Г кантор и создание теории множеств. Адольф Френкель. Жизнь Георга Кантора. Юные годы и учёба

16.06.2022 Здроровье

На правах рукописи.

Попов Н.А., Попов А.Н.

НАИВНАЯ ТЕОРИЯ МНОЖЕСТВ
И РЕШЕНИЕ ПАРАДОКСА КАНТОРА

CОДЕРЖАНИЕ
стр.

Предисловие. . . . . . . . . 5

Глава I. Введение. Основные сведения из теории множеств. . 8

Глава II. Противоречива ли канторовская наивная теория множеств?
Решение парадокса Кантора. . . .19

Глава III. Aксиоматика канторовской теории множеств. . . . . . . .60

Глава IV. Z-теорема и два ее доказательства. . . . . . . . . . .72

Глава V. Задача об отличии (обобщение Z-теоремы) . . . . . . . . .90

Глава VI. О логических парадоксах. . . . . . . . . . . . . . .87

ПРЕДИСЛОВИЕ

Привести общие логические основы современной мaтематики в такое состояние, чтобы их можно было излагать в школе подросткам 14 – 15 лет.
Колмогоров А.Н. Простоту – сложному // Известия. 1962. 31 дек.

Интуитивная канторовская так называемая «наивная» теория множеств среди математиков считается противоречивой теорией. В обоснование такой оценки обычно указывают на слишком расплывчатое, «недостаточно математи-ческое» определение понятия множества у Кантора. Некоторые вспомнят о парадоксах наивной теории – о парадоксе Рассела и парадоксе Кантора. Но в чем состоят эти парадоксы, мало кто может объяснить.
Других оснований считать «наивную» теорию противоречивой мы не знаем. Все это и было побудительным мотивом для излагаемой ниже попытки разобраться, можно ли обосновать построение наивной теории множеств, исходя только из канторовского определения понятия множества и принципа объемности.
Первоначальным толчком к этой работе было то странное обстоятельство, что одновременно с упоминаемым в некоторых учебниках (например, ) парадоксом Кантора в тех же учебниках излагается явно ошибочное, как нам казалось, доказательство знаменитой теоремы Кантора. Но, к сожалению, как выяснилось несколько позже, очевидность логической ошибки доказательства почти ни для кого не была очевидностью. А очевидность была в другом: более 100 лет никто из серьезных математиков доказательство теоремы Кантора не оспаривает. Так что этого не может быть! Отношение к оспаривающим теорему Кантора (а это редкие единичные случаи) сложилось приблизительно такое же, как к изобретателям вечного двигателя.
Как показала практика обсуждений этой проблемы, все продуманные и изложенные на бумаге рассуждения довольно трудны для восприятия и требуют значительных умственных усилий и, главное, времени. Поэтому серьезной критики нашей работы не находилось. Тема обсуждения очень редко встречала серьезное и добросовестное отношение. Ни один оппонент (а количество их исчисляется единицами) не смог представить ни одного убедительного возражения к изложенным соображениям.
Тем не менее, работа выполнена. Парадокс Кантора исследован и разрешен. Результаты его исследования следующие.
В главном Кантор оказался прав. Его знаменитую теорему нам удалось доказать, и выяснить, из каких аксиом она вытекает. А все известные нам противоречащие примеры, примеры множеств, противоречащих его теореме, включая множество всех множеств, оказались несостоятельными. В том смысле, что эти множества оказались внутренне противоречивыми образованиями: для них не выполняется одна из аксиом, определяющих понятие множества, а именно, аксиома определенности, сформулированная в главе III. Однако общепринятое, стандартное доказательство теоремы Кантора, излагаемое во всех учебниках, ошибочно. Ошибка доказательства состоит в том, что противоречие, вытекающее только из противоречивого определения множества, выдается в стандартном доказательстве от противного за свидетельство ложности допущения противного.
Небольшое отступление о «кризисе в основах» теории множеств должно дать читателю представление о содержании работы и ее отношении к существующему состоянию теории множеств.
В современной литературе по основаниям математики, в таких, в частности, монографиях, как «Введение в метаматематику», Клини , «Основания теории множеств», Френкель А.А., Бар-Хиллел, , состояние этой области знаний характеризуется как до сих пор не преодоленный кризис. Толчком к выявлению далеко идущих расхождений мнений и точек зрения по поводу самых основных математических понятий послужило открытие на рубеже ХIX и ХХ столетий так называемых антиномий (парадоксов) в самых основаниях недавно возникшей теории множеств. В стремлении избавить теорию от казавшихся недопустимыми противоречий и в результате пересмотра ее основ возникли так называемые аксиоматические теории множеств, свободные от известных к тому времени парадоксов. Этот успех был достигнут ценой сокращения области применимости основного понятия теории – понятия множества. Причину антиномий видели в рассмотрении «слишком обширных» (???) множеств. Некоторые интуитивно понятные совокупности, такие как множество всех множеств или множество всех мощностей были объявлены не множествами, а классами. От канторовской теории множеств фактически отказались, объявив ее противоречивой.
С нашей точки зрения, основанной на результатах исследования и вышеупомянутых парадоксов теории множеств, и так называемых диагональных доказательств, правильное решение проблемы парадоксов не было достигнуто. Парадоксы были из теории устранены, но не разрешены, то есть причины возникновения противоречий не были раскрыты до конца. В результате и в ныне общепризнанной теории множеств (ZF), и даже в некоторых теоремах математической логики (см. раздел V.7 главы V о доказательстве теоремы А.Тарского) применяются ошибочные методы доказательства. Мы утверждаем, что все доказательства теоремы Кантора в учебниках по теории множеств, математической логике и теории функций действительной переменной (например, см. ) ошибочны.
При тщательном исследовании теоретико-множественных парадоксов выяснилась бы причина противоречий в них. Это, как показано в разделах II.4 - II.11, всего-навсего противоречивые определения множеств. При ясном понимании этой причины не было бы и разговоров о кризисе в основаниях математики.
Общий план работы следующий.
В главе I даются основные сведения по теории множеств. Глава адресована читателям, не знакомым с теорией множеств, или желающим освежить свои знания в этой области. Читатели, имеющие даже поверхностные знания по теории множеств, могут эту главу пропустить (кроме раздела I.7) без ущерба для понимания последующего материала.
Содержание главы II представляет собой изложение исследования проблемы парадокса Кантора путем внимательного продумывания проблемы, исследования, основанного исключительно на логике здравого смысла. Это исследование продолжалось с перерывами в течение многих лет. Основной результат работы состоит в том, что парадокс Кантора исследован и разрешен.
В главе III делается попытка аксиоматического построения канторовской «наивной» теории множеств.
В главах IV и V излагается так называемая Z-теорема, обобщающая семейство диагональных парадоксов и объясняющая с единых позиций теоретико-множественные парадоксы. Глава VI посвящена разбору нескольких наиболее известных парадоксов.
Для понимания работы не требуется специальных знаний, достаточно даже поверхностного знакомства с основными понятиями теории множеств (понятиями "множество", "функция", "область определения" и тому подобными) и некоторая привычка к восприятию математических рассуждений, так что работа вполне доступна студентам физико-математических факультетов и просто человеку с университетским, высшим техническим или высшим педагогическим образованием. Авторы работы поставили перед собой задачу рассказать о результатах своих исследований парадоксов теории множеств на языке, понятном даже школьнику-старшекласснику. В какой степени им удалось решить эту задачу, пусть судит читатель.
Мы благодарим
Н.А.Дмитриева
за ценные дискуссии по теме работы, а также сотрудников ВНИИЭФ
М.И.Каплунова,
Г.С.Клинкова, И.В.Кузьмицкого,
В.С.Лебедева,
Б.В.Певницкого, В.И.Филатова, В.А.Щербакова и И.Т.Шморина, читавших фрагменты нашей работы в рукописях и обсуждавших ее.
Списки использованных источников в настоящем издании даются к каждой главе отдельно.

ГЛАВА I.
ВВЕДЕНИЕ. ОСНОВНЫЕ СВЕДЕНИЯ ИЗ ТЕОРИИ МНОЖЕСТВ

I.1. О понятии множества. . . . . . . . . . . . . . . . . . 8
I.2. Способы описания множеств. . . . . . . . . . . . . . . . 10
I.3. Теоретико-множественные операции. . . . . . . . . . . . . 11
I.4. Количественное сравнение множеств. . . . . . . . . . . . . 11
I.5. Понятие подмножества. . . . . . . . . . . . . . . . . . 13
I.6. Теорема Кантора (формулировка) . . . . . . . . . . . . . . 14
I.7. Недоопределенные множества. . . . . . . . . . . . . . . . 14
I.8. О несчетных множествах. . . . . . . . . . . . . . . . . . 16
Список использованных источников. . . . . . . . . . . . . . 19

Эта глава имеет целью дать основные сведения из теории множеств читателю, не знакомому с этой теорией, или желающему освежить свои знания в этой области. Читатели, имеющие познания в теории множеств хотя бы в объеме курса для физико-математических факультетов педвузов могут эту главу пропустить (кроме раздела I.7) без ущерба для понимания последующего материала.

I.1. О понятии множества.

Термин “множество” в быту употребляется для обозначения больших количеств каких-то объектов, поддающихся счету. Мы говорим: множество ошибок, множество картин, великое множество людей.
Бытовое понятие “множество” довольно расплывчато, невозможно указать то количество, например, коров, которое следует назвать множеством коров. На эту тему известен так называемый “парадокс кучи”: начиная с какого количества зёрна образуют кучу зерна?
Для того, чтобы можно было строить какую-то теорию, понятия этой теории должны быть вполне четкими. Для построения теории множеств необходимо иметь четкое понятие множества. Гениальный основатель теории множеств Георг Кантор (1845 – 1918) дал свое знаменитое определение понятия множества. Вот оно.
«Под “множеством” мы понимаем объединение в одно целое М определенных вполне различаемых объектов m нашего восприятия или мышления (которые будут называться "элементами" множества M)».
Можно ли считать это определение достаточно четким, мы обсудим несколько позже, а сейчас отметим некоторые его особенности.
Для начала заметим, что о количестве объединяемых предметов ничего не говорится. Это значит, что уже два элемента образуют множество. Это значит, также, что множество останется множеством, если из него убрать один элемент. Руководствуясь этим принципом, мы приходим к понятию единичного множества, которое получается, если из множества двух элементов убрать один из них. И тут мы обнаруживаем, что канторовское определение множества не полно: в случае единичного множества никакого объединения мы не видим.
Дальше – больше. Убирая из единичного множества его единственный элемент, мы приходим к понятию пустого множества. Эту абстракцию уже не все могут переварить. При первом знакомстве с понятием множества не все соглашаются признать множеством пустое множество. В этой связи автору монографии «Введение в метаматематику» С.Клини канторовское определение понятия множества показалось недостаточно полным, и он дополнил его следующим образом:
«К множествам присоединяются пустое множество, не имеющее элементов, и единичные множества, каждое из которых обладает одним единственным элементом.»
Действительно, никакого «объединения в одно целое» в пустом и единичном множестве на первый взгляд не видно. Однако, как заметил В.А.Щербаков, если «объединение» производится по некоторому признаку, то при некоторых признаках будут возникать и единичные, и пустое множество, и тогда дополнение Клини уже не требуется.
Необходимость рассмотрения единичных множеств и пустого множества наряду с остальными видна из того, что, определяя какое-нибудь множество тем или иным способом, мы можем не знать заранее, содержит ли оно больше одного или хотя бы один элемент.
Здесь необходимо подчеркнуть, что единичное множество и его единственный элемент – это существенно разные понятия и разные вещи. Разница состоит в том, что единичное множество имеет все свойства множеств: у него есть подмножества, к нему можно применять теоретико-множественные операции, в то время как элемент единичного множества этими свойствами, если он сам не является множеством, не обладает.
Далее в определении Кантора говорится об «определенных и вполне различаемых объектах нашего восприятия или мышления». Здесь мы не будем обсуждать это основополагающее понятие – понятие объекта, отложив на время его анализ и считая его достаточно ясным для первого знакомства с понятием множества. Для нас сейчас гораздо важнее усвоить ту сторону понятия множества, то неотъемлемое свойство множества, о котором в определении Кантора ничего не говорится. Свойство это выражается следующим положением:
множество полностью определяется своими элементами.
В аксиоматических, формальных теориях эта сторона понятия множества формулируется как аксиома, называемая аксиомой объемности, или аксиомой экстенсиональности. Но и при изложении содержательной ("наивной") канторовской теории множеств это положение либо подразумевается, либо формулируется явно, например, как "интуитивный принцип объемности" в учебнике Р.Столла "Множества. Логика. Аксиоматические теории" .
Аксиома объемности утверждает, что множество не зависит от порядка перечисления или порядка расположения его элементов. Из одних и тех же элементов может состоять только одно множество. Например, разные перестановки, составленные из одних и тех же символов:

(а,b,с,d), (а,с,d,b), (b,d,c,a), и т. д.,

Представляют собой одно и то же множество, и как множества не различаются. Это значит, далее, что различаться разные множества могут только за счет присутствия или отсутствия в них по крайней мере одного элемента.
Отсюда становится видно, что существует только одно пустое множество, так как при отсутствии элементов у множеств нет признаков различия. Пустое множество обозначается значком;.
По своему составу, как это видно из определения Кантора, множества могут мыслиться как состоящие из реальных объектов (множество кошек гор. Сарова, например) или из мыслимых, понятийных сущностей (множество натуральных чисел). Среди последних очень важной разновидностью множеств являются бесконечные множества, то есть состоящие из бесконечного количества элементов.
Здесь надо отметить два обстоятельства. С одной стороны ясно, что это чисто мысленные абстракции, что множества реальных объектов бесконечными быть не могут. С другой стороны именно бесконечные множества придают особую ценность, красоту и неповторимость канторовской теории множеств. В заслугу Кантору справедливо ставится его научная смелость, когда он стал рассматривать бесконечные множества как сущности, доступные человеческому разуму.
Отметим также, что и само понятие множества является сугубо мысленным понятием, выражаясь словами Кантора – объектом нашей мысли.

I.2. Способы описания множеств

Если буква М обозначает некоторое множество, а буква х – некоторый "определенный и вполне различаемый объект нашего восприятия или мысли", то выражение "х; М" читается как "х принадлежит М", или "х входит в М", или "х является элементом М", или иным подобным образом. Перечеркнутый знак вхождения; означает отрицание утверждения о вхождении.
Если элементов a, b, c, ... множества М не слишком много, то возможно описание множества путем перечисления его элементов внутри фигурных скобок:
М = {a, b, c, ... }.
В противном случае множество принято описывать с помощью некоторого условия принадлежности P(x):
M = {x: P(x)}.
Это выражение читается так: множество M состоит из всех таких и только таких х, для которых суждение P(x) истинно. Читатель может заметить, что второй способ обозначения множества – более общий, и первая форма описания множества может быть сведена ко второй. Например, c помощью логической формулы:
М = {x: x=a, или х=b, или х=с, или... },

А если a, b, c,... – числа (все равно какие), то, например, с помощью уравнения:

М = {x: (x-a)(x-b)(x-c)... = 0}.

I.3. Теоретико-множественные операции.

Над множествами можно производить операции. Наиболее употребительны операции объединения и пересечения.
Объединение двух множеств есть множество, объединяющее в себе элементы обоих объединяемых множеств. Эта операция обозначается символом;. Например, если множество А={a,b,c}, и множество В={c,d,e}, то
A;B={a,b,c,d,e}.
Пересечением двух множеств называется множество, состоящее из общих элементов этих множеств. Эта операция обозначается символом;. Для двух множеств предыдущего примера А;B={c}.
Употребляются и другие, более сложные операции над множествами.

I.4. Количественное сравнение множеств.

Для конечных множеств вопрос о сравнении их численности решается просто: для этого достаточно сравниваемые множества пересчитать, а сравнивать натуральные числа мы умеем уже с начальной школы. Но как сравнивать бесконечные множества? Кантор предложил сравнивать бесконечные множества количественно по принципу взаимно однозначного соответствия.
ОПРЕДЕЛЕНИЕ. Мы говорим, что между множеством А и множеством В установлено взаимно однозначное соответствие, если каждому элементу множества А поставлен в соответствие один и только один элемент множества В так, что каждый элемент множества В поставлен в соответствие одному и только одному элементу множества А.
Взаимно однозначное соответствие мы будем обозначать более коротким термином “1-1-соответствие”, или еще короче – биекция.
По этому принципу два множества считаются равночисленными, или, точнее, равномощными, или эквивалентными, если между ними можно установить биекцию. Если же биекцию между ними установить нельзя, то более мощным считается то из них, на часть которого можно взаимно однозначно отобразить другое.
Очевидно, что отношение эквивалентности между множествами симметрично, рефлексивно и транзитивно. Ясно, также, что сравнивать методом 1-1-соответствия можно и конечные множества, и что этот метод является обобщением привычного способа сравнения конечных множеств их пересчетом. В сущности способ пересчета и есть метод сравнения 1-1-соответствием со стандартным множеством – множеством натуральных чисел.
Примеры сравнения бесконечных множеств.
Еще Галилей заметил, что множество всех квадратов натуральных чисел можно поставить в 1-1-соответствие с множеством всех натуральных чисел:

1, 2, 3, 4, 5, …
1, 4, 9, 16, 25, …

И в этом смысле квадратов натуральных чисел ровно столько же, сколько самих чисел. Таково же положение и с четными числами: их тоже ровно столько же. Мы видим, что при предложенном Кантором способе количественного сравнения множеств часть бесконечного множества оказалась количественно эквивалентна целому. Это свойство бесконечных множеств Кантор предложил принять в качестве определяющего признака бесконечного множества.
Множества, для которых можно установить биекцию с множеством натуральных чисел, иными словами – перенумеровать их элементы, называются счетными множествами. Счетными множествами, очевидно, являются и множество всех квадратов целых чисел, и множество всех четных чисел. Множество всех целых чисел (положительных и отрицательных) тоже счетное. Это видно из того, что все целые числа можно расположить в виде такой цепочки:
0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, . . .

Ясно, что в эту цепочку попадут все целые числа, и мы можем числа всей этой цепочки перенумеровать.
Но вот пример по-сложнее. Можно ли перенумеровать все положительные рациональные числа? Кантор предложил следующий способ нумерации множества всех положительных рациональных чисел. Расположим это множество в виде бесконечной таблицы – бесконечного количества бесконечных строк. В первой строке расположим все дроби со знаменателем 1, то есть натуральные числа в порядке возрастания. Во второй строке расположим все дроби со знаменателем 2 в порядке возрастания числителя, в третьей строке – в том же порядке все дроби со знаменателем 3, и так далее. После этого пронумеруем сначала все дроби с суммой числителя и знаменателя, равной 2 (это всего одна дробь 1/1), затем – все дроби с суммой знаменателя и числителя, равной 3 (это; и 2/1), затем – с суммой знаменателя и числителя, равной 4 (это 1/3, 2/2 и 3/1), и так далее. При этом сократимые дроби будем пропускать, так как они уже были пронумерованы ранее. Ясно, что при таком способе нумерации номер получит любое положительное рациональное число. На рис. I.1 изображена схема нумерации множества всех рациональных чисел, предложенная Кантором; стрелками указан порядок нумерации.
1/1, ; 2/1, 3/1, ; 4/1, 5/1, ; …
; ; ; ;
1/2, 2/2, 3/2, 4/2, 5/2, … .
; ; ; ;
1/3, 2/3, 3/3, 4/3, 5/3 …
; ;
1/4, 2/4, 3/4, 4/4, 5/4 …
; ;
1/5, 2/5, 3/5, 4/5, 5/5, …

Эта схема нумерации выбита на памятнике на могиле Кантора.
По той же самой схеме нумерации можно перенумеровать и множество всех упорядоченных пар натуральных чисел (поскольку каждому положительному рациональному числу соответствует упорядоченная пара натуральных чисел – числитель и знаменатель). Далее, расположив пронумерованное множество упорядоченных пар в одной строке, мы можем применить тот же прием для нумерации множества всех упорядоченных троек натуральных чисел, затем – четверок, и вообще упорядоченных n-ок, где n – любое натуральное число.

