1

(x – y) 2 = 1 и (y + 2) 2 = 36.

Решая эти системы и учитывая, что x и y – отрицательные, находим решения: (-7; -1), (-9; -3), (-7; -8), (-9; -8).

Ответ: -17.

Не стоит отчаиваться, если при решении уравнений с двумя неизвестными у вас возникают трудности. Немного практики, и вы сможете справиться с любыми уравнениями.

Остались вопросы? Не знаете, как решать уравнения с двумя переменными?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.