Скорости точек тела плоской фигуры. Определение скоростей точек тела плоской фигуры. Сложное движение точки

29.03.2020 Природа

Лекция 3. Плоскопараллельное движение твердого тела. Определение скоростей и ускорений.

В данной лекции рассматриваются следующие вопросы:

1. Плоскопараллельное движение твердого тела.

2. Уравнения плоскопараллельного движения.

3. Разложение движения на поступательное и вращательное.

4. Определение скоростей точек плоской фигуры.

5. Теорема о проекциях скоростей двух точек тела.

6. Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей.

7. Решение задач на определение скорости.

8. План скоростей.

9. Определение ускорений точек плоской фигуры.

10. Решение задач на ускорения.

11. Мгновенный центр ускорений.

Изучение данных вопросов необходимо в дальнейшем для динамики плоского движения твердого тела, динамики относительного движения материальной точки, для решения задач в дисциплинах «Теория машин и механизмов» и «Детали машин».

Плоскопараллельное движение твердого тела. Уравнения плоскопараллельного движения.

Разложение движения на поступательное и вращательное

Плоскопараллельным (или плоским) называется такое движение твердого тела, при, котором все его точки перемещаются параллельно некоторой фиксированной плоскости П (рис. 28). Плоское движение совершают многие части механизмов и машин, например катящееся колесо на прямолинейном участке пути, шатун в кривошипно-ползунном механизме и др. Частным случаем плоскопараллельного движения является вращательное движение твердого тела вокруг неподвижной оси.

Рис.28 Рис.29

Рассмотрим сечение S тела какой-нибудь плоскости Оxy , параллельной плоскости П (рис.29). При плоскопараллельном движе­нии все точки тела, лежащие на прямой ММ ’, перпендикулярной течению S , т. е. плоскости П , движутся тождественно.

Отсюда заключаем, что для изучения движения всего тела дос­таточно изучить, как движется в плоскости Оху сечение S этого тела или некоторая плоская фигура S . Поэтому в дальнейшем вместо плоского движения тела будем рассматривать движение плоской фигуры S в ее плоскости, т.е. в плоскости Оху .

Положение фигуры S в плоскости Оху определяется положением какого-нибудь проведенного на этой фигуре отрезка АВ (рис. 28). В свою очередь положение отрезка АВ можно определить, зная координаты x A и y A точки А и угол , который отрезок АВ образует с осью х . Точку А , выбранную для определения положения фигуры S , будем в дальнейшем называть полюсом.

При движении фигуры величины x A и y A и будут изменяться. Чтобы знать закон движения, т. е. положение фигуры в плоскости Оху в любой момент времени, надо знать зависимости

Уравнения, определяющие закон происходящего движения, называются уравнениями движения плоской фигуры в ее плоскости. Они же являются уравнениями плоскопараллельного движения твер­дого тела.

Первые два из уравнений движения определяют то движение, которое фигура совершала бы при =const; это, очевидно, будет поступательное движение, при котором все точки фигуры движутся так же, как полюс А . Третье уравнение определяет движе­ние, которое фигура совершала бы при и , т.е. когда полюс А неподвижен; это будет вращение фи­гуры вокруг полюса А . Отсюда можно заключить, что в общем случае движение плоской фигуры в ее плоскости может рассматриваться как слагающееся из по­ступательного движения, при котором все точки фигуры движутся так же, как полюс А , и из вращательного движения вокруг этого полюса.

Основными кинематическими характеристиками рассматривае­мого движения являются скорость и ускорение поступательного движения, равные скорости и ускорению полюса , а также угловая скорость и угловое ускорение враща­тельного движения вокруг полюса.


Определение скоростей точек плоской фигуры

Было отмечено, что движение плоской фигуры можно рассматривать как слагающееся из поступательного движения, при котором все точки фигуры движутся со скоростью полюса А , и из вращательного движения вокруг этого полюса. Покажем, что скорость любой точки М фигуры складывается геометрически из скоростей, которые точка получает в каждом из этих движений.

