Система работы репетитора по физике. Репетиторы по физике. Когда нужна квалифицированная помощь

04.05.2020 Здроровье

На данный момент определено более пятисот тысяч неорганических соединений. Классификация и номенклатура неорганических веществ - важный вопрос, позволяющий разбираться в многообразии соединений.

Историческая справка

В XVIII-XIX веках Антуаном Лавуазье, Михаилом Ломоносовым, Джоном Дальтоном была предложена первая классификация и номенклатура неорганических веществ. Выделялись простые и Первую группу делили на металлы и неметаллы. Также выделяли группу соединений, которые имели промежуточные свойства, называемые металлоидами. Это деление легло в основу современной классификации.

На данный момент выделяют четыре класса. Рассмотрим подробнее каждый из этих классов.

Оксиды

Ими являются многоатомные соединения, которые состоят из двух элементов, вторым в них всегда находится ион кислорода в степени окисления -2. Классификация и номенклатура неорганических веществ предполагает подразделение класса оксидов на три группы:

  • основные;
  • амфотерные;
  • кислотные

Классификация

Первую группу составляют соединения металлов (с минимальными показателями степеней окисления) с кислородом. Например, MgO - оксид магния. Среди основных химических свойств этого соединения можно отметить их взаимодействие с кислотными оксидами, кислотами, более активными металлами.

Кислородные соединения неметаллов, а также металлических элементов с значениями степеней окисления от +4 до +7. К примеру, в данную группу входит MnO 2 , CO 2 . Среди типичных выделим взаимодействие с водой (образуется слабая угольная кислота), основными оксидами, растворимыми основаниями (щелочами).

Амфотерными (переходными) оксидами называют соединения металлов со степенью окисления +3 (а также оксида бериллия, цинка), которые способны взаимодействовать и с кислотами, и со щелочами.

Оксиды подразделяют на солеобразующие и несолеобразующие. Первая группа соответствует кислотам или основаниям, в которых у основного элемента сохраняется степень окисления. Несолеобразующая группа малочисленна, ее представители не способны образовывать солей. Например, среди несолеобразующих оксидов выделяют: N 2 O, NO, SiO, CO.

Гидроксиды

Классификация и номенклатура неорганических веществ предполагает выделение класса гидроксидов. Ими называют сложные вещества, в составе которых есть атомы какого-то элемента, а также гидроксильные группы ОН. Этот класс подразделяют на две большие группы:

  • основания;
  • кислоты

Кислоты имеют в составе несколько водородных атомов, способные замещаться атомами металла при соблюдении правил стехиометрической валентности. Многие находятся в мета-форме, а атомы водорода в них располагаются в начале формулы. Они имеют общий вид НхЕОу, где вторая часть называется кислотным остатком. Классификация и их номенклатура рассматривается в рамках школьного курса химии. К серной кислоты - сульфаты, азотной кислоты - нитраты, угольной кислоты - карбонаты.

В зависимости от количества атомов водорода, выделяют следующие группы:

  • одноосновные;
  • двухосновные;
  • трехосновные кислоты

Основания в своем составе содержат катионы металла и ОН, способных в химических реакциях замещаться на остатки кислот при соблюдении правил стехиометрической валентности.

Основания находятся в орто-форме, имеют общую формулу М(ОН)n, причем n = 1или 2. При названии соединений этой группы к гидроксиду добавляют соответствующий металл.

Среди основных химических свойств, которыми обладают представители данного касса неорганических веществ, необходимо отметить их реакцию с кислотами, продуктами реакции является вода и соль.

Например, в реакции гидроксида натрия с соляной кислотой продуктами будет вода и хлорид натрия.

В зависимости от растворимости в воде, выделяют растворимые основания (щелочи) и нерастворимые гидроксиды. К первой группе относятся гидроксильные соединения металлов первой и второй групп главных подгрупп (щелочные и щелочноземельные металлы).

Например, NaOH - щелочь (гидроксид натрия); Fe(OH) 2 - гидроксид железа II (нерастворимое соединение).

Соли

Что еще включает в себя классификация и номенклатура неорганических веществ? Задания для учеников 8-9 классов предполагают разделение предлагаемого перечня соединений на отдельные классы: оксиды, основания, кислоты, соли.

Соли - это сложные вещества, в которых присутствуют катионы металла и анионы кислотного остатка. Средние соли имеют общую формулу Мх(ЕОу) n . Примером этой группы является Ca 3 (PO 4) 2 - фосфат кальция.

Если в составе появляются и катионы водорода, соли называют кислыми, а присутствие гидроксильных групп характерно для основных солей. К примеру, NaHCO 3 - гидрокарбонат натрия, а CaOHCl- гидроксохлорид кальция.

Те соли, в составе которых присутствуют катионы двух разных металлов, их называют двойными.

Комплексные соли - сложные соединения, в составе которых есть комплексообразователь и лиганды. В старшей школе рассматривается классификация и номенклатура неорганических веществ. Теория комплексных соединений изучается в рамках профильного курса общей химии. Вопросы, касающиеся номенклатуры и химических свойств комплексных солей, не включаются в тестовые вопросы единого государственного экзамена по химии за курс средней школы.

Заключение

Как используется в школьной программе классификация и номенклатура неорганических веществ? Кратко группы веществ рассматриваются в рамках программы восьмого и девятого класса, а более подробно их изучают в курсе общей химии 11 класса. Задания, касающиеся классификации неорганических соединений, сопоставления химических свойств соединений с предлагаемыми продуктами, включены в тесты итоговой аттестации по химии (ЕГЭ) для выпускников одиннадцатого класса. Для того чтобы успешно с ними справиться, ученики должны владеть базовыми знаниями по классификации неорганических соединений, навыками сопоставления предлагаемых веществ с химическими свойствами всего класса.

В химии все многообразие неорганических веществ: принято разделять на две группы – простые и сложные. Простые вещества подразделяются на металлы и неметаллы. А сложные – на производные от простых, образованные путем их взаимодействия с кислородом, водой и между собой. Эту классификацию неорганических веществ в виде схемы изображают следующим образом:

Рис. 2.1. Классификация неорганических соединений.

Классификация реакций в неорганической химии. В неорганической химии различают реакции: 1)соединения, 2)разложения (и те и другие могут быть окислительно-восстановительными реакциями, а могут и не быть таковыми), 3)обмена, 4)замещения, которые всегда являются окислительно-восстановительными. Схемы реакций и примеры даны в таблице 2.1.

Таблица 2.1

Классификация реакций

Рассмотрим получение и свойства наиболее важных классов неорганических соединений.

ОКСИДЫ (окислы) - сложные вещества, состоящие из двух элементов, одним из которых является кислород в степени окисления, равной -2. Общая формула любого оксида - Э х О у -2 . Различают солеобразующие (основные : Li 2 O, CaO, MgO ,FeO; амфотерные : ZnO, Al 2 O 3 , SnO 2 , Cr 2 O 3 , Fe 2 O 3 ; кислотные : B 2 O 3 , SO 3 , CO 2 , P 2 O 5 Mn 2 O 7) и несолеобразующие : N 2 O, NO, CO оксиды. Элементы с переменной степенью окисления образуют несколько оксидов (MnO, MnO 2 , Mn 2 O 7 , NO, N 2 O 3 , NO 2 , N 2 O 5). В высшем оксиде, как правило, элемент находится в степени окисления, равной номеру группы.

По современной международной номенклