Аллесандро Вольта и первый электрохимический генератор (Вольтов столб). Алессандро Вольта и Луиджи Гальвани: неоконченный спор Гальвани и вольта открыли существование электрического тока

Провозвестник эпохи электротехники Алессандро Вольта

К 200-летию первого источника электрического тока

Ян Шнейберг, Д. Шарле

Алессандро Вольта был, как теперь принято говорить, знаковой фигурой в истории электричества, электротехники, электросвязи.

К последней четверти XVIII века многое уже было известно о свойствах таинственной "электрической силы". Конструировались электростатические машины трения для получения электрических зарядов (Фрэнсис Гауксби, Англия), было открыто явление электропроводности (Стефен Грей, Англия) и дано понятие о двух видах электричества - "стеклянном" и "смоляном" - впоследствии "положительном" и "отрицательном" (Шарль Дюфе, Франция). Был создан накопитель электрических зарядов - первый конденсатор, так называемая "лейденская банка" (Эвальд Клейст, Померания, и Питер ван Мюссенбрук, Голландия), "укрощена" молния (Б. Франклин, США) применением молниеотвода (в бытовой лексике "громоотвод"). Наконец, установлен Первый закон электростатики (Шарль Кулон, Франция).

Но эпохальное открытие Вольты - "контактного электричества" - как бы подвело итог всем достигнутым ранее результатам и дало мощный импульс новым, более глубоким исследованиям природы электричества и возможности его практического применения.

Алессандро Вольта родился 18 февраля 1745 г. в родовом имении предков, близ небольшого городка Комо на севере Италии. Он выходец из аристократической семьи, его матерью была герцогиня Маддалена Инзаи. В самые ранние годы Алессандро страдал замедленным физическим и умственным развитием, говорить он начал только в четыре года. Затем его развитие пошло очень быстро. Вопреки уготованной ему карьере священнослужителя он увлекся физическими опытами и уже в 18 лет вел переписку с одним из наиболее видных физиков-электриков того времени, демонстратором эффектных публичных электрических опытов аббатом Жаном Нолле.

Алессандро Вольта

С 1774 по 1779 гг. Вольта - преподаватель физики в Королевском училище в Комо. В 26-летнем возрасте выпускает первый научный труд "Эмпирические исследования способов возбуждения электричества и улучшения конструкции машины". Свое первое серьезное изобретение он сделал в 1772 г. Это был так называемый конденсаторный электроскоп с расходящимися соломинками (соединение электроскопа с конденсатором), обладавший гораздо большей чувствительностью, чем прежние электроскопы с подвешенными на нитях пробковыми или бузиновыми шариками. Прибор обладал метрическими свойствами, так как отклонение соломинок на угол до 30° оказалось пропорциональным заряду электроскопа. Электроскоп многие годы был основным измерительным прибором, которым пользовались сам Вольта и другие исследователи.

В тридцать лет Вольта стал знаменитым. Он изобрел смоляной электрофор, или, как назвал его сам изобретатель, "elettrophoro perpetuo", что значит "постоянный носитель электричества". В электрофорной машине использовалось явление электризации посредством индукции, в то время как в применявшихся электростатических машинах электричество получалось путем трения. Прибор исключительно прост и так же исключительно оригинален. Он состоит из двух металлических дисков. Один, допустим нижний, покрыт слоем смолы. При натирании его рукой, кожаной перчаткой или мехом диск заряжается отрицательным электричеством. Если поднести к нему верхний диск, последний зарядится так, как показано на рис. 1 а. При отведении несвязанного электричества в землю (рис. 1 б), хотя бы пальцем экспериментатора, верхний диск окажется заряженным положительно. Можно его поднять и снять с него заряд (рис. 1 в). Повторяя цикл опускания-подъема верхнего диска многократно, можно столь же многократно увеличивать заряд.

Рис. 1. Схема, объясняющая работу электрофора Вольты

Вольта указывал, что его электрофор "продолжает работать даже спустя три дня после зарядки". И далее: "Моя машина дает возможность получить электричество во всякую погоду и производит эффект более превосходный, чем лучшие дисковые и шаровые (электростатические - прим. авт.) машины". Итак, электрофор - прибор, позволяющий получать мощные разряды статического электричества. Вольта извлекал из него "искры в десять или двенадцать толщин пальцев и даже более... ". Электрофор Вольты послужил основой для сооружения целого класса индукционных, так называемых "электрофорных", машин.

Полемический комментарий. Некоторые историки физики и электротехники считают, что Вольта не изобрел электрофор, а лишь усовершенствовал прибор, изобретенный ранее петербургским академиком Францем Эпинусом. Действительно, Эпинус в 1758 г. предложил теорию передачи "электричества через влияние" - методом электростатической индукции, т. е., по современной терминологии, изобрел способ. Он же соорудил первое устройство, доказывающее такую возможность. Оно представляло собой металлическую чашу, в которую вставлялась сформованная масса наэлектризованной серы и затем вынималась из нее. И чаша, и сера оказывались электрически заряженными.

Однако Эпинус дальше лабораторной демонстрации не пошел, и изобретенное им устройство не получило практического применения. Вольта же на основе изобретенного Эпинусом способа изобрел оригинальный электрофор, дающий по сравнению с прототипом новый технический эффект, что по всем канонам патентного права признается изобретением. Подобное характерно для истории техники. Изобретенный единожды способ позволял на его принципе создавать, т. е. изобретать, различные устройства. Так, например, П. Шиллинг изобрел способ электромагнитного телеграфирования и первое устройство для его осуществления. Затем на этом же принципе Ч. Уитстон и У. Кук изобрели стрелочный телеграф, а Морзе - печатающий телеграф. Все они с полным правом считаются изобретателями.

Сам Вольта признавал, что Эпинус осуществил идею электрофора, но не сконструировал законченного прибора.

В 1776 г. Вольта изобрел газовый пистолет - "пистолет Вольты", в котором газ метан взрывался от электрической искры.

В 1779 г. Вольту пригласили занять кафедру физики в университете с тысячелетней историей в городе Павия, где он проработал 36 лет.

Прогрессивный и смелый профессор, он порывает с латинским языком и учит студентов по книгам, написанным на итальянском.

Вольта много путешествует: Брюссель, Амстердам, Париж, Лондон, Берлин. В каждом городе его приветствуют собрания ученых, отмечают почестями, вручают Золотые медали. Однако "звездный час" Вольты еще впереди, он настанет через два с лишним десятилетия. А пока на целых пятнадцать лет он отдаляется от исследований электричества, живет размеренной профессорской жизнью и занимается различными интересующими его вещами. В возрасте сорока с лишним лет Вольта женился на знатной Терезе Пеллегрине, которая родила ему трех сыновей.

И вот - сенсация! Профессору попадается на глаза только что вышедший трактат Гальвани "О силах электрических при мышечном движении". Интересна трансформация позиции Вольты. Вначале он воспринимает трактат скептически. Затем повторяет опыты Гальвани и уже 3 апреля 1792 г. пишет последнему: "... с тех пор, как я стал очевидцем и наблюдал эти чудеса, я, пожалуй, перешел от недоверия к фанатизму. "

Однако это состояние длилось недолго. 5 мая 1792 г. в своей университетской лекции он превозносит опыты Гальвани, но уже следующую лекцию - 14 мая проводит в полемическом плане, высказывая мысль, что лягушка скорее всего - только индикатор электричества, "электрометр, в десятки раз более чувствительный, чем даже самый чувствительный электрометр с золотыми листочками."

Вскоре острый взгляд физика подмечает то, что не привлекло внимания физиолога Гальвани: содрогание лапок лягушки наблюдается лишь тогда, когда ее касаются проволоками из двух различных металлов. Вольта предполагает, что мышцы не участвуют в создании электричества, а их сокращение - вторичный эффект, вызываемый возбуждением нерва. Для доказательства он ставит знаменитый опыт, в котором обнаруживается кисловатый привкус на языке при приложении к его кончику оловянной или свинцовой пластинки, а к середине языка или к щеке - серебряной или золотой монеты и соединении пластинки и монеты проволочкой. Аналогичный вкус мы ощущаем, лизнув одновременно два контакта батарейки. Кисловатый привкус переходит в "щелочной", т. е. отдающий горечью, если поменять на языке местами металлические предметы.

В июне 1792 г., всего через три месяца после того, как Вольта начал повторять опыты Гальвани, у него уже не оставалось никаких сомнений: "Таким образом, металлы - не только прекрасные проводники, но и двигатели электричества; они не только предоставляют легчайший путь прохождению электрического

флюида, ... но сами же вызывают такое же нарушение равновесия тем, что извлекают этот флюид и вводят его, подобно тому, как это происходит при натирании идиоэлектриков" (так называли во времена Вольты тела, электризующиеся при трении - прим. авт.) .

Так Вольта установил закон контактных напряжений: два разнородных металла вызывают "нарушение равновесия" (по-современному - создают разность потенциалов) между обоими, после чего предложил называть полученное таким путем электричество не "животным", а "металлическим". С этого начался его семилетний путь к подлинно великому творению.

Первая серия уникальных экспериментов по измерению контактной разности потенциалов (КРП) завершилась составлением известного "ряда Вольты", в котором элементы располагаются в следующей последовательности: цинк, оловянная фольга, свинец, олово, железо, бронза, медь, платина, золото, серебро, ртуть, графит (Вольта ошибочно отнес графит к металлам - прим. авт.) .

Каждый из них, придя в соприкосновение с любым из последующих членов ряда, получает положительный заряд, а этот последующий - отрицательный. Например, железо (+) / медь (-); цинк (+) / серебро (-) и т. п. Силу, возникающую при контакте двух металлов, Вольта назвал электровозбудительной, или электродвижущей силой. Эта сила перемещает электричество так, что получается разность напряжений между металлами. Далее Вольта установил, что разность напряжений будет тем больше, чем дальше расположены металлы один от другого. Например, железо/медь - 2, свинец/олово - 1, цинк/серебро - 12.

В 1796-1797 гг. был выявлен важный закон: разность потенциалов двух членов ряда равна сумме разностей потенциалов всех промежуточных членов:

А/В + В/С + C/D + D/E + E/F = A/F.

Действительно, 12 = 1 + 2 + 3 + 1 + 5.

Кроме того, опыты показали, что разности напряжений в "замкнутом ряду" не возникает: А/В + В/С + C/D + D/A = 0 . Это означало, что посредством нескольких чисто металлических контактов нельзя достичь больших напряжений, чем при непосредственном контакте только двух металлов.

С современной точки зрения теория контактного электричества, предложенная Вольтой, была ошибочной. Он рассчитывал на возможность непрерывного получения энергии в виде гальванического тока без затраты на это какого-либо другого вида энергии.

Все-таки в конце 1799 г. Вольте удается добиться желаемого. Сначала он установил, что при соприкосновении двух металлов один получает большее напряжение, чем другой. Например, при соединении медной и цинковой пластин медная имеет потенциал 1, а цинковая 12. Последующие многочисленные эксперименты привели Вольту к выводу, что непрерывный электрический ток может возникнуть лишь в замкнутой цепи, составленной из различных проводников - металлов (которые он называл проводниками первого класса) и жидкостей (названных им проводниками второго класса).

Таким образом, Вольта, сам того до конца не осознавая, пришел к созданию электрохимического элемента, действие которого основывалось на превращении химической энергии в электрическую.

Рис. 2. Виды гальванических элементов, изображенных Вольтой в письме к Бэнксу: вверху - чашечная батарея, внизу - варианты "вольтовых столбов".

Значительные напряжения Вольта смог получать, располагая столбиком кружки одинаковых контактных пар металлов, одинаково ориентированных и разделенных влажными прокладками из ткани. Суть этого сам Вольта проиллюстрировал на примере своей чашечной батареи (рис. 2 вверху). В левой чашке находится одна медная пластина, ее потенциал 1. В трех последующих чашках левые пластины - цинковые, правые - медные; в последней чашке - цинковая; каждая цинковая в одной чашке соединена металлической дужкой с медной в соседней чашке. Первая цинковая пластина имеет потенциал 12. Вольта допустил, что две металлические пластинки, разделенные жидкостью, приобретают одинаковые потенциалы. Следовательно, вторая медная будет иметь потенциал также 12, а вторая цинковая 12 + 11 =23; третья цинковая 12 + 2 * 11 = = 34; четвертая 12 + 3 * 11 = 45 и т. д. Например, 10-я цинковая приобретет потенциал 12 + 9 * 11 = 111.

О своем открытии Вольта сообщил в письме от 20 марта 1800 г. президенту Лондонского Королевского общества Джозефу Бэнксу. В сообщении "Об электричестве, возбуждаемом простым соприкосновением простых проводящих веществ" он пишет: "... Я... имею удовольствие сообщить о некоторых поразительных результатах, полученных мною. Главный из этих результатов... создание прибора, который действует непрерывно..., создает неуничтожаемый заряд, дает непрерывный импульс электрическому флюиду". И далее: "Снаряд, о котором я говорю, - и это удивит Вас - ... есть не что иное, как собрание хороших проводников разного рода, расположенных определенным образом. Двадцать, сорок или шестьдесят кружков меди или, еще лучше, серебра, сложенных каждый с кружком олова или лучше цинка, и такое же количество слоев воды или какой иной жидкости, лучше проводящей, чем вода, например, соляного раствора, щелока и т. п., или кусков картона, кожи и т. п. хорошо смоченных этими жидкостями, причем эти слои располагаются между обоими разнородными металлами каждой пары. Вот все, что составляет мой новый инструмент". Сам Вольта первоначально предлагал назвать свой прибор, или снаряд, или инструмент "искусственным электрическим органом", затем переименовал в "электродвижущую колонну". Позже французы стали называть этот прибор "гальваническим столбом", или "вольтовым столбом".

Вольте принадлежит введение понятий "емкость", "цепь", "электродвижущая сила", "разность напряжений".

К изобретателю пришли почет и слава. Во Франции в его честь чеканится медаль, а первый консул Директории генерал Бонапарт основывает фонд в 200000 франков для "гениальных первооткрывателей" в области электричества и первую премию вручает автору столба. Вольта становится рыцарем Почетного легиона, Железного креста, получает звание сенатора и графа, становится членом Парижской и Петербургской академий наук, членом Лондонского Королевского общества, которое награждает его Золотой медалью Коплея.

Создание "вольтова столба" было революционным событием в науке об электричестве, оно подготовило фундамент для зарождения современной электротехники и оказало огромное влияние на всю историю человеческой цивилизации. Неудивительно, что современник Вольты французский академик Д. Араго считал вольтов столб "... самым замечательным прибором, когда-либо созданным людьми, не исключая телескопа и паровой машины".

"Вольтов столб" в первую треть XIX века оставался единственным источником электрического тока, который успешно использовали для своих опытов и открытий крупнейшие ученые - В. Петров, X. Дэви, А.-М. Ампер, М. Фарадей.

Среди них первым, кто усовершенствовал "вольтов столб", был профессор физики петербургской Медико-хирургической академии Василий Петров. Он указал на то, что более интенсивный ток можно получить от более мощной батареи. В 1802 г. он создал уникальный источник тока высокого напряжения (около 1700 В), названный им "огромной наипаче батареей". Эта батарея состояла из 2100 медно-цинковых элементов (в существовавших тогда в Европе батареях было 15-20 элементов). В своем сочинении "Известие о гальвани-вольтовских опытах", изданном в 1803 г., В. Петров описал открытое им явление электрической дуги и указал, что ее "ярким светом, подобным солнечному или пламени, темный покой довольно ясно освещён быть может". Так было положено начало двум направлениям: электроплавке металлов и восстановлению их из руд и созданию дуговых электрических ламп.

Вольте посчастливилось дожить до важнейших открытий, сделанных с использованием его изобретения: это действие тока на магнитную стрелку, взаимное вращение проводников с током и магнитом (прообраз электродвигателя), разработка Ампером основ электродинамики. В 1819 г. Вольта оставил профессуру.

Он скончался в своем родном городе в 1827 г. в возрасте 82 лет.

Легенды о Вольте ходили еще при его жизни. В доказательство своей теории о "контактном электричестве" он в 1794 г. произвел опыт "Квартет мокрых". Четверо мужчин с мокрыми руками становились в круг. Затем первый правой рукой брал цинковую пластинку, а левой касался языка второго; второй касался глазного яблока третьего, который держал за лапки препарированную лягушку, а четвертый правой рукой охватывал ее тельце, а левой подносил серебряную пластинку к цинковой, которую держал правой рукой первый. В момент касания первый резко вздрагивал, второй морщился от "лимонного" вкуса во рту, у третьего сыпались искры из глаз, четвертый чувствовал неприятные ощущения, а лягушка будто оживала и трепетала. Это зрелище потрясало очевидцев.

Научный вклад Вольты был высоко оценен современниками - он считался самым великим физиком Италии после Галилея. На основе изобретения Вольты до конца XIX века было предложено около двухсот разновидностей "вольтова столба" - электрохимических источников тока.

Память о Вольте была увековечена в 1881 г. на Международном конгрессе электриков в Париже, где одной важнейших электрических единиц - единице напряжения было присвоено наименование "вольт".

Созданием "вольтова столба" завершилась эпоха электростатики и было положено начало эпохи электротехники.

Так на рубеже XVIII-XIX веков произошел переход от электричества для науки к электричеству для человечества - для промышленности, быта, культуры.

Литература

  1. Льоцци М. История физики. Пер. с итал. - М.: Мир, 1970.
  2. Лебедев В. Электричество, магнетизм и электротехника в их историческом развитии. - М.-Л.: Н.-т. изд-во НКТП СССР, 1937.
  3. Карцев В. Приключения великих уравнений. - М.: Знание, 1978.
  4. Дорфман Я. Г. Всемирная история физики с древнейших времен до конца XVIII века. - М.: Наука, 1974.
  5. Самарин М. С. Вольт, Ампер, Ом и другие единицы физических величин в технике связи. - М.: Радио и связь, 1988.
  6. Розенберг Ф. История физики. Ч. III, вып. I. - М.-Л.: Н.-т. изд-во НКТП СССР, 1935.
  7. Веселовский О. Н., Шнейберг Я. А. Очерки по истории электротехники. - М.: Изд-во МЭИ, 1993.
  8. Dictionary of scientific biography. Vol. 14, 1976.

Алессандро Вольта (1745-1827) – итальянский учёный-физик, один из авторов учения об электричестве, известный физиолог и химик. Открытое им «контактное электричество» создало глубокую предпосылку для изучения природы тока и поиска направлений его практического использования.

Алессандро Вольта (Alessandro Giuseppe Antonio Anastasio Gerolamo Umberto Volta)

Алессандро Вольта появился на свет 18 февраля 1745 года в итальянском городишке Комо, расположенном рядом с Миланом. Его родители Филиппо и Маддалена были представителями среднего класса, поэтому могли создать ребенку хорошие условия жизни. В раннем детстве воспитанием мальчика занималась кормилица, уделявшая мало внимания развитию ребенка. Будущий ученый начал разговаривать только в четыре года, с трудом произнося звуки. Тогда все свидетельствовало об определенной умственной отсталости ребенка, произнесшего первым слово «Нет».

Только к семи годам мальчик приобрел полноценную речь, но вскоре потерял отца. На воспитание Алессандро взял родной дядя, который дал возможность получить племяннику хорошее образование в школе ордена иезуитов. Он с усердием изучал историю, латынь, математику, жадно впитывая все знания. Практически сразу выявилась страсть Вольты к физическим явлениям. Ради этого он устроил переписку с известным в то время автором и демонстратором физических опытов аббатом Жаном-Антуаном Нолле.

В 1758 году земляне в очередной раз наблюдали приближение к планете кометы Галлея. Пытливый ум Вольта сразу проявил огромный интерес к этому явлению, и юноша принялся изучать научное наследие Исаака Ньютона. Также он интересовался работами и по мотивам одной из них соорудил в своем городе громоотвод, оглашавший окрестности звоном колокольчиков во время грозы.

После окончания учебы Алессандро остался преподавать физику в гимназии Комо. Однако роль скромного учителя не соответствовала уровню таланта Вольты и через несколько лет он становится профессором физики одного из старейших университетов в Павии (город на севере Италии в регионе Ломбардия). После переезда сюда Вольта много путешествовал по Европе, побывав со своими лекциями во многих столицах. В этой должности ученый проработает 36 лет, а в 1815 году он возглавил философский факультет университета в Падуе.

Первые открытия

Ещё в годы учительства Вольта всецело предавался науке и активно занимался изучением атмосферного электричества, проводя серию опытов по электромагнетизму и электрофизиологии. Первым заметным изобретением итальянца стал конденсаторный электроскоп, оснащенный расходящимися соломинками. Такой прибор был гораздо чувствительнее своих предшественников с подвешенными на нитке шариками.

В 1775 году Алессандро изобрел электрофор (электрическую индукционную машину), способную вырабатывать разряды статического электричества. В основе работы прибора лежало явление электризации с помощью индукции. Он состоит из двух металлических дисков, один из которых покрыт смолой. В процессе его натирания происходит заряд отрицательным электричеством. При поднесении к нему другого диска последний заряжается, однако если отвести несвязанный ток в землю предмет получит положительный заряд. С помощью многократного повторения этого цикла можно существенно увеличивать заряд. Автор утверждал, что его прибор не теряет эффективности даже через трое суток после зарядки.

Во время одной из лодочных прогулок по озеру, Вольта сумел убедиться, что находящийся на дне газ хорошо горит. Это позволило ему сконструировать газовую горелку и выдвинуть предположение о возможности строительства линии проводной сигнальной электропередачи. В 1776 году ученому удалось создать электро-газовый пистолет («пистолет Вольта»), действие которого основано на взрыве метана от электрической искры.

Вольтов столб

К своему самому известному открытию ученый пришел занимаясь изучением опытов своего соотечественника Луиджи Гальвани, которому удалось обнаружить эффект сокращения мышечных волокон препарированной лягушки в процессе взаимодействия ее вскрытого нерва с двумя разнородными металлическими пластинками. Автор открытия объяснил явление существованием «животного» электричества, однако Вольта предложил другую интерпретацию. По его мнению, подопытная лягушка выступала своеобразным электрометром, а источником тока был контакт разнородных металлов. Сокращение мышц было вызвано вторичным эффектом от действия электролита – жидкости, находящейся в тканях лягушки.

Чтобы доказать правильность выводов Вольта провел эксперимент на самом себе. Для этого он приложил к кончику языка оловянную пластинку и параллельно к щеке серебряную монету. Предметы были соединены небольшой проволочкой. В результате ученый почувствовал языком кисловатый привкус. В дальнейшем он усложнил свой опыт. На этот раз Алессандро положил себе на глаз кончик оловянного листочка, а во рту разместил серебряную монету. Предметы соприкасались друг с другом с помощью металлических острий. Всякий раз при контакте он чувствовал глазом свечение, подобное эффекту молнии.

В 1799 году Александро Вольта окончательно пришел к выводу, что «животного электричества» не существует, а лягушка реагировала на электрический ток возникающий при контакте разнородных металлов.

Этот вывод Алессандро использовал при разработке собственной теории «контактного электричества». Сначала он доказал, что при взаимодействии двух металлических пластин одна приобретает большее напряжение. В ходе дальнейшей серии экспериментов Вольта убедился, что для получения серьезного электричества одного контакта разнородных металлов мало. Оказывается, для появления тока необходима замкнутая цепь, элементами которой выступают проводники двух классов – металлы (первый) и жидкости (второй).

В 1800 году ученый сконструировал Вольтов столб – простейший вариант источника постоянного тока. В его основе лежали 20 пар металлических кружочков, выполненные из двух видов материала, которые были разделены бумажными или тканевыми прослойками, смоченными щелочным раствором или соленой водой. Присутствие жидких проводников автор объяснял наличием особого эффекта, согласно которому в ходе взаимодействия двух различных металлов появляется некая «электродвижущая» сила. Под ее воздействием электричество противоположных знаков сосредотачивается на разных металлах. Однако Вольта не смог понять, что ток возникает как результат химических процессов между жидкостями и металлами, поэтому представил иное объяснение.

Если сложить вертикальный ряд пар различных металлов (например, цинка и серебра без прокладок), то заряженная током одного знака цинковая пластина будет взаимодействовать с двумя серебряными, которые заряжены электричеством противоположного знака. В результате вектор их совместного действия будет обнуляться. Для обеспечения суммирования их действий необходимо создать контакт цинковой пластины только с одной серебряной, что можно достичь с помощью проводников второго класса. Они эффективно дифференцируют пары металлов и не создают помех для движения тока.

Вольтов Столб — гальванический элемент (химический источник постоянного тока). По сути дела — это первая в мире аккумуляторная батарея

О своем открытии в 1800 году Вольта сообщил Лондонскому королевскому обществу. С этого времени источники постоянного тока, изобретенные Вольтой, стали известны всему физическому сообществу.

Несмотря на определенную научную ограниченность выводов Алессандро вплотную приблизился к созданию гальванического элемента, который связан с трансформацией химической энергии в электрическую. В дальнейшем ученые многократно проводили эксперименты с вольтовым столбом, которые привели к открытию химических, световых, тепловых, магнитных действий электричества. Одним из наиболее заметных вариантов конструкции вольтова столба можно признать гальваническую батарею В. Петрова.

В качестве эксперимента, можно создать Волтов столб своими руками из подручных средств.

Вольтов столб своими руками. Между медными монетами находится кусочки салфетки смоченные уксусом (электролитом) и кусочки алюминиевой фольги

Другие изобретения

Иногда Вольту считают создателем прототипа современной свечи зажигания, без которой невозможно представить автомобиль. Он сумел изготовить простую конструкцию, состоящую из металлического стержня, который находился внутри глиняного изолятора. Также он создал собственную электрическую батарею, названную им «короной сосудов». Она состоит из последовательно соединенных медных и цинковых пластин, которые находятся внутри сосудов с кислотой. Тогда это был солидный источник тока, которого сегодня хватило бы на приведение в действие маломощного электрического звонка.

Вольта создал специальный прибор, предназначенный для изучения свойств горящих газов, который получил название эвдиометр. Он представлял собой сосуд, наполненный водой, который в перевернутом виде опускается в специальную чашу с жидкостью. После долгой паузы в 1817 году Вольту публикует теорию града и периодичности гроз.