В самом деле, положение любой точки М фигуры определяется по отношению к осям Оху радиусом-вектором (рис.30), где - радиус-вектор полюса А , - вектор, определяю­щий положение точки М относительно осей , перемещающих­ся вместе с полюсом А поступательно (движение фигуры по отноше­нию к этим осям представляет собой вращение вокруг полюса А ). Тогда

Скорость произвольной точки М фигуры определим как сумма скоростей, которые точка получает при поступательном движении вместе с полюсом и вращательном движении вокруг полюса.

Представим положение точки М как (рис.1.6).

Продифференцировав это выражение по времени получим:

, т.к.

.

При этом скорость v MA . которую точка М получает при вращении фигуры вокруг полюса А , будет определяться из выражения

v MA =ω ·MA ,

где ω - угловая скорость плоской фигуры.

Скорость любой точки М плоской фигуры геометрически складывается из скорости точки А , принятой за полюс, и скорости, точки М при вращении фигуры вокруг полюса. Модуль и направление скорости этой скорости находятся построением параллелограмма скоростей.

Задача 1

Определить скорость точки А, если скорость центра катка равна 5м/с, угловая скорость катка . Радиус катка r=0,2м, угол . Каток катиться без скольжения.

Так как тело совершает плоскопараллельное движение, то скорость точки А будет состоять из скорости полюса (точка С ) и скорости полученной точкой А при вращении вокруг полюса С .

,

Ответ:

Теорема о проекциях скоростей двух точек тела, движущего плоскопараллельно

Рассмотрим какие-нибудь две точки А и В плоской фигуры. Принимая точку А за полюс (рис.1.7), получаем

Отсюда, проецируя обе части равенства на ось, направленную по АВ , и учитывая, что вектор перпендикулярен АВ , находим

v B ·cosβ =v A ·cosα+ v В A ·cos90° .

т.к. v В A ·cos90°=0 получаем: проекции скоростей двух точек твердого тела на ось, проходящую через эти точки, равны.

Задача 1

Стержень АВ скользит по гладкой стене вниз и гладкому полу, скорость точки A V A =5м/с, угол между полом и стержнем АВ равен 30 0 . Определить скорость точки В.


Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей

При определении скоростей точек плоской фигуры через скорость полюса, скорость полюса и скорость вращательного движения вокруг полюса могут быть равны по величине и противоположны по направлению и существует такая точка Р, скорость которой в данный момент времени равна нулю , называют ее мгновенным центром скоростей.

Мгновенным центром скоростей называется точка, связанная с плоской фигурой, скорость которой в данный момент времени равна нулю.

Скорости точек плоской фигуры определяются в данный момент времени так, как если бы движение фигуры было мгновенно вращательным вокруг оси проходящей через мгновенный центр скоростей (рис. 1.8).

v A =ω ·PA ; ().

Т.к. v B =ω ·PB ; (), то w= v B /PB =v A /PA

Скорости точек плоской фигуры пропорциональны кратчайшим расстояниям от этих точек до мгновенного центра скоростей.

Полученные результаты приводят к следующим выводам:

1) для определения положения мгновенного центра скоростей надо знать величину и направления скорости и направление скорости каких-нибудь двух точек А и В плоской фигуры; мгновенный центр скоростей P находится в точке пересечения перпендикуляров, восставленных из точек А и В к скоростям этих точек;

2) угловая скорость ω плоской фигуры в данный момент времени равна отношению скорости к расстоянию от нее до мгновенного центра Р скоростей: ω =v А /;

3) Скорость точки по отношению к мгновенному центру скоростей P укажет направление угловой скорости w.

4) Величина скорости точки прямопропорциональна кратчайшему расстоянию от точки В к мгновенному центру скоростей Р v А = ω·ВР

Задача 1

Кривошип ОА длиной 0,2м вращается равномерно с угловой скоростью ω=8 рад/с . К шатуну АВ в точке С шарнирно прикреплен шатун CD. Для заданного положения механизма определить скорость точки D ползуна, если угол .

Движение точки В ограничено горизонтальными направляющими, ползун может совершать только поступательное движение по горизонтальным направляющим. Скорость точки В направлена в туже сторону что и . Так как две точки шатуна имеют одинаковое направление скоростей, то тело совершает мгновенно поступательное движение, и скорости всех точек шатуна имеют одинаковое направление и значение.

Напомним, что движение плоской фигуры можно рассматривать как слагающееся из поступательного движения вместе с полюсом и вращательного движения вокруг полюса.

В соответствии с этим скорость произвольной точки М плоской фигуры геометрически складывается из скорости какой-нибудь точки А, принятой за полюс, и скорости, которую точка М получает при вращении фигуры вокруг этого полюса, т. е.

При этом скорость V MA определяется как скорость точки М при вращении тела вокруг неподвижной оси, проходящей через точку А перпендикулярно плоскости движения (см. § 7.2), т. е.

Таким образом, если известны скорость полюса V А и угловая скорость тела со, то

скорость любой точки М тела определяется в соответствии с равенством (8.2), диагональю параллелсгграмма, построенного на векторах V A и V MA , как на сторонах (рис. 8.3), а модуль скорости V M вычисляется по формуле

где у - угол между векторами V A и V MA

Задача 8.1. Колесо катится по неподвижной поверхности без скольжения (рис. 8.4, а). Найти скорость точек К и D колеса, если известны скорость V c центра С колеса, радиус R колеса, расстояние КС = b и угол а.

Решение. 1. Рассматриваемое движение колеса является плоскопараллельным. Приняв точку С за полюс (так как ее скорость известна), в соответствии с общим равенством (8.2), для точки К можем записать

Однако нет возможности определить значение V KC , так как неизвестна угловая скорость со.

Для определения со рассмотрим скорость другой точки, а именно точки Р касания колеса о неподвижную поверхность (рис. 8.4, б). Для этой точки можно написать равенство

Особенностью точки Р является то обстоятельство, что в данный момент времени V p - 0, так как колесо катится без скольжения. Тогда равенство (б) принимает вид


откуда получим

Отсюда следует: 1) векторы скоростей V PC и V c должны быть направлены в противоположные стороны; 2) из равенства модулей V PC - V c получаем ыРС= V c , отсюда найдем со = V c /PC= V c /R. В соответствии с направлением вектора V PC определяем направление дуговой стрелки со и показываем ее на чертеже (рис. 8.4, б).

Теперь возвращаемся к определению V K по равенству (а). Находим

Vкс = о КС - V^b/R. Зная направление угловой скорости со, изображаем вектор V KC перпендикулярно отрезку КС и выполняем построение параллелограмма на векторах V c и V KC (рис. 8.4, в). Так как в данном случае V c и V KC взаимно перпендикулярны, окончательно находим

2. Скорость точки D на ободе колеса определим из равенства V D = V C + V DC . Так как численно V DC - соR - V c , то параллелограмм, построенный на векторах V c и V DC , будет ромбом. Угол между V c и V DC равен 2а. Определив V D как длину соответствующей диагонали ромба, получим

Теорема о проекциях скоростей двух точек твердого тела

Согласно равенству (8.2) для двух_ произвольных точек А и В твердого тела справедливо равенство V B =V A +V BA , в соответствии с которым выполним построение, показанное на рис. 8.5. Проецируя это равенство на ось Az, направленную по А В, получим Ум + V BAz . Учитывая, что вектор V BA перпендикулярен прямой

А В, находим

Этот результат и выражает теорему: проекции скоростей двух точек твердого тела на ось, проходящую через эти точки, равны друг другу.


Отметим, что равенство (8.5) математически отражает то обстоятельство, что тело рассматривается как абсолютно твердое и расстояние между точками А и В не изменяется. Поэтому равенство (8.5) выполняется не только при плоскопараллельном, но и при любом движении твердого тела.

Задача 8.2. Ползуны А и В, соединенные стержнем с шарнирами на концах, перемешаются по взаимно перпендикулярным направляющим в плоскости чертежа (рис. 8.6, а). Определить при данном угле а скорость точки В, если известна скорость V A .

Решение. Проведем ось х через точки А и В. Зная направление V A ,

находим проекцию этого вектора на прямую АВ: V Ax - V A cos а (на рис. 8.6, б это будет отрезок Аа). Далее на чертеже от точки В откладываем ВЬ - Аа (так как отрезок Аа расположен на оси х вправо от точки А, то и отрезок ВЬ откладываем от точки В по оси х вправо). Восставляя в точке Ь перпендикуляр к прямой АВ, находим точку конца вектора V B .

Согласно теореме о проекциях V A cos а = K^cosp. Отсюда (учтя, что Р = 90° - а) окончательно получим V B = V A cos a/cos(90° - a) или V B = = V A ctg a.

Определение скоростей точек с помощью мгновенного центра скоростей

Для определения скоростей точек плоской фигуры выберем в качестве полюса какую-либо точку Р. Тогда, согласно формуле

(8.2), скорость произвольной точки М определяется как сумма двух векторов:

Если бы скорость полюса Р в данный момент времени была равна нулю, то правая часть этого равенства была бы представлена одним слагаемым У МР и скорость любой точки определялась бы как скорость точки М тела при вращении его вокруг неподвижного полюса Р.

Следовательно, если выбрать в качестве полюса точку Р, скорость которой в данный момент времени равна нулю, то модули скоростей всех точек фигуры будут пропорциональны их расстояниям до полюса Р, а направления векторов скоростей всех точек будут перпендикулярны прямым, соединяющим рассматриваемую точку и полюс Р. Естественно, что расчет по формулам (8.6) значительно проще расчета по общей формуле (8.2).

Точка плоской фигуры, скорость которой в данный момент времени равна нулю, называется мгновенным центром скоростей (МЦС). Легко убедиться, что если фигура движется непоступательно, то такая точка в каждый момент времени существует и при том единственная. Отметим, что мгновенный центр скоростей может быть расположен как на самой фигуре, так и на ее мысленном продолжении.

Рассмотрим способы определения положения мгновенного центра скоростей.

1. Пусть в момент времени t jum плоской фигуры известны ее угловая скорость со и скорость V A какой-нибудь ее точки А (рис. 8.7, а). Тогда, выбирая точку А в качестве полюса,_скорость_иско- мой нами точки Р можно определить по формуле V p = V A + Vp A -

Задача состоит в том^чтобы найти такую точку Р, у которой V P =0, значит, для нее V A +У РЛ =0 и отсюда У РА = -У А. Следовательно, для точки Р скорость У РА, которую точка Р получает при вращении фигуры вокруг полюса А, и скорость У А полюса А равны по модулю (У РА = У А) или озАР= У А и противоположны по направлению. Кроме того, точка Р должна лежать на перпендикуляре к вектору У А. Определение положения точки Р осуществляется таким построением: из точки А (рис. 8.7, б) восставим перпендикуляр к вектору У А и отложим на нем расстояние АР = У А /со в ту сторону от точки А, куда «покажет» вектор У А, если его повернуть на 90° в направлении дуговой стрелки со.

Мгновенный центр скоростей является единственной точкой плоской фигуры, скорость которой в данный момент времени равна нулю.

В другой момент времени мгновенным центром скоростей может быть уже другая точка плоской фигуры.

2. Пусть известны направления скоростей V A и У в (рис. 8.8, а) двух точек А и В плоской фигуры (причем векторы скоростей этих точек непараллельны), или известны элементарные перемещения этих точек. Мгновенный центр скоростей будет находиться в точке пересечения перпендикуляров, восставленных из точек А и В к скоростям этих точек (или к элементарным перемещениям точек). Такое построение выполнено на рис. 8.8, б. Оно основано на том, что для любых точек А и В фигуры применимы положения (8.6):

Из этих равенств следует, что

Зная положение МЦС и угловую скорость тела, применив формулы (8.6), легко определить скорость любой точки этого тела. На- пример^для точки К (см. рис. 8.8, б) модуль скорость V K =coКР, вектор У к направлен перпендикулярно прямой КР в соответствии с

направлением дуговой стрелки ю.

Следовательно, скорости точек плоской фигуры определяются в данный момент времени так, как будто эта фигура вращается вокруг мгновенного центра скоростей.

3. Если скорости точек А и В плоской фигуры параллельны друг другу, то возможны три варианта, которые изображены на рис. 8.9. Для случаев, когда прямая АВ перпендикулярна векторам V А и V B (рис. 8.9, а, б), построения основываются на пропорции (8.7).


Если скорости точек Ли В параллельны, а прямая AB_nt перпендикулярна V А (рис. 8.9, в), то перпендикуляры к У А и V B параллельны и мгновенный центр скоростей находится в бесконечности (АР= оо); угловая скорость вращения фигуры со = VJAP = V A /cc = 0. В этом случае скорости всех точек фигуры в данный момент времени равны друг другу, т. е. фигура имеет распределение скоростей как при поступательном движении. Такое состояние движения тела называют мгновенно поступательным. Отметим, что в этом состоянии ускорения всех точек тела не будут одинаковыми.

4. Если плоское движение тела осуществляется путем его качения без скольжения по неподвижной поверхности (рис. 8.10), то точка касания Р будет являться мгновенным центром скоростей (см. задачу 8.1).

Задача 8.3. Плоский механизм состоит из стержней 7, 2, 3, 4 и ползуна В (рис. 8.11), соединенных друг с другом и с неподвижными опорами 0 { и 0 2 шарнирами; точка D находится в середине стержня АВ. Длины стержней: / 2 =0,4 м, / 2 = 1,2 м, / 3 = 0,7 м, / 4 = 0,3 м. Угловая скорость стержня 7 в заданном положении механизма со, = 2 с -1 и направлена против хода часовой стрелки. Определить V A , V B , V D , V E , oo 2 , co 3 , to 4 и скорость точки К в середине стержня DE (DK = КЕ).

Решение. В рассматриваемом механизме стержни 7, 4 совершают вращательное движение, ползун В - поступательное, а стержни 2, 3 -

плоскопараллельное движение.

Скорость точки А определим как принадлежащую стержню 7, совершающему вращательное движение:

Рассмотрим движение стержня 2. Скорость точки А определена, а направление скорости точки В обусловлено тем, что она принадлежит одновременно стержню 2 и пол-


зуну, движущемуся вдоль направляющих. Теперь, восставляя из точек А и В перпендикуляры к У А и направлению движения ползуна В, находим положение точки С 2 - МЦС стержня 2.

По направлению вектора У А, учитывая, что в рассматриваемом положении механизма стержень 2 вращается вокруг точки С 2 , определяем направление угловой скорости со 2 стержня 2 и находим ее числовое значение (о 2 = V a /AC 2 = 0,8/1,04 = 0,77 с -1 , где АС 2 - АВ sin 60° = 1,04 м (получим при рассмотрении ААС~,В).

Теперь определяем числовые значения и направления скоростей точек В и D стержня 2 (так как ABDC 2 равносторонний, то ВС 2 - DC 2 - - 0,6 м):

Рассмотрим движение стержня 3. Скорость точки D известна. Так как точка Е принадлежит одновременно и стержню 4, вращающемуся вокруг оси 0 4 , то У е 10 4 Е. Тогда, проводя через точки D и Е прямые, перпендикулярные скоростям V D wV E , находим положение точки С 3 - МЦС стержня

3. По направлению вектора V D , глядя из неподвижной точки С 3 , определяем направление угловой скорости со 3 , а ее числовое значение находим (предварительно определив из AZ)C 3 ? отрезок Z)C 3 = DEsin 30° = 0,35 м): со 3 = V d /C 3 D= 1,32 с -1 .

Для определения скорости точки К проведем прямую КС 3 и, учитывая, что АР КС 3 равносторонний (КС 3 = 0,35 м), вычислим У к = = 0,462 м/с, У к АКС 3 .

Рассмотрим движение стержня_4, вращающегося вокруг оси 0 4 . Зная направление и числовое значение V E , находим направление и значение угловой скорости со 4: со 4 = V e /0 4 E - 2,67 с.

Ответ: V A = 0,8 м/с, V B = V D = 0,462 м/с, V E = 0,8 м/с, со 2 = 0,77 с" 1 , со 3 = 1,32 с -1 , (о 4 = 2,67 с -1 , направления этих величин показаны на рис. 8.11.

Примечание. В механизме, состоящем из нескольких тел, каждое непоступательно движущееся тело имеет в данный момент времени свой мгновенный центр скоростей и свою угловую скорость.

Задача 8.4. Плоский механизм состоит из стержней 1, 2, 3 и катка, катящегося без скольжения по неподвижной плоскости (рис. 8.12, а). Соединения стержней между собой и стержня 3 к катку в точке D - шарнирные. Длины стержней: 1 { - 0,4 м, / 2 = 0,6 м, / 3 = 0,8 м. При данных углах а = 60°, В = 30° известны значения и направления угловой скорости со, = = 2 с и скорости центра О катка V 0 = 0,346 м/с, ZABD = 90°. Определить скорость точки В и угловую скорость со 2 .

Решение. Механизм имеет две степени свободы (его положение определяется двумя углами а и р, не зависящими друг от друга) и скорость точки В (общей точки стержней 2 и 3) зависит от скоростей точек А и D.

Рассматривая движение стержня /, находим направление и значение скорости точки A: V A = coj/j = 0,8 м/с, V a AjO { A.

Рассмотрим движение катка. Его мгновенный центр скоростей расположен в точке Р; тогда V D найдем из пропорции

Так как ADOP равнобедренный и острые углы в нем равны 30°, то DP- 2 OP cos 30° = ОРл/ 3. Из равенства (а) находим V D - 0,6 м/с. Вектор V D направлен перпендикулярно DP.

Так как точка В принадлежит одновременно стержням АВ и BD, то по теореме о проекциях скоростей должно быть: 1) проекция вектора У в на прямую А В У А (отрезок Аа на рис. 8.12, а), т. е. У А cos а = 0,4 м/с; 2) проекция вектора У в на прямую DB равна проекции на эту прямую вектора У 0 (отрезок Dd на рис. 8.12, а), т. е. У 0 cos у = 0,3 м/с (у = 60°).

Далее решаем графически. Откладываем от точки В в соответствующих направлениях отрезки ВЬ { = Аа и Bb 2 = Dd. Скорость точки В равна сумме векторов V B = Bb+ Bbj. Восставляем из точки Ь { перпендикуляр к ВЬ Х, а из


точки b 2 - перпендикуляр к ВЬ 2 . Точка пересечения этих перпендикуляров определяет конец искомого вектора V B .

Так как направления отрезков ВЬ и ВЬ 2 взаимно перпендикулярны, то

Определяем со 2 . На рис. 8.12, б показан так называемый план скоростей, который графически изображает векторное равенство

где векторы V A и V B определены (см. рис. 8.12, а), а направление V BA перпендикулярно стержню АВ. Из чертежа (рис. 8.12, б) находим

Теперь определяем со 2 = V ba /AB- 1,66 с -1 (направление со 2 - против хода часовой стрелки).