I.5. Понятие подмножества.

Множество М называется подмножеством множества N, если в M нет элементов, не входящих в N (в частности, М может совпадать с N).
Иными словами, в подмножестве не должно быть “посторонних” элементов, если характеризовать этим термином все элементы за пределами более широкого (вообще говоря) множества N.
Это определение хорошо тем, что оно охватывает и пустое множество: в пустом множестве нет никаких, а значит и “посторонних” элементов. Оно, таким образом, является подмножеством любого множества. Если определить понятие подмножества более понятным способом, как множества, состоящего только из элементов основного множества, то пустое множество придется причислять к подмножествам “отдельной строкой”. Необходимость же такого причисления видна из тех же соображений, что и необходимость дополнить пустым множеством общее понятие множества (см. выше).
Если множество М является подмножеством множества N, то это обстоятельство может быть кратко отмечено в обозначении множества M:

M = {x;N: P(x)}

(читается: множество M состоит из всех таких и только таких х из N, для которых суждение P(x) истинно).

I.5.1. Собственные и несобственные подмножества.
Пустое множество;, как уже говорилось, является подмножеством любого множества. В этом смысле оно стоит особняком, и поэтому его называют несобственным подмножеством.
Кроме пустого, несобственным подмножеством называют также подмножество, совпадающее со всем множеством. Остальные подмножества называются собственными. Они составляют "правильные" части основного множества, тогда как несобственные подмножества являются "неправильными" частями: это часть, равная целому, или нулевая часть.

I.5.2. Сколько подмножеств у самых простых множеств?
Наименее многочисленно пустое множество – в нем 0 элементов. Сколько же в нем подмножеств? Несмотря на отсутствие элементов, одно подмножество у пустого множества все же есть. Это оно само, это его дважды несобственное подмножество: во-первых, потому, что оно пустое, и, во-вторых, потому, что оно совпадает со всем множеством. (Заметим, что 20=1.)
У единичного множества, в котором всего один элемент, подмножеств уже два, оба несобственные: это пустое множество и подмножество, совпадающее со всем множеством. (Опять отметим, что 21 = 2.)
У множества, состоящего из двух элементов, к двум несобственным подмножествам добавляются два собственных – единичные подмножества, содержащие по одному из элементов множества. Итого – 4. (Снова отметим, что 22 = 4.)
Методом индукции или как-то еще читатель без труда докажет, что у конечного множества из n элементов 2n подмножеств.

I.6. Теорема Кантора (формулировка)

Мы видим, что при любом n 2n > n, то есть число подмножеств конечного множества всегда больше числа элементов. Это очевидное свойство конечных множеств Кантор обобщил на бесконечные множества, доказав свою знаменитую теорему, которая гласит:
мощность множества всех подмножеств больше мощности исходного множества.
На первый взгляд это обобщение настолько естественно, что в справедливости теоремы Кантора сомневаться не приходится. Мы, однако, приведем пример противоположного свойства. Количество всевозможных упорядоченных пар элементов конечного множества из n элементов дается формулой n2, и мы видим, что при n>1 n2>n. Однако мы видели (см. раздел I.3), что мощность множества упорядоченных пар бесконечного множества натуральных чисел не больше мощности исходного множества.
Общее возражение к обоим примерам соотношений численностей конечных множеств состоит в том, что аналогия не есть доказательство.

I.7. Недоопределенные множества

Существование недоопределенных множеств вытекает из существования парадоксальных, а именно противоречивых суждений. Покажем, как это получается.
Вспомним второй способ описания множеств (см. раздел I.2). Вот как излагается этот способ в учебнике Р.Столла
Интуитивный принцип абстракции. Любая форма Р(х) определяет некоторое множество А посредством условия, согласно которому элементами множества А являются в точности такие предметы а, что Р(а) есть истинное высказывание
Выражение «форма Р(х)» означает некоторое высказывание о каком-то предмете, в котором имя этого предмета заменено на переменную х, пробегающую заданную область значений. Другой термин для понятия «форма Р(х)» – одноместный предикат. В разделе I.2 в том же смысле употреблено выражение «условие принадлежности».
Но как быть, если при некоторых значениях х (для некоторых предметов а) суждение Р(х) оказывается противоречивым?
Конкретный пример множества с таким условием принадлежности делает более понятным поставленный вопрос.
Будем рассматривать названия каких-то объектов, но только однозначные названия, то есть относящиеся только к одному определенному объекту. Название, содержащееся в объекте с этим названием (объектом может быть множество, или, например, книга) будем называть внутренним названием. Название, не являющееся внутренним, будем называть внешним. Множество Е – множество внешних названий совокупности объектов S, если оно входит в совокупность S и имеет название, дает нам пример недоопределенного множества.
В самом деле, название множество Е имеет, оно выражено буквой Е. К какой из двух категории следует отнести название множества Е? Если признать его внешним названием, то есть одним из элементов множества Е, то оно окажется внутренним названием, и наоборот. Суждение о принадлежности названия множества Е к этому множеству не имеет значения истинности.
Ответ на поставленный выше вопрос очевиден. Для значений х, обращающих Р(х) в противоречивое суждение, нельзя установить, является ли соответствующий предмет а элементом множества А. Множество А по отношению к этому предмету недоопределено.
Но особенность недоопределенного множества не только и не столько в его недоопределенности. Гораздо важнее то, что его недоопределенность есть результат противоречивости его определения. Такой противоречивости, которую не сразу заметишь. Она ведь проявляется только по отношению к одному единственному его элементу (в нашем примере – к собственному названию множества внешних названий). Рассмотрение условия принадлежности к такому множеству приводит к противоречию. А так как мы привыкли, что противоречие есть результат либо ошибки, либо ложности одной из исходных посылок рассуждения, то отсюда возникает соблазн что-то доказать.
А между тем противоречие, вытекающее из противоречивого, а правильнее сказать – из невыполнимого определения, ровно ничего не доказывает (кроме невыполнимости этого определения). Непонимание этого не очень уж сложного обстоятельства приводит к появлению ложных теорем
Как следует относиться к множествам с противоречивыми определениями? Мы видим здесь две возможные формы этого отношения (с одним и тем же содержанием).
1) Можно противоречивые множества типа описанного выше множества Е продолжать считать множествами, допуская возможность противоречивых множеств, на которую указывал еще Кантор (противоречивым он считал множество всех множеств), но тогда возможность возникновения таких множеств нельзя не учитывать при доказательствах теорем.
С учетом этой возможности из противоречия, которое получается при доказательстве от противного, не всегда можно сделать вывод о ложности какой-то посылки: для противоречивого множества противоречие есть его законный атрибут и ни о чем не говорит.
2) Более правильным представляется оформить наше отношение к противоречивым множествам (точнее – к множествам с противоречивым определением) путем уточнения канторовского понятия множества в том смысле, что вопрос о принадлежности множеству любого объекта должен иметь однозначный и непротиворечивый ответ. Совокупности, не удовлетворяющие этому требованию, не позволяющие, подобно множеству Е, дать такой ответ на этот вопрос хотя бы для одного единственного элемента, не должны считаться полноценными множествами. Это недоопределенные множества.
Возможность появления недоопределенных множеств должна учитываться при доказательствах теорем, как уже говорилось.
Свойство определенности множества в указанном выше смысле в канторовском понятии множества, конечно же, подразумевается, хотя в явном виде, по-видимому, Кантором высказано не было. Правда, один из комментаторов канторовского определения понятия множества (см. раздел I.1) Роберт Р.Столл именно так истолковывает слова «определенных… объектов» в этом определении.
Уточнение понятия множества в указанном смысле может быть сформулировано в виде аксиомы исключенного третьего, которой должны подчиняться множества.
Аксиома исключенного третьего является частным случаем закона исключенного третьего, который гласит, что всякое суждение либо истинно, либо ложно, и третьего не дано. Но мы знаем, что возможны и вполне осмысленные противоречивые суждения, не истинные и не ложные, нарушающие, таким образом, закон исключенного третьего, примерами чему могут служить суждения из всевозможных парадоксов. Поэтому, чтобы исключить противоречивые множества из числа допустимых, мы не можем ограничиться ссылкой на этот закон, и должны предусмотреть возможность его нарушения специальной аксиомой.
АКСИОМА ИСКЛЮЧЕНОГО ТРЕТЬЕГО. Для всякого множества суждение о принадлежности к нему любого объекта либо истинно, либо ложно.
В существующих (и присутствующих в учебных программах математических факультетов ВУЗов) теориях множеств недоопределенные множества не возникают только из-за того, что возможность парадоксальных суждений в этих теориях не учитывается.

I.8. О несчетных множествах.

Предложенный Кантором метод количественного сравнения множеств путем установления биекции между сравниваемыми множествами (см. раздел I.3.) неявно предполагает, что существуют (могут встретиться) и такие бесконечные множества, между которыми установить биекцию невозможно. Если бы это было не так, то все бесконечные множества оказались бы равномощными, а канторовский метод сравнения множеств – бессодержательным.
Бесконечные множества, равномощные с множеством натуральных чисел, что означает, что все элементы их можно перенумеровать, называются счетными множествами. Отсюда следует, что несчетные множества (то есть множества, не являющиеся счетными) таковы (настолько многочисленны), что все их элементы перенумеровать невозможно.
Как показал Кантор, несчетным является множество всех действительных чисел промежутка от 0 до 1, обычно называемое континуумом. Мощность континуума принято обозначать буквой С. Отметим следующие замечательные свойства множеств с мощностью континуума.
Во-первых, множество действительных чисел х единичного отрезка равномощно с множеством действительных чисел у любого отрезка числовой прямой. Биекция между этими множествами устанавливается формулой:

У = a + x (b – a),

Где числа а и b соответствуют концам произвольного отрезка.
Во-вторых, формула у=tg(x-0.5;) устанавливает биекцию между единичным отрезком (точнее – полуинтервалом) и всей числовой прямой. Это значит, что мощность множества всех действительных чисел имеет ту же мощность, что и множество чисел единичного отрезка (отрезок в отличие от интервала включает в себя числа, соответствующие его концам, но эта разница не приводит к различию мощностей).
Следующий важный факт теории множеств состоит в том, что множество С (континуум) равномощно множеству всех подмножеств натурального ряда. В самом деле, каждое действительное число, меньшее единицы, можно взаимно однозначно представить правильной бесконечной двоичной дробью. Для этого условимся двоично-рациональные числа, имеющие два двоичных представления, одно из которых заканчивается бесконечной последовательностью единиц, представлять именно тем способом, при котором двоичная дробь бесконечна. А каждая такая дробь взаимно однозначно определяется подмножеством натурального ряда – множеством номеров тех разрядов двоичной дроби, в которых стоят единицы.
И, наконец, еще один совершенно неожиданный результат, который удивил самого Кантора, следует из канторовского определения равномощности множеств и возможности однозначного представления действительного числа бесконечной двоичной (или десятичной) дробью. Равномощным множеству С оказалось множество пар таких же чисел, то есть чисел промежутка от нуля до единицы. В переводе на язык аналитической геометрии это значит, что множество точек единичного отрезка оказалось равномощным множеству точек единичного квадрата.
В самом деле, каждому действительному числу единичного отрезка, представленному бесконечной последовательностью значений десятичных (например) разрядов этого числа, можно взаимно однозначно поставить в соответствие пару таких же чисел, одно их которых образовано из четных, а другое – из нечетных разрядов исходного числа.
Но это значит, что мощность С – мощность множества действительных чисел любого отрезка – имеет множество всех точек плоскости (биекция между единичным квадратом и всей плоскостью устанавливается так же, как и между единичным интервалом и всей числовой прямой).
Аналогичным способом устанавливается равномощность множеств точек отрезка и точек объемной фигуры – куба, а значит и множества всех точек всего бесконечного 3-хмерного и даже n-мерного пространства.
Этот удивительный результат при неблагожелательном отношении к канторовской теории множеств может быть поставлен в укор этой теории: вот к каким абсурдным результатам приводит предложенный Кантором метод количественного сравнения множеств по критерию взаимно однозначного соответствия.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
(к введению и гл. I)

1. Клини Cтефен K. Введение в метаматематику. М: Издательство Иностранной
литературы. 1957. 526c.
2. Френкель А.А., Бар-Хиллел. Основания теории множеств. М: Мир. 1966. 556с.

3. Александров П.С. Введение в общую теорию множеств и функций. Москва,
Ленинград. Гостехиздат. 1948. 412c.
4. Кэлли Джон Л. Общая топология. М: Наука. 1968. 384c.

5. Хаусдорф Ф. Теория множеств. Москва, Ленинград. ОНТИ. 1937.

6. Натансон И.П. Теория функций вещественной переменной. М: Гостехиздат.
1957. 552c.
7. Колмогоров А.Н., Драгалин А.Г. Математическая логика. Дополнительные гла-
вы. Издательство Московского Университета. 1984. 120с.
8.Архангельский А.В. Канторовская теория множеств. Издательство Московского
Университета. 1988. 112с.
9. Бурбаки Н. Теория множеств. М: Мир. 1965. 455c.

10. Ященко И.В. Парадоксы теории множеств. М. Издательство Московского
центра непрерывного математического образования. 2002. 40с.
11. Кантор Георг. Труды по теории множеств. Под ред. А.Н.Колмогорова и
А.П.Юшкевича. М: «Наука». 1985. 432с.
12. Столл Роберт Р. Множества. Логика. Аксиоматические теории. М: Просвеще-
ние. 1968. 230c.

Семья Георга Кантора (1845-1918) переехала из России в Германию, когда он еще был ребенком. Именно там он начал изучать математику. Защитив в 1868 г. диссертацию по теории чисел, он получил степень доктора в Берлинском университете. В 27 лет Кантор опубликовал статью, содержавшую общее решение очень сложной математической проблемы - и идеи, выросшие впоследствии в его знаменитую теорию - теорию множеств. В 1878 г. он ввел и сформулировал значительный ряд новых понятий, дал определение множества и первое определение континуума, развил принципы сравнивания множеств. Систематическое изложение принципов своего учения о бесконечности он дал в 1879-1884 гг.

Настойчивое стремление Кантора рассмотреть бесконечность как нечто актуально данное было для того времени большой новостью. Кантор мыслил свою теорию как совершенно новое исчисление бесконечного, "трансфинитную" (то есть "сверхконечную") математику. По его идее, создание такого исчисления должно было произвести переворот не только в математике, но и в метафизике и теологии, которые интересовали Кантора едва ли не больше, чем собственно научные исследования. Он был единственным математиком и философом, который считал, что актуальная бесконечность не только существует, но и в полном смысле постижима человеком, и постижение это будет поднимать математиков, а вслед за ними и теологов, все выше - и ближе к Богу. Этой задаче он посвятил жизнь. Ученый твердо верил, что он избран Богом, чтобы совершить великий переворот в науке, и эта его вера поддерживалась мистическими видениями. Титаническая попытка Георга Кантора, впрочем, закончилась странно: в теории были обнаружены трудно преодолимые парадоксы, ставящие под сомнение и значение любимой идеи Кантора - "лестницы алефов", последовательного ряда трансфинитных чисел. (Эти числа широко известны в принятом им обозначении: в виде буквы алеф - первой буквы еврейского алфавита.)

Неожиданность и своеобразие его точки зрения, несмотря на все преимущества подхода, обусловили резкое неприятие его работ большей частью ученых. Десятилетиями он вел упорную борьбу почти со всеми современниками-философами и математиками, отрицавшими законность построения математики на фундаменте актуально-бесконечного. Некоторые приняли это как вызов, поскольку Кантор предполагал существование множеств или последовательностей чисел, имеющих бесконечно много элементов. Знаменитый математик Пуанкаре назвал теорию трансфинитных чисел "болезнью", от которой математика должна когда-нибудь излечиться. Л. Кронекер - учитель Кантора и один из самых авторитетных математиков Германии - даже нападал на Кантора, называя его "шарлатаном", "ренегатом" и "растлителем молодежи"! Только к 1890 г., когда были получены приложения теории множеств к анализу и геометрии, теория Кантора получила признание в качестве самостоятельного раздела математики.

Важно отметить, что Кантор способствовал созданию профессионального объединения - Немецкого математического общества, которое содействовало развитию математики в Германии. Он считал, что его научная карьера пострадала от предубежденного отношения к его трудам, и надеялся, что независимая организация позволит молодым математикам самостоятельно судить о новых идеях и заняться их разработкой. Он же был инициатором созыва первого Международного математического конгресса в Цюрихе.

Кантор тяжело переживал противоречия своей теории и сложности с ее принятием. С 1884 г. он страдал глубокой депрессией и через несколько лет отошел от научной деятельности. Умер Кантор от сердечной недостаточности в психиатрической лечебнице в Галле.

Кантор доказал существование иерархии бесконечностей, каждая из которых "больше" предшествующей. Его теория трансфинитных множеств, пережив годы сомнений и нападок, в конце концов, выросла в грандиозную революционизирующую силу в математике 20 в. и стала ее краеугольным камнем.

Начало XIX века ознаменовалось открытием неевклидовой геометрии. В 1825 году - Николай Васильевич Лобачевский, чуть позже, в 1831 году - Янош Больяй. И судьба этих открытий была весьма трагичной. Ни одного, ни второго открытия не признали. Вплоть до 1860-х годов, до открытий других неевклидовых геометрий - Риман и др. А первооткрыватели неевклидовой геометрии уже умерли! И вот - теория множеств, которую тоже не признают, ругают... Ох уж этот странный XIX век...

Кантор George Cantor Карьера: Математик
Рождение: Россия» Санкт-Петербург, 3.3.1845 - 6.1
Георг Кантор - великий немецкий ученый, математик. Родился 3 марта 1845 года в России.Георг Кантор известен как создатель "теории множеств", автор теоремы Кантора. Кроме того, Георг Кантор определил понятия кардинальных и порядковых чисел и их арифметику, ввёл понятие взаимно-однозначного соответствия между элементами множеств, дал определения бесконечного и вполне-упорядоченного множеств и доказал, что действительных чисел больше, чем натуральных и т.д.

Семья Георга Кантора (1845-1918) переехала из России в Германию, когда он ещё был ребенком. Именно там он начал штудировать математику. Защитив в 1868 г. диссертацию по теории чисел, он получил уровень доктора в Берлинском университете. В 27 лет Кантор опубликовал статью, содержавшую общее вывод крайне сложной математической проблемы - и идеи, выросшие позднее в его знаменитую теорию - теорию множеств. В 1878 г. он ввел и сформулировал важный строй новых понятий, дал определение множества и первое определение континуума, развил принципы сравнивания множеств. Систематическое изложение принципов своего учения о бесконечности он дал в 1879-1884 гг.