Семейная жизнь

Супругой итальянского ученого стала графиня Тереза Перегрини, родившая ему троих сыновей.В 1819 году, находящийся в годах ученый, покидает общественную жизнь и удаляется к себе в имение. Алессандро Вольта скончался 5 марта 1827 года в собственном имении Камнаго и был захоронен на его территории. Впоследствии оно получило новое название Камнаго-Вольта.

После смерти судьба сыграла с ученым злую шутку. Во время выставки, посвященной вековому юбилею создания «Вольтова столба» случился большой пожар, практически полностью уничтоживший его личные вещи и приборы, а причиной возгорания была названа неисправность электрических проводов.

  • Находясь в библиотеке Академии, Наполеон Бонапарт прочитал на лавровом венке надпись: «Великому Вольтеру» и удалил из нее две последние буквы, оставив вариант «Великому Вольте».
  • Наполеон был хорошо расположен к великому итальянцу и однажды уподобил, изобретенный им «Вольтов столб» самой жизни. Французский император назвал прибор позвоночником, почки положительным полюсом, а желудок отрицательным. Впоследствии по приказу Бонапарта в честь Вольты выпустят медаль, наделят его титулом графа и в 1812 году назначат президентом коллегии выборщиков.

Вольта демонстрирует Наполеону свои изобретения — Вольтов столб и гелиевую пушку

  • По инициативе Вольты в науке были утверждены понятия электродвижущая сила, ёмкость, цепь и разность напряжений. Его собственное имя носит единица измерения электрического напряжения (с 1881 года).
  • В 1794 году Алессандро организовал опыт под мрачным названием «Квартет мертвых». В нем участвовали четверо человек с мокрыми руками. Один из них правой рукой соприкасался с цинковой пластинкой, а левой прикасался к языку второго. Он, в свою очередь, касался глаза третьего, державшего препарированную лягушку за лапки. Последний прикасался к туловищу лягушки правой рукой, а в левой держал серебряную пластинку, которая соприкасалась с цинковой. В ходе последнего касания первый человек резко вздрагивал, второй ощущал во рту кислый вкус, третий чувствовал свечение, четвертый переживал неприятные симптомы, а мертвая лягушка будто оживала, трепеща своим телом. Это зрелище потрясало до глубины души всех очевидцев.
  • Именем Вольта названа научная награда за заслуги ученых в области электричества.
  • Вольта скончался в один день и час с известным французским математиком Пьером-Симоном Лапласом.
  • Портрет учёного был изображен на итальянской денежной купюре.

Портрет Алессандро Вольты на купюре в 10000 лир. Купюра вышла в обращение в 1984 году

  • В итальянском городе Комо есть музей Алессандро Вальта — его открыли в 1927 году к столетию со дня смерти ученого.

Появление «Трактата...» вызвало огромный интерес в самых разных странах. Уже в следующем году выходит его второе издание. Гальвани на короткое время становится знаменит. Многие крупные ученые занялись повторением его опытов и проверкой результатов. Среди них был и итальянский физик Алессандро Вольта, в юности заочный ученик аббата Нолле.

В это время (1792 г.) Вольта был уже известным физиком, профессором университета в Павии, членом Лондонского Королевского общества. К этому времени он изобрел новый чувствительный электроскоп, электрический конденсатор и ряд других приборов. Его научные интересы всю жизнь были в основном связаны с электричеством, и работа Гальвани произвела на него огромное впечатление.

В первые же 10 дней после получения «Трактата...» он ставит массу новых опытов, полностью подтверждает результаты Гальвани и задается целью внести меру в эту новую область науки, т. е. провести количественное изучение «животного электричества», измерить электрометрами его величину и величину заряда, необходимого для вызова сокращения мышцы, («Ведь никогда нельзя сделать ничего ценного, если не сводить явлений к градусам и измерениям, особенно в физике» - писал Вольта.).

В первых же опытах он обнаруживаем что препарат лягушки крайне чувствителен к электрическому разряду и сокращение возникает при столь слабых зарядах лейденской банки, которые не обнаруживаются самыми лучшими электрометрами.

Гальвани во всех своих опытах прикладывал один конец металлического проводника к нерву, а другой - к мышце. Это было связано с его идеей о том, что мышца - лейденская банка, которая разряжается через нерв.

Вольта разнообразит условия опытов, делает разные препараты, прикладывает проводник различными способами. Его интересует количественная сторона дела, поэтому он ищет такие условия, при которых минимальный заряд вызывает сокращение мышц. При этом он выясняет, что лучше всего сокращение возникает тогда, когда внешним проводником замыкаются два разных участка хорошо отпрепарованного нерва. Отсюда он делает вывод, что вовсе не мышца разряжается через провод и нерв, а, напротив, нерв, который более чувствителен к раздражению, возбуждается и что-то передает в мышцу.

Итак, вера Вольта в теоретические взгляды Гальвани уже сильно поколеблена. Если Гальвани мог ошибиться, считая именно мышцу источником «животного электричества», то он мог сделать и другие ошибки. И вот у Вольта возникает сомнение в самой основе работы Гальвани - в существовании «животного электричества».

Он ставит вопрос, почему между двумя близкими точками одного и того же нерва, которые во всем похожи, происходит разряд, когда их замыкают проводником? Это противоречит принципу причинности. А почему замыкающий проводник для успеха опыта должен состоять из двух разных металлов? Ведь роль этого проводника, согласно взглядам Гальвани, лишь в том, чтобы замкнуть цепь. Но для замыкания цепи достаточно одного вида металла.

Вольта начинает детально изучать этот вопрос. Он пробует сочетания разных пар металлов. Если эти металлы играют роль простого проводника, то их природа не должна иметь значения. Но если эти металлы почему-то сами являются источником электричества (вот новая революционная идея Вольта, которому удалось преодолеть авторитет Джильберта!), то сила источника может зависеть от сочетания металлов. И Вольта находит такую зависимость.

Действие двух различных веществ на препарат лягушки тем сильнее, чем дальше отстоят они друг от друга в следующем ряду: цинк, олово, свинец, железо, латунь, бронза, медь, платина, золото, серебро, ртуть, графит, уголь.

Из этого перечисления, приведенного в работе 1794 г., видно, как активно экспериментирует Вольта. У него все более крепнет уверенность, что источником электричества в опытах Гальвани была не мышца лягушки, а те два металла, которыми Гальвани к ней прикасался.

Но ведь Гальвани наблюдал сокращения мышц и при использовании всего одного металла! Вольта подробно изучает и этот случай и показывает, что два куска меди могут содержать разные примеси, что достаточно загрязнить один конец проволоки, чтобы она действовала как два разных металла, достаточно небольшой разницы температур на противоположных краях одного и того же куска металла, чтобы он играл роль раздражителя и т, д.

Наконец, Вольта делает окончательный вывод: контакт двух разных металлов является новым источником электричества, на которое реагирует «живой» электроскоп. Именно этим объясняются опыты Гальвани!

Этот вывод Вольта подкрепляет еще целым рядом разнообразных экспериментов. Например, Вольта берет проволочки из серебра и олова, одни концы этих проволочек соединяет между собой, а другими концами касается языка: одним металлом самого кончика, а другим чуть дальше.

Он обнаруживает, что если к кончику языка приложено серебро, то чувствуется щелочной вкус, а если олово - то кислый. Если бы источником электричества была сама мышца языка, то вкус не должен был бы меняться от изменения замыкающего металла,- рассуждает Вольта. Но если роль источника электричества играют два разнородных металла, тогда ясно, что, меняя их местами, мы меняем положение «плюса» и «минуса». В одних случаях электрический флюид входит в нервы кончика языка, а в другом - выходит из них. Это и вызывает разный вкус. Может быть работа всех органов чувств связана с электричеством? - спрашивает Вольта (и как мы теперь знаем, это именно так).

Вы помните, что в описываемую нами эпоху было модно ставить эффектные опыты. Такой опыт придумал Гальвани - «электрический нервный маятник»,- когда лапка лягушки, подвешенная на медном крючке, касалась серебряной шкатулки. (Все дело тут в меди и серебре! - сказал бы Вольта.) И Вольта тоже придумал эффектный опыт.

Четыре человека «...образуют друг с другом цепь, причем один прикасается пальцем к кончику языка соседа, другой таким же образом к поверхности глазного яблока своего другого соседа, а двое остальных держат мокрыми пальцами один за лапку, а другой за спину свежепрепарованную... лягушку.

Наконец, первый в ряду держит также в мокрой руке цинковую пластинку, а последний держит серебряную пластинку, и затем они приводят эти пластинки во взаимное соприкосновение.

В тот же момент на верхушке языка, к которой прикасается человек, держащий в руке цинк, появится ощущение кислого вкуса; в глазу? к которому прикасается палец соседа, появится ощущение вспышки света; и в то же время лапки лягушки, находящиеся в двух руках, начнут сильно сокращаться».

Все нервы, оказавшиеся на пути электрического флюида - нервы языка, нервы глаза, нервы лягушки,- являются просто очень чувствительными электрометрами, а металлы, от соприкосновения которых и возникает эффект, не простые проводники, а «двигатели» электричества.

«Таким образом, вместо того, чтобы говорить о животном электричестве, можно было бы с большим правом говорить о металлическом электричестве» (Вольта, 1794 г.). Ведь если люди в той цепи из четырех человек не будут держать серебро и цинк, а просто коснутся руками друг друга, то ничего не произойдет. По Гальвани, разряд «живой лейденской банки», которая находится в лягушке, должен произойти еще успешнее, ведь замыкающая цепь стала короче из нее убрали участок, ничего не прибавив; но эффекта нет. Значит, причина не в лягушке, а в металлах - в контакте серебра и цинка.

Уже из приведенных примеров ясно, что Вольта был прав. В знаменитом трактате Гальвани нет никаких доказательств существования «животного электричества».

Наблюдение, сделанное Гальвани 26 сентября 1786 г., в день рождения электробиологии, имело причиной чисто физическое явление, на основе которого Вольта изобрел источник постоянного тока: гальванический элемент, или вольтов столб.

Это изобретение приведет к интенсивному развитию учения об электричестве и электротехнике и сделает XIX век веком не только пара, но и электричества.

Несмотря на помощь друзей и последователей, поддержку таких крупных естествоиспытателей, как А. Гумбольдт, Гальвани проиграл спор с Вольта. Аргументы Вольта казались вполне убедительными. В 1797 г наступает окончательный крах: по политическим мотивам Гальвани выгнали из университета. Он лишился возможности работать и через год умер.

Однако на этот раз Вольта ошибся. Во всех трех описанных выше опытах Гальвани действительно имел дело с «животным электричеством», которое ему наконец-то удалось открыть.

После изобретения источника постоянного тока Вольта становится знаменит и всеми признан. В 1801 г, Наполеон приглашает его в Париж, где в Академии наук он демонстрирует свой знаменитый вольтов столб» Умер Вольта в 1827 г, в возрасте 82 лет, овеянный славой.

Беркинблит М. Б., Глаголева Е. Г. "Электричество в живых организмах"

Вольта и Гальвани

В 1801 году в Париже произошло яркое событие, неоднократно описанное историками науки: в присутствии Наполеона Бонапарта состоялось представление работы Алессандро Вольты «Искусственный электрический орган, имитирующий натуральный электрический орган угря или ската» с демонстрацией модели этого органа. Наполеон щедро наградил автора: в честь ученого была выбита медаль и учреждена премия в 80 000 экю. А однажды Наполеон, увидев в библиотеке Французской академии лавровый венок с надписью «Великому Вольтеру», стер последние буквы таким образом, чтобы получилось: «Великому Вольте»… Все ведущие научные общества того времени, включая Петербургскую академию наук, изъявили желание видеть Вольту в своих рядах, а лучшие университеты Европы были готовы предоставить ему свои кафедры.

Изобретение Вольты, которое он скромно предлагал назвать «искусственным электрическим органом», а современники единодушно окрестили «вольтовым столбом», - прообраз всех современных батарей и аккумуляторов. Современник Вольты французский ученый Араго считал «вольтов столб» «самым замечательным прибором, когда-либо изобретенным людьми, не исключая телескопа и паровой машины».

Путь, который привел Вольта к созданию его изобретения, начинается со знаменитых опытов Луиджи Гальвани, который открыл иную возможность получения электричества, нежели с помощью электризации трением. Почему же он не был осыпан почестями в первую очередь или по меньшей мере рядом с Вольтой? Причина отнюдь не в том, что Гальвани к тому времени уже скончался, - будь он жив, наполеоновская награда, скорее всего, все равно досталась бы Вольте. Да и не в Наполеоне дело - в последующие годы не он один возвышал Вольту. И на то были свои резоны. Это долгая и интересная история. Расскажем ее вкратце.

Известность Гальвани принесли опыты по изучению мышечного сокращения. В 1771 году он открыл феномен сокращения мышц препарированной лягушки под действием электрического тока, о чем мы сказали в первой главе. А вот как это произошло в описании, приведенном в книге К. Фламмариона: «Все, конечно, помнят знаменитый бульон из лягушек, приготовленный для г-жи Гальвани в 1791 году. Гальвани женился на хорошенькой дочери своего бывшего профессора Лючии Галеоцци и нежно любил ее. Она заболела чахоткой и умирала в Болонье. Врач предписал ей питательный бульон из лягушек, кушанье очень вкусное, надо заметить. Гальвани непременно пожелал приготовить его собственноручно. Сидя на своем балконе, он очистил несколько штук лягушек и развесил их нижние конечности, отделенные от туловища, на железную решетку балкона при помощи медных крючков, употреблявшихся им при опытах. Вдруг он заметил с немалым удивлением, что лапки лягушек конвульсивно содрогаются каждый раз, когда случайно прикасаются к железу балкона. Гальвани, бывший в то время профессором физики в Болонском университете, подметил это явление с редкой сметливостью и вскоре открыл все условия для его воспроизведения.

Если взять задние лапки со снятой кожей, можно заметить чресленные нервы. Обернув обнаженные нервы лапок в жесть и поставив сами лапки на медную полосу, надо привести жестяную пластину в соприкосновение с медной. В результате мускулы лапок сократятся и пластинка, в которую они упираются, опрокидывается с порядочной силой» . Но мы-то уже знаем, кто, скорее всего, подметил сокращение лапок лягушки. Впрочем, в любом случае следует заметить, что наблюдения болонского физика были встречены хохотом и только несколько серьезных ученых оказали им должное внимание. Бедный ученый сильно огорчился. «На меня нападают, - писал он в 1792 году, - две совершенно различные секты: ученые и невежды. И те и другие смеются надо мной и называют лягушачьим танцмейстером. А между тем я убежден, что открыл одну из сил природы» .

Однако возникновение тока еще оставалось тайной. Где же появляется ток - только в тканях тела лягушки, только в разнородных металлах или же в комбинации металлов и тканей? К сожалению, Гальвани пришел к заключению, что ток возникает исключительно в тканях тела лягушки. В результате его современникам понятие «животного электричества» стало казаться гораздо более реальным, чем электричества какого-либо другого происхождения. Широкими мазками набрасывает он картину возможных методов электромедицины и, главное, роли электричества в функционировании живого. Результаты наблюдений и теорию «животного электричества» он изложил в 1791 году в работе «Трактат о силах электричества при мышечном движении» (De Viribus Electricatitis in Motu Musculari Commentarius).

Открытие Гальвани произвело сенсацию. Появление «Трактата» вызвало огромный интерес в самых разных странах. Уже в следующем году выходит его второе издание. Гальвани на короткое время становится знаменит. По всей Европе поднялась волна экспериментов, наладивших прямую связь между биологическими лабораториями, мясными лавками, гильотинами и кладбищами. С электродом в руке Вольта заставлял шевелиться отрубленный бараний язык и петь обезглавленных кузнечиков. Дзанетти в течение двух часов наблюдал за сокращением каждого из кусков змеи, разрубленной натрое. А что случится, думали они, если пропустить ток через труп человека? Племянник Гальвани - Джованни Альдини отправился в поездку по Европе, во время которой он предлагал публике тошнотворное зрелище. Его самая выдающаяся демонстрация произошла 17 января 1803 года, когда он подсоединял полюса 120-вольтного аккумулятора к телу казненного убийцы Джорджа Форстера. Когда Альдини помещал провода на рот и ухо, мышцы лица начинали подергиваться и появлялась гримаса боли. Левый глаз открывался, как будто хотел посмотреть на своего мучителя. Показ торжественно завершался тем, что Альдини подсоединял один провод к уху, а другой засовывал в прямую кишку. Труп пускался в омерзительный пляс. Газета «London Times» писала: «Несведущей части публики могло показаться, что несчастный вот-вот оживет».

Бесчисленное количество людей стали проделывать опыты по методике Гальвани. Вот что писали об этом в одной из старых энциклопедий: «В течение целых тысячелетий хладнокровное племя лягушек беззаботно совершало свой жизненный путь, как наметила его природа, свободно росло и наслаждалось земными благами, зная одного только врага, господина аиста, да еще, пожалуй, терпя урон от гурманов, которые требовали для себя жертвы в виде пары лягушачьих лапок со всего несметного рода. Но в исходе позапрошлого столетия наступил злосчастный век для лягушек. Злой рок воцарился над ними, и вряд ли когда-либо лягушки от него освободятся. Затравлены, схвачены, замучены, скальпированы, убиты, обезглавлены, но и со смертью не пришел конец их бедствиям. Лягушка стала физическим прибором, отдала себя в распоряжение науки. Срежут ей голову, сдерут с нее кожу, расправят мускулы и проткнут спину проволокой, а она все же не смеет уйти к месту вечного упокоения; повинуясь приказанию физиков или физиологов, нервы ее придут в раздражение и мускулы будут сокращаться, пока не высохнет последняя капля „живой воды“» .