Ответ: V B - 0,5 м/с, со 2 = 1,66 с -1 .

Просмотр: эта статья прочитана 11766 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Плоскопараллельным или плоским движением твердого тела называется движение, при котором все точки тела движутся в плоскостях, которые параллельны некоторой недвижимой плоскости (базовой).

Изучение плоского движения абсолютно твердого тела сведится к изучению одного сечения плоской фигуры, которое определяется движением трех точек, которые не лежат на одной прямой.

Задав угол поворота тела вокруг прямой, которая проходит через полюс А перпендикулярно к плоскости сечения, получим закон плоскопаралельного движения

Плоскопараллельное движение твердого тела состоит из поступательного,при котором точки тела движутся вместе с полюсом, и вращательного вокруг полюса.

Основные кинематические характеристики плоского движения тела:

  • скорость и ускорение поступательного движения полюса,
  • угловая скорость и угловое ускорение вращательного движения вокруг полюса.

Траектория произвольной точки плоской фигуры определяется расстоянием от точки до полюса А и углом вращения вокруг полюса.

Определение скоростей точек плоской фигуры

Скорость произвольной точки равна геометрической сумме скорости точки, которая принята за полюс, и вращательной скорости данной точки в ее вращательном движении вместе с телом вокруг полюса.

Модуль и направление скорости находится построением соответствующего параллелограмма.

Мгновенный центр скоростей (МЦС)

Мгновенный центр скоростей (МЦС) - точка, скорость которой в данный момент времени равна нулю. МЦС рассматривают в качестве полюса.

  1. Скорость произвольной точки тела, которая принадлежит плоской фигуре, равняется ее вращательной скорости вокруг мгновенного центра скоростей. Модуль скорости произвольной точки А равняется произведению угловой скорости тела на длину отрезка от точки до МЦС. Вектор направлен перпендикулярно к отрезку от точки до МЦС в направлении вращения тела
  2. Модули скоростей точек тела пропорциональны их расстояниям до МЦС

Случаи определения мгновенного центра скоростей

  1. Если известны скорость одной точки тела, угловая скорость вращения тела, то для нахождения МЦС (Р) необходимо повернуть вектор скорости точки в сторону вращения на 90 0 и на найденном луче отложить отрезок АР
  2. Если скорости двух точек тела параллельны и перпендикулярны прямой, которая проходит через эти точки, то МЦС находится в точке пересечения этой прямой и прямой, которая соединяет концы векторов скоростей
  3. Если известны направления скоростей двух точек тела и их направления не параллельны, то МЦС находится в точке Р пересечения перпендикуляров, проведенных к скоростям в этих точках
  4. Если колесо катится по недвижимой поверхности без скольжения, то МЦС (Р) находится в точке соприкосновения колеса с недвижимой поверхностью

В случаях 2 и 3 возможные исключения (мгновенно поступательное движение или мгновенный покой).

Сложное движение точки

Сложное движение точки - движение, при котором точка одновременно принимает участие в нескольких движениях.

Относительное движение - движение относительно подвижной системы отсчета.

Переносное движение - движениет подвижной системы отчета (переносящей среды) вместе с точкой относительно неподвижной системы отсчета.

Абсолютное движение - движение точки относительно недвижимой системы отсчета
Абсолютное движение точки является сложным движением, т.к. состоит из относительного и переносного движений.

При сложном движении абсолютная скорость точки равняется геометрической сумме ее относительной и переносной скоростей

Определение ускорений точки

Абсолютное ускорение точки равняется геометрической сумме трех векторов: относительного ускорения, характеризующего изменение относительной скорости в относительном движении; переносного ускорения, характеризующего изменение переносной скорости точки в переносном движении, и ускорения Кориолиса, характеризующего изменение относительной скорости точки в переносном движении и переносной скорости в относительном движении.