Настойчивое тяготение Кантора разобрать бесконечность как нечто актуально данное было для того времени здоровенный новостью. Кантор мыслил свою теорию как совсем новое исчисление бесконечного, "трансфинитную" (то есть "сверхконечную") математику. По его идее, создание такого исчисления должно было изготовить переворот не только в математике, но и в метафизике и теологии, которые интересовали Кантора еле-еле ли не больше, чем собственно научные исследования. Он был единственным математиком и философом, тот, что считал, что актуальная бесконечность не только существует, но и в полном смысле постижима человеком, и постижение это будет взметать математиков, а вдогонку за ними и теологов, все выше - и ближе к Богу. Этой задаче он посвятил существование. Ученый решительно верил, что он избран Богом, чтобы произвести большой переворот в науке, и эта его вера поддерживалась мистическими видениями. Титаническая попытка Георга Кантора, хотя вообще-то, закончилась странно: в теории были обнаружены тяжко преодолимые парадоксы, ставящие под колебание и значимость любимой идеи Кантора - "лестницы алефов", последовательного ряда трансфинитных чисел. (Эти числа обширно известны в принятом им обозначении: в виде буквы алеф - первой буквы еврейского алфавита.)

Неожиданность и своеобразие его точки зрения, несмотря на все преимущества подхода, обусловили резкое неприятие его работ большей частью ученых. Десятилетиями он вел упорную борьбу без малого со всеми современниками-философами и математиками, отрицавшими законность построения математики на фундаменте актуально-бесконечного. Некоторые приняли это как вызов, ибо Кантор предполагал наличие множеств или последовательностей чисел, имеющих бесконечно навалом элементов. Знаменитый математик Пуанкаре назвал теорию трансфинитных чисел "болезнью", от которой математика должна когда-нибудь излечиться. Л. Кронекер - педагог Кантора и единственный из самых авторитетных математиков Германии - более того нападал на Кантора, называя его "шарлатаном", "ренегатом" и "растлителем молодежи"! Только к 1890 г., когда были получены приложения теории множеств к анализу и геометрии, концепция Кантора получила признание в качестве самостоятельного раздела математики.

Важно подметить, что Кантор способствовал созданию профессионального объединения - Немецкого математического общества, которое содействовало развитию математики в Германии. Он считал, что его научная карьера пострадала от предубежденного отношения к его трудам, и надеялся, что независимая организация позволит молодым математикам независимо судить о новых идеях и заняться их разработкой. Он же был инициатором созыва первого Международного математического конгресса в Цюрихе.

Кантор несладко переживал противоречия своей теории и сложности с ее принятием. С 1884 г. он страдал глубокой депрессией и сквозь немного лет отошел от научной деятельности. Умер Кантор от сердечной недостаточности в психиатрической лечебнице в Галле.

Кантор доказал наличие иерархии бесконечностей, каждая из которых "больше" предшествующей. Его концепция трансфинитных множеств, пережив годы сомнений и нападок, в конце концов, выросла в грандиозную революционизирующую силу в математике 20 в. и стала ее краеугольным камнем.

Ed., Gesammelte Abhandlungen mathematischen und philosophischen inhalts , mit erl ä uternden anmerkungen sowie mit erg ä nzungen aus dem briefwechsel Cantor - Dedekind , Berlin, Verlag von Julius Springer, 1932

1. Период развития (1845−1871)

Георг Фердинанд Людвиг Филипп Кантор, создатель теории множеств, одного из величайших новых явлений в мире науки, родился в Петербурге 19 февраля ст. стиля (3 марта нов. стиля) 1845 г. Отец его Георг Вольдемар Кантор, родом из Копенгагена, прибыл в Петербург в молодости; он держал там маклерскую контору под собственным именем, иногда же под названием «Кантор и К.» Усердный и удачливый коммерсант, он достиг крупного успеха и оставил после смерти (1863 г.) весьма значительное состояние; по-видимому, он пользовался и в Петербурге, и позже в Германии высоким уважением. По болезни легких он в 1856 г. переселился с семьей в Германию; там он вскоре избрал местом пребывания Франкфурт на Майне, где жил на положении рантье. Мать Кантора, Мария, урожденная Бем, происходила из семьи, многие члены которой были одарены в разных областях искусства; влияние ее проявилось, без сомнения, в богатой фантазии сына. Дед его, Людвиг Бем, был капельмейстером; брат деда Иозеф, живший в Вене, был учителем знаменитого виолончелиста-виртуоза Иоахима; брат Марии Кантор был также музыкантом, а сестра ее Аннета имела дочь-художницу, преподававшую в Мюнхенской школе художественных ремесел. Художественная жилка заметна также у брата Георга Кантора, Константина, бывшего талантливым пианистом, и у сестры его Софии, особенно склонной к рисованию.

Одаренный мальчик, посещавший в Петербурге начальную школу, уже очень рано проявил страстное желание приступить к изучению математики. Отец его, однако, не согласился с этим, считая более обещающей в отношении заработка профессию инженера. Сын сначала подчинился; он посещал некоторое время гимназию в Висбадене, а также частные школы во Франкфурте на Майне; затем поступил, весной 1859 г., в провинциальное реальное училище Великого герцогства Гессенского в Дармштадте, где преподавали также латынь; оттуда он перешел в 1860 г. на общий курс Высшей ремесленной школы (позже Высшей технической школы). Отец руководил его образованием, предъявляя необычно высокие требования; особую важность придавал он воспитанию энергии, твердости характера и пронизывающей всю жизнь религиозности; в частности же он подчеркивал важность полного овладения основными современными языками. Отец наставлял его (в письме по поводу конфирмации в 1860 г.) держаться твердо, вопреки всякой вражде, и всегда добиваться своего; призыв этот не раз вспоминался сыну в часы тяжелых испытаний и, возможно, именно этому отцовскому воспитанию мы обязаны тем, что творческий дух его не был преждевременно сломлен и плоды его не были потеряны для потомства.

С течением времени глубокое влечение сына к математике не могло не подействовать на отца, письма которого свидетельствуют также об его уважении к науке. В письме из Дармштадта, датированном 25 мая 1862 г. и представляющем первое сохранившееся письмо Кантора, сын мог уже выразить отцу благодарность за одобрительное отношение к его планам: «Дорогой папа! Ты можешь себе представить, как обрадовало меня твое письмо; оно определяет мое будущее. Последние дни я провел в сомнении и неуверенности; и не мог прийти ни к какому решению. Долг и влечение постоянно были в борьбе. Теперь я счастлив, видя, что не огорчу тебя, последовав в моем выборе собственной склонности. Надеюсь, дорогой отец, что сумею еще доставить тебе радость, потому что душа моя, все мое существо живет в моем призвании; человек делает то, что он хочет и может, и к чему влечет его неведомый, таинственный голос!..»