Вполне естественно, что физиолог Гальвани пришел к выводу о существовании «животного электричества». Вся обстановка опытов толкала к этому. Он был убежден, что им разгадана причина мышечных сокращений, которая для всех естествоиспытателей доныне оставалась «погребенной в глубокой тьме». Понять, почему лапки мертвых лягушек дергаются, Гальвани не было суждено. Это сделал соотечественник Гальвани, который одним из первых пустился по его горячим следам. Это был Алессандро Вольта. Он был на восемь лет моложе Гальвани, но последний в своем трактате называет его знаменитейшим и изготовляет приборы, следуя опубликованным рекомендациям Вольты. Вольта происходил из более знатной семьи, чем Гальвани, получил прекрасное образование, был лично знаком со многими авторитетными физиками Европы, состоял в переписке с английским Королевским обществом и, будучи принятым в его ряды, явно хотел быть в нем заметным. В отличие от Гальвани он легко шел на контакт с новой пронаполеоновской властью Италии, отрешившей Гальвани в последние годы его жизни от кафедры.

Вольта познакомился с работой Гальвани, и вот его первая реакция на трактат: «Я должен, однако, признаться, что я приступил к первым опытам с недоверием и без больших надежд на успех: настолько поразительными казались мне описанные явления, которые если и не противоречили, то слишком превосходили все то, что до сих пор было известно об электричестве, такими чудесными они мне казались. За это мое недоверие и как бы упорное предубеждение, которого я не стыжусь, я прошу прощения у автора открытия и считаю теперь своей славной обязанностью в такой же мере почтить его после того, как я видел и трогал рукой то, чему столь трудно было поверить до того, как потрогать и увидеть. Однако после того, как я сам стал очевидцем и творцом всех этих чудес, я наконец обратился и перешел от недоверия, может быть, к фанатизму» . В это время (1792 год) Вольта был уже известным физиком, профессором университета в Павии, членом лондонского Королевского общества. К этому времени он изобрел новый чувствительный электроскоп, электрический конденсатор и ряд других приборов. Он тоже производил опыты с препарированной лягушкой и наблюдал те же эффекты, что и Гальвани.

Эти опыты полностью подтвердили результаты Гальвани, но Вольта задался целью внести меру в эту новую область науки, то есть провести количественное изучение «животного электричества», измерить электрометрами его величину и величину заряда, необходимого для вызова сокращения мышцы. «Ведь никогда нельзя сделать ничего ценного, если не сводить явлений к градусам и измерениям, особенно в физике», - писал он. Вольта тщательно анализирует опыты и приходит к выводу, что электрический ток в опытах Гальвани вызывает не непосредственно сокращение мышцы, а лишь возбуждение нерва, который далее неизвестным образом действует на мышцу. И кроме того, на основании множества опытов Вольта приходит к убеждению, что обкладки из двух разных металлов являются не простыми проводниками, а «настоящими возбудителями и двигателями электрического флюида» .

Первые опыты Вольты очень просты. Он брал две монеты из разных металлов и одну из них клал на язык, а другую - под него; при соединении их проволокой ощущался кислый вкус - такой же, как при «пробовании на язык» проводов от известных в то время источников электричества. Если Гальвани считал, что ткани организма лягушки, которую он препарировал, касаясь их разнородными металлами, являются источником электричества, то Вольта убедился в том, что эти ткани - индикатор электричества, возникающего при контакте разнородных металлов. Так была открыта контактная разность потенциалов.

Вольта доказал, что именно ток, вырабатываемый при контакте двух различных металлов, вызывает сокращение мышц в лягушачьих лапках. Этим он опроверг предположение Гальвани о том, что электричество вырабатывается в мышцах. Для того чтобы доказать свою точку зрения, он наполнил соляным раствором две чаши и соединил их металлическими дугами. Один конец этих дуг был медный, а другой цинковый. Они были установлены так, что в каждой чаше было по одному электроду каждого типа. Эта конструкция и стала первой батареей, вырабатывающей электричество за счет химического взаимодействия двух металлов в растворе. В 1800 году он усовершенствовал ее, создав свой знаменитый «вольтов столб», первый источник постоянного тока. Он представлял собой 20 пар кружочков, изготовленных из двух различных металлов, проложенных кусочками кожи или ткани, смоченными в соляном растворе.

Теперь можно ответить на вопрос - почему Гальвани не был осыпан почестями в первую очередь или по меньшей мере рядом с Вольтой? Причина отнюдь не в том, что Гальвани к тому времени уже скончался. Гальвани подошел к факту не как физик, а как физиолог, его заинтересовала способность мертвого препарата проявлять себя как живой материал (очень похоже на историю Майера и Джоуля, см. ниже), и он с величайшей тщательностью исследовал этот феномен, меняя самые разные параметры. Гальвани объяснил это явление существованием «животного электричества», благодаря которому мышцы заряжаются подобно лейденской банке. Понять, почему лапки мертвых лягушек дергаются, Гальвани не было суждено. Лишь великий Алессандро Вольта понял, что соединение разных металлических проводников (у Гальвани медная проволока была привязана к железному балкону) само по себе вызывает появление на их концах электрических зарядов. Если замкнуть концы через тело лягушки, образуется электрический ток, который является не кратковременным, как при «страшных опытах» Отто фон Герике, а длительным. То, что два разнородных металла могут быть источником электричества, - для Вольты и других физиков был шокирующий переворот в физических представлениях.

Спор между Гальвани и Вольтой, а также их последователями - это спор о «животном» и «металлическом» электричестве. Весь мир тогда разделился на два лагеря. Одни поддерживали Гальвани, а другие - Вольту. И трудно сказать сегодня, чем бы кончился этот спор, поскольку оба ученых были по-своему правы. Сегодня мы знаем, что в мускулах животных действительно возникает электричество. В то же время электричество может рождаться и без участия животных, из одних лишь разнородных металлов, которые заряжается в результате контакта. Да, Гальвани ошибался в своих взглядах на «животное» электричество, но его ошибки исправил Вольта. И все же Гальвани является основоположником учения об электричестве, его опыты положили начало новому научному направлению - электрофизиологии. Опыты Гальвани стоят в начале долгого пути исследований электрических токов в теле человека. Если, например, сокращается мышца, то в ней постепенно возникает и угасает электрическое напряжение, правда очень слабое и трудноуловимое. Впрочем, врачам и инженерам удалось создать аппарат, который благодаря разности этого электрического напряжения устанавливает, здорово ли сердце, или в нем есть какие-то пороки. Этот аппарат называется «электрокардиограф».

В истории науки имена Гальвани и Вольты стоят рядом. Но они не соратники, а оппоненты в знаменитом споре о животном электричестве. Гальвани, несмотря на ряд выдающихся физических открытий, не был признан как физик, да и вряд ли стремился к этому. Физиком же считается Вольта, повторивший опыты Гальвани и давший им иное толкование. Триумф «вольтова столба» обеспечил безоговорочную победу Вольты над Гальвани. Исключив жизнь - это сложнейшее явление природы - из науки об электричестве, придав физиологическим действиям лишь пассивную роль реагента, Вольта обеспечил быстрое и плодотворное развитие этой науки. Но вот что забавно: когда речь идет об областях не физических, термины, связанные с именем Гальвани, вполне приемлемы: гальванотерапия, гальваническая ванна, гальванотаксис. Если же дело касается физики, то на всякий гальванический термин есть термин антигальванический: не гальванометр, а амперметр; не гальванический ток, а ток проводимости; не гальванический элемент, а химический источник тока.

Вплоть до конца XVIII века физики, изучавшие электрические явления, имели в своем распоряжении лишь источники статического электричества - куски янтаря, шары из плавленой серы, электрофорные машины, лейденские банки. С ними экспериментировали многие ученые, начиная с английского физика и врача Уильяма Гильберта (1544–1603). Имея в распоряжении такие источники, можно было открыть, например, закон Кулона (1785), но нельзя было открыть даже закон Ома (1826), не говоря уже о законах Фарадея (1833). Потому что накопленный статически заряд был мал и не мог обеспечить ток, длящийся хотя бы несколько секунд.

Ситуация изменилась после работ профессора медицины Болонского университета Луиджи Гальвани (1737–1798), открывшего, как он полагал, «животное электричество». Его знаменитый трактат назывался «О силах электричества при мышечном движении». В некоторых опытах Гальвани произошел первый в мире прием радиоволн. Генератором служили искры электрофорной машины, приемной антенной - скальпель в руках Гальвани, а приемником - лягушачья лапка. Помощник Гальвани проводил опыты с электрической машиной в некотором отдалении от препарированной лягушки. При этом жена Гальвани Лючия заметила, что лягушачьи лапки сокращаются в тот самый момент, когда в машине проскакивает искра, так что видна роль и случайности и наблюдательности.