Ускорением Кориолиса точки называется двойное векторное произведение угловой скорости переносящей среды и относительной скорости точки.

Формат: pdf

Язык: русский, украинский

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении


Определение усилий в стержнях плоской фермы
Пример решения задачи на определение усилий в стержнях плоской фермы методом Риттера и методом вырезания узлов

Уравнения плоского движения.

Основная теорема

Движение плоской фигуры в своей плоскости складывается из двух движений: поступательного вместе с произвольно выбранной точкой (полюсом), и вращательного вокруг этого полюса.

Положение плоской фигуры на плоскости определяется положением выбранного полюса и углом поворота вокруг этого полюса, поэтому плоское движение описывается тремя уравнениями:

Первые два уравнения (рис.5) определяют то движение, которое фигура совершала бы при φ = const, очевидно, что это движение будет поступательным, при котором все точки фигуры будут двигаться так же, как полюс А .

Третье уравнение определяет движение, которое фигура совершала бы при х А = const и у А = const, т.е. когда полюс А будет неподвижен; это движение будет вращением фигуры вокруг полюса А.

При этом вращательное движение не зависит от выбора полюса, а поступательное движение характеризуется движением полюса.

Зависимость между скоростями двух точек плоской фигуры.

Рассмотрим две точки А и В плоской фигуры. Положение точкиВ относительно неподвижной системы координат Оху определяется радиусом-вектором r B (рис.5):

r B = r A + ρ,

где r A - радиус-вектор точки А , ρ = АВ

вектор, определяющий положение точки В

относительно подвижных осей Ах 1 у 1 , перемещающихся поступательно вместе с полюсом А параллельно неподвижным осям Оху .

Тогда скорость точки В будет равна

.

В полученном равенстве величина является скоростью полюса А.

Величина равна скорости, которую точка В получает при = соnst, т.е. относительно осей Ах 1 у 1 при вращении фигуры вокруг полюса А . Введем для этой скорости обозначение :

Следовательно,

В
Скорость любой точки В плоской фигуры равна геометрической сумме скорости V A выбранного полюса А и скорости V BA точки во вращательном движении вокруг полюса (рис.6):

Скорость вращательного движения точки направлена перпендикулярно отрезку АВ и равна

Модуль и направление скорости точки В находится построением соответствующего параллелограмма (рис.6).

Пример 1. Найти скорости точек А, В и D обода колеса, катящегося по прямолинейному рельсу без скольжения, если скорость центра колеса С равна V C .

Решение. Выбираем точку С, скорость которой известна за полюс. Тогда скорость точки А равна

где и по модулю .

Значение угловой скорости ω найдем из условия того, что точка Р колеса не скользит по рельсу и, следовательно, в данный момент равна нулю V Р = 0 .

В данный момент скорость точки Р равна

Так как в точке Р скорости и направлены по одной прямой противоположные стороны и V Р = 0 , то V PC = V C , откуда получаем, что ω = V C . /R , следовательно, V AC = ω R = V C .



Скорость точки А является диагональю квадрата, построенного на взаимно перпендикулярных векторах и , модули которых равны, следовательно

Аналогично определяется скорость точки D. Скорость точки B равна

При этом скорости и равны по модулю и направлены по одной прямой, поэтому V B = 2V C .

Стержень АВ совершает плоское движение, которое можно представить как падение без начальной скорости под действием силы тяжести и вращение вокруг центра тяжести С с постоянной угловой скоростью .

Определить уравнения движения точки В , если в начальный момент стержень АВ был горизонтален, а точка В была справа. Ускорение силы тяжести q . Длина стержня 2l . Начальное положение точки С взять за начало координат, а оси координат направить, как указано на рисунке.

На основании соотношений (2) и(3) уравнения (1) примут вид:

Производя интегрирование и замечая, что в начальный момент t=0, x B =l и y B =0 ,получим координаты точки В в следующем виде.