Осенью 1862 г. Кантор приступил к занятиям в Цюрихе, откуда он, впрочем, уже после первого семестра ушел вследствие смерти отца. С осени 1863 г. он изучал математику, физику и философию в Берлине, куда триумвират Куммера, Вейерштрасса и Кронеккера привлекал лучшие дарования, возбуждая умы (тогда еще довольно узкого) круга слушателей в самых различных направлениях. Лишь весенний семестр 1866 г. провел он в Геттингене. Сильнейшее влияние на его научное развитие оказал, бесспорно, Вейерштрасс. Замечательно и характерно для широты взглядов Вейерштрасса, для его непредубежденного и проницательного суждения, с каким сочувственным пониманием и как рано оценил он нетрадиционные идеи своего ученика, ответив этим на глубокое уважение, которое тот неизменно оказывал ему в течение всей жизни, вопреки преходящим размолвкам. В берлинские годы Кантор входил не только в Математическое Общество, но и в более узкий круг молодых коллег, еженедельно встречавшихся в трактире Ремеля; к этому кругу принадлежали, не считая случайных гостей, Генох (будущий издатель “Fortschritte” («Успехов»), Лампе, Мертенс, Макс Симон, Томе; последний из них был особенно близок Кантору. Далее, к его товарищам по Берлинскому университету принадлежал Г. А. Шварц, бывший на два года старше; впоследствии, впрочем, он встретил идеи Кантора с сильнейшим недоверием, в противоположность своему учителю Вайерштрассу, и до самого конца жизни особо предостерегал от них, подобно Кронеккеру, своих студентов. 14 декабря 1867 г. двадцатидвухлетний студент защитил в Берлинском университете дипломную работу, возникшую из глубокого изучения Disquisitiones arithmeticae («Исследования по арифметике») и «Теории чисел» Лежандра и оцененную факультетом как “dissertatio docta et ingeniosa” («Ученое и остроумное рассуждение») * Эта работа примыкает к формулам Гаусса для решения диофантова уравнения ax 2 + a"x" 2 + a"x" 2 = 0; в ней устанавливается некоторое соотношение, не приведенное у Гаусса в явном виде. Детальное обсуждение работ Кантора содержится в написанной мною подробной его биографии, опубликованной в Jahresbericht der Deutschen Mathematikervereininung, т. 39 (1930), стр.189−266, а также отдельной книгой: «Георг Кантор», Лейпциг и Берлин, 1930 ; он посвятил ее своим опекунам (одновременно опекунам его брата и сестры). На устном экзамене он получил “magna cum laude” («с особым отличием»). Из трех предложенных им для защиты тезисов особенно характерен третий: “In re mathematica ars propenendi questionem pluris facienda est quam solvendi” (В математике искусство постановки вопросов важнее искусства их решения». Возможно, даже полученные им в теории множеств результаты уступают по значению революционным постановкам вопросов, столь далеко вышедшим в своем влиянии за пределы его собственных трудов.

Кажется, Кантор в течение короткого времени преподавал в Берлине в женской школе; во всяком случае, в 1868 г, он вступил, выдержав государственный экзамен, в известную семинарию Шельбаха, готовившую учителей математики.

Докторская диссертация, давшая Кантор возможность стать весной 1869 г. приват-доцентом университета в Галле, принадлежит, вместе с несколькими небольшими заметками, опубликованными в 1868−72 годах, еще к первому, арифметическому кругу его интересов, к которому он редко возвращался впоследствии Эти занятия теорией чисел под руководством и при одобрении Кронеккера, не были, впрочем, для Кантора лишь случайным эпизодом. Напротив, он испытал глубокое внутреннее воздействие этой дисциплины, с ее особой чистотой и изяществом. Об этом свидетельствует, наряду с первым, также третий представленный им к защите тезис: “Numeris integros simili modo atque corpora coelestia totum quoddam legibus et relationibus compositum efficere” («Целые числа, подобно небесным телам, трактовать как единое целое, связанное законами и соотношениями»). К раннему времени, возможно уже к этому периоду, относится также установление связей между различными теоретико-числовыми функциями и дзета-функцией Римана (примыкающее к работе Римана о простых числах); эта работа была опубликована Кантором лишь в 1880 г., под влиянием заметки Липшица в парижских Comptes Rendus («Докладах»). О дальнейших теоретико-числовых интересах Кантора говорит, кроме его числовой таблицы , также сохранившийся до 1884 г., но не осуществленный план опубликовать в Acta Mathematica, работу о квадратичных формах .

Э. Гейне, бывший ординарным профессором в Галле в то время, когда Кантор защищал там диссертацию, сразу же понял, что в его молодом коллеге необычайная острота ума счастливо соединяется с богатейшей фантазией. Решающее значение имело то обстоятельство, что Гейне вскоре после переезда Кантора в Галле побудил его заняться теорией тригонометрических рядов. Ревностные труды над этим предметом не только завершились рядом существенных достижений, но и привели Кантора на путь к теории точечных множеств и трансфинитным порядковым числам. Работы , , и посвящены уточнению одного утверждения Римана о тригонометрических рядах (и сопутствовавшей этому полемике с Аппелем, в которой подробно рассматривалось понятие равномерной сходимости); в работе же Кантор доказывает теорему о единственности тригонометрического представления * Удивительно, что Кронеккер, вначале положительно отнесшийся к теореме единственности Кантора (ср. ), впоследствии полностью игнорирует этот результат; например, в “Vorlesungen über die Theorie der einfachen und mehrfachen Inegrale” («Лекциях по теории простых и кратных интегралов») (1894) он представляет вопрос о единственности как еще открытый! . Он стремится обобщить этот результат, отказываясь от каких-либо предположений о поведении ряда на некотором исключительном множестве; это вынуждает его изложить в работе краткий набросок идей, «могущих быть полезными для выяснения отношений, возникающих во всех случаях, когда заданы числовые величины в конечном или бесконечном числе Здесь для точечных множеств вводятся предельные точки и производные (конечного порядка). С этой целью Кантор, с одной стороны, развивает свою теорию иррациональных чисел * . В работе Гейне «Элементы теории функций» (J. Math., 74, стр. 172–188, 1872) иррациональные числа вводятся способом, в точности следующим идеям Кантора; ср. введение к статье Гейне, а также работу Кантора “Mitteilungen zur Lehre vom Transfiniten” («К учению о трансфинитном») , вслед за теорией множеств обессмертившую его имя, где иррациональные числа рассматриваются как фундаментальные ряды. С другой стороны, для перехода к геометрии он вводит особую аксиому (аксиому Кантора), одновременно и независимо появившуюся в несколько иной формулировке в книге Дедекинда «Непрерывность и иррациональные числа».