Опытами Гальвани заинтересовался итальянский физик Алессандро Джузеппе Антонио Анастасио Вольта (1745–1827). Он был уже известным ученым: в 1775 году сконструировал смоляной электрофор, то есть обнаружил вещества-электреты, в 1781-м - чувствительный электроскоп, а немного позже - конденсатор, электрометр и другие приборы. В 1776 году он же обнаружил электропроводность пламени, а в 1778-м впервые получил чистый метан из собранного им в болотах газа и продемонстрировал возможность зажечь его от электрической искры. Вольта вначале был ревностным сторонником теории «животного электричества» Гальвани. Но собственноручное повторение его опытов убедило Вольту, что опыты Гальвани следует объяснять совершенно иначе: лягушачья ножка - не источник, а лишь приемник электричества. Источник же - разные металлы, которые касаются друг друга. «Металлы не только прекрасные проводники, - писал Вольта, - но и двигатели электричества».

Это было ключевое утверждение, позволившее создать гальванические элементы, батарейки, аккумуляторы, которые окружают нас со всех сторон и всю жизнь. Принцип их действия изложен в школьном учебнике, причем значительно подробнее, чем это нужно для дальнейшего. Суть проста: в проводящей среде (электролите) находятся два разных проводника (электрода), которые вступают с ней в такие реакции, что они заряжаются разноименными зарядами. Если соединить эти электроды (анод и катод) внешним проводником (нагрузкой), по ней начнет протекать ток.

Возражая Гальвани, Вольта сначала избавился от лягушки, заменив ее собственным языком. Он, например, клал на язык золотую или серебряную монету, а под язык - медную. Как только две монеты соединяли кусочком проволоки, сразу же во рту ощущался кислый вкус, знакомый каждому, кто пробовал на язык контакты батарейки для карманного фонаря. Затем Вольта и вовсе исключил из экспериментов «животное электричество», используя в опытах только приборы.

Оставался один шаг до изобретения в 1800 году первого постоянно действующего источника электрического тока. Это произошло, когда Вольта соединил последовательно пары цинковых и медных пластинок, разделенных прокладками из картона или кожи, которые были пропитаны раствором щелочи или соленой водой. Эту конструкцию назвали по имени изобретателя «вольтовым столбом». Конструкция была тяжелой, жидкость из прокладок выдавливалась, поэтому Вольта заменил ее чашечками с раствором кислоты, в которые были опущены цинковые и медные (или серебряные) полоски или кружочки. Чашки были соединены последовательно, а чтобы выводы батареи были близко, отдельные ее элементы Вольта расположил по кругу. Эту конструкцию по ее форме назвали «вольтовой короной».

После своего открытия Вольта потерял к нему интерес и отошел от научной работы, предоставив другим ученым развивать учение об электричестве. Но вклад Алессандро Вольты в учение об электричестве столь значим, что его именем названа единица напряжения. А когда Наполеон увидел в библиотеке Академии наук изображение лаврового венка с надписью «Великому Вольтеру», он стер несколько букв, так что получилось: «Великому Вольте». Вольтов столб и его разновидности дали возможность многочисленным ученым проводить эксперименты с длительно действующим источником постоянного тока. Именно с этого открытия началась эра электричества. Вероятно, самый восторженный отзыв об открытии Вольты оставил его биограф французский физик Доминик Франсуа Араго (1786–1853): «Столб, составленный из кружков медного, цинкового и влажного суконного. Чего ожидать априори от такой комбинации? Но это собрание, странное и, по-видимому, бездействующее, этот столб из разнородных металлов, разделенных небольшим количеством жидкости, составляет снаряд, чуднее которого никогда не изобретал человек, не исключая даже телескопа и паровой машины».

«Огромные наипаче батареи»

Вольта поступил очень мудро, послав в марте 1800 года письмо Джозефу Бэнксу (1743–1820), президенту Лондонского королевского общества - ведущего научного центра того времени. В письме Вольта описал различные конструкции своих источников электричества, которые в память о Гальвани назвал гальваническими. Бэнкс был ботаником, поэтому он показал письмо своим коллегам - физику и химику Уильяму Николсону (1753–1815) и врачу и химику, президенту Королевского колледжа хирургов Энтони Карлайлу (1768–1842). И уже в апреле они по описанию Вольты изготовили батарею из 17, а затем из 36 последовательно соединенных цинковых кружков и монет в полкроны, которые тогда были из серебра 925-й пробы. Между ними помещались картонные прокладки, пропитанные соленой водой.

В ходе опытов Николсон обнаружил около контакта цинка и медного проводника выделение пузырьков газа. Он определил, что это водород - причем по запаху, ибо водород, получаемый при растворении цинка в кислотах или щелочах, часто имеет запах. В цинке обычно есть примесь мышьяка, который восстанавливается до арсина, а продукты его разложения пахнут чесноком. В сентябре 1800 года немецкий физик Иоганн Риттер (1776–1810), собрав газ, выделявшийся при электролизе воды, с другого электрода батареи, показал, что это кислород. В том же году английский химик Уильям Крукшенк (1745–1800) расположил цинковые и медные пластинки в горизонтальном длинном ящике - при этом легко было заменять отработанные (полурастворившиеся и покрытые продуктами реакции) цинковые электроды. В нерабочем состоянии электролит из ящика сливали, чтобы не расходовать цинк зря. В качестве электролита Крукшенк использовал раствор хлорида аммония, а затем - разбавленную кислоту. Фарадей рекомендовал смесь слабых (1–2 %) растворов серной и азотной кислот. С таким электролитом цинк медленно растворялся с выделением маленьких пузырьков водорода. Водород выделялся и на медном аноде, а ЭДС одного элемента батареи была всего 0,5 В.

Выделение водорода на цинке связано с поляризацией этого электрода, которая увеличивает внутреннее сопротивление и понижает потенциал элемента. Чтобы предотвратить это явление, британский физик и электротехник Уильям Стёрджен (1783–1850), создатель первого электромагнита, амальгамировал цинковые пластинки. В 1840 году английский врач Альфред Сми (1818–1877) заменил медный электрод серебряным, покрытым шероховатым слоем платины. Это ускоряло выделение из раствора пузырьков водорода и увеличивало ЭДС. Такие батареи широко использовали в гальванотехнике. Так, методом гальванопластики были изготовлены скульптуры на Исаакиевском соборе в Петербурге. Метод получения электролитическим путем копий в металле разработал петербургский академик Мориц Герман (Борис Семенович) Якоби в 1838 году, как раз во время строительства собора. Подробнее об этой технике можно прочитать на сайте «Библиотека с книгами по скульптуре» .

Одну из лучших батарей своего времени собрал известный английский медик и химик Уильям Хайд Волластон (Уолластон, 1766–1828), прославившийся открытием палладия и родия, а также технологией изготовления тончайших металлических нитей, которые применялись в чувствительных приборах. В каждом элементе цинковый электрод был с трех сторон окружен медным с малым зазором, через который пузырьки водорода выделялись в воздух.

Знаменитый английский физик Гемфри Дэви (1778–1829) сначала проводил опыты с батареей, подаренной ему самим Вольтой; затем начал изготовлять все более мощные собственной конструкции - из медных и цинковых пластинок, разделенных водным раствором аммиака. Первая его батарея состояла из 60 таких элементов, но через несколько лет он собрал очень большую батарею, уже из тысячи элементов. С помощью этих батарей он впервые смог получить такие металлы, как литий, натрий, калий, кальций и барий, а в виде амальгамы - магний и стронций.

Одну из самых больших батарей создал в 1802 году физик и электротехник Василий Владимирович Петров (1761–1834). Его «огромная наипаче батарея» из 4200 медных и цинковых пластин «по полтора дюйма» размером располагалась в узких деревянных ящиках. Вся батарея была составлена из четырех рядов, каждый длиной около 3 м, соединенных последовательно медными скобками. Теоретически такая батарея может давать напряжение до 2500 В, а реально давала около 1700. Эта гигантская батарея позволила Петрову провести множество опытов: он разлагал током различные вещества, а в 1803 году впервые в мире получил электрическую дугу. С ее помощью удалось расплавлять металлы, ярко освещать большие помещения. Однако обслуживание этой батареи было исключительно трудоемким. Во время опытов пластины окислялись, и их приходилось регулярно чистить. При этом один работник мог за час почистить 40 пластин. Работая по 8 часов в день, этот работник в одиночку потратил бы не меньше двух недель, чтобы приготовить батарею к следующим опытам.

Вероятно, самый необычный гальванический элемент изготовил немецкий химик Фридрих Вёлер (1800–1882). В 1827 году, нагревая хлорид алюминия с калием, он получил металлический алюминий - в виде порошка. Ему понадобилось 18 лет, чтобы получить алюминий в виде слитка. В элементе Вёлера оба электрода были из алюминия! Причем один был погружен в азотную кислоту, другой - в раствор гидроксида натрия. Сосуды с растворами соединял солевой мостик.

Даниель, Лекланше и другие

Основу современных гальванических элементов разработал в 1836 году Джон Фредерик Даниель (1790–1845), английский физик, химик и метеоролог (он изобрел также измеритель влажности - гигрометр). Даниелю удалось преодолеть поляризацию электродов. В его первом элементе в медный сосуд с раствором сульфата меди был вставлен кусочек пищевода быка, наполненный разбавленной серной кислотой с цинковым стержнем посередине. Фарадей предложил изолировать цинк оберточной бумагой, поры которой тоже могут пропускать ионы электролита. Но Даниель в качестве диафрагмы стал использовать пористый глиняный сосуд. Заметим, что с медным и цинковым электродами, погруженными в растворы соответственно нитрата меди и сульфата цинка, еще в 1829 году экспериментировал Антуан Сезар Беккерель (1788–1878), дед более известного Антуана Анри Беккереля, открывшего радиоактивность и разделившего в 1903 году с супругами Кюри Нобелевскую премию по физике. Элемент Даниеля длительно давал стабильное напряжение 1,1 В. За это изобретение Даниель был удостоен высшей награды Королевского общества - золотой медали Копли. За прошедшие 180 лет появилось множество модификаций этого элемента; при этом их разработчики пытались разными способами избавиться от пористого сосуда.

С появлением телеграфных линий возникла потребность в более удобных и недорогих источниках тока, без пористых перегородок, с одним электролитом и с большим сроком службы. В 1872 году элемент Даниеля сменил нормальный элемент Джосайи Латимера Кларка (1822–1898): положительный электрод - ртуть, отрицательный - 10%-ная амальгама цинка, ЭДС 1,43 В. А в 1892 году ему на смену пришел ртутно-кадмиевый элемент Эдварда Вестона (1850–1936) с ЭДС 1,35 В. Его модификация под названием нормальный элемент Вестона используется до сих пор в качестве эталона напряжения - при малых нагрузках он дает высокостабильное напряжение в диапазоне 1,01850–1,01870 В, известное с точностью до пятого знака.

Один из вариантов элемента Даниеля, в котором не было пористой перегородки, разработал в 1859 году немецкий физик и изобретатель Генрих Мейдингер (1831–1905). На дне сосуда расположены медный электрод и кристаллы медного купороса (они поступают из воронки), цинковый электрод укреплен вверху. Тяжелый насыщенный раствор сульфата меди остается в нижней части: диффузии ионов меди к цинковому электроду противодействует разряд этих ионов при работе элемента, а граница между растворами выделяется очень резко. Отсюда название источников такого типа - гравитационный элемент. Элемент Мейдингера без ухода и добавления реактивов может непрерывно работать в течение нескольких месяцев. Этот элемент широко использовали в Германии с 1859 по 1916 год как источник питания для железнодорожной телеграфной сети. Аналогичные источники существовали во Франции и в США - под названием элементов Калло и Локвуда. Хорошими характеристиками обладал элемент, предложенный в 1839 году английским физиком и химиком Уильямом Робертом Грове (1811–1896). Электродами в нем служили цинк и платина, разделенные пористой перегородкой и погруженные соответственно в растворы серной и азотной кислот.

Роберт Вильгельм Бунзен (1811–1899), известный своими открытиями и изобретениями (спектральный анализ, горелка и др.), заменил дорогой платиновый электрод прессованным угольным. Угольные электроды присутствуют и в современных батарейках, однако у Бунзена они были погружены в азотную кислоту, играющую роль деполяризатора (сейчас им служит диоксид марганца). Элементы Бунзена долгое время широко использовались в лабораториях. Они могли обеспечить, хотя и недолго, большой ток. Элементы Бунзена, например, использовал молодой Чарльз Мартин Холл (1863–1914), открывший электролитический способ получения алюминия. Множество таких элементов было соединено в батарею; при этом на 1 г выделенного алюминия уходило почти 16 г цинка! Французский химик и изобретатель Эдм Ипполит Мари-Дэви (1820–1893) заменил в элементе Бунзена азотную кислоту на пасту из сульфата ртути (I) и серной кислоты; электролитом служил раствор сульфата цинка. В 1859 году было проведено сравнение батареи из 38 этих элементов (ЭДС каждой 1,4 В) с батареей из 60 элементов Даниеля. Первая проработала 23 недели, вторая - только 11. Однако высокая стоимость и ядовитость солей ртути препятствовали широкому распространению таких элементов.

Немецкий физик Иоганн Кристиан Поггендорф (1796–1877) в качестве деполяризатора использовал в своем элементе раствор дихромата калия в серной кислоте. Поггендорф известен как издатель журнала Annalen der Physik und Chemie - он занимал этот пост на протяжении 36 лет. Элемент Поггендорфа давал наибольшую ЭДС (2,1 В) и непродолжительно - большой ток. Важным преимуществом была возможность извлечь из раствора цинковый электрод, чтобы его очистить или заменить.

Уоррен де ла Рю (1815–1889), который впервые получил фотографии Луны и Солнца, в 1868 году собрал большую батарею из 14 тысяч элементов. Электродами в них служили серебро, покрытое хлоридом серебра, и амальгамированный цинк, а электролитом - раствор хлорида натрия, хлорида цинка или гидроксида калия. Цинк-хлорсеребряные элементы используются до сих пор; их хранят в сухом виде и активируют, заполняя пресной или морской водой, после чего элемент может работать до 10 месяцев. Такие элементы могут использовать потерпевшие аварию на воде. В более дешевых, но и менее мощных элементах применяется Cu/CuCl-электрод.

Один из самых известных химических источников тока - марганцево-цинковый элемент, описанный в 1868 году французским химиком Жоржем Лекланше (1839–1882) и разработанный им несколькими годами ранее. В этом элементе угольный электрод окружен деполяризатором из диоксида марганца, смешанным для лучшей электропроводности с угольным порошком. Чтобы смесь не рассыпалась при заливке электролита (раствора хлорида аммония), ее вместе с анодом помещали в пористый сосуд. Элемент Лекланше служил долго, не требовал ухода и мог давать довольно большой ток. Пытаясь сделать его более удобным, Лекланше решил загустить электролит клейстером. Это революционным образом изменило дело: элементы Лекланше перестали бояться случайного опрокидывания, их можно было использовать в любом положении. Изобретение Лекланше тут же получило коммерческий успех, а сам изобретатель, забросив свою основную профессию, открыл фабрику по производству элементов. Марганцево-цинковые элементы Лекланше были дешевыми и выпускались в больших количествах. Однако называть их «сухими» не вполне правильно: электролит в них был «полужидким», а в настоящих сухих элементах он должен быть твердым. Лекланше умер в возрасте 43 лет, не дожив до изобретения таких элементов.

С 1802 по 1812 год было сконструировано несколько сухих батарей, самая известная из которых - так называемый замбониев, или дзамбониев столб (см. «Химию и жизнь» № 6, 2007). Итальянский физик и священник Джузеппе Дзамбони (1776–1846) в 1812 году собрал столб из нескольких сотен бумажных кружков, на одной стороне которых был тонкий слой цинка, а на другой - смесь диоксида марганца и растительной камеди. Электролитом служила содержащаяся в бумаге влага. Такой столб давал высокое напряжение, но только очень малый ток. Именно столб Дзамбони позволяет уже почти два века позвякивать чашечкам в звонке, находящемся в Кларендонской лаборатории в Оксфорде. Однако для практических целей такая батарея не подходит.

Первый сухой гальванический элемент, который можно было применять на практике, запатентовал в 1886 году немецкий инженер Карл Гасснер (1855–1942). Протекающие в нем химические реакции были такими же, как и в предыдущих конструкциях: Zn + 2MnO 2 + 2NH 4 Cl → 2MnO(OH) + Cl 2 . При этом цинковый электрод одновременно служил и наружным контейнером. Электролитом была смесь муки и гипса, на ней был абсорбирован раствор хлоридов аммония и цинка (гипс потом заменили крахмалом). Добавление в электролит хлорида цинка значительно снижало коррозию цинкового электрода и продлевало срок хранения элемента. Положительным электродом служил угольный стержень, который окружала масса из диоксида марганца и сажи в бумажном мешочке. Сверху элемент герметизировали битумом. Емкость элементов компенсировали их размером. Солевой элемент Гасснера в общих чертах сохранился до наших дней и выпускается в количестве многих миллиардов штук в год. Но в ХХ веке конкуренцию им составили щелочные элементы, которые иногда ошибочно называют «алкалиновыми», не трудясь заглянуть в словарь при переводе с английского.

В заключение отметим, что гальванические батареи той или иной конструкции были основными источниками электричества вплоть до изобретения динамо-машины.

Электродвижущая сила. - «Элементы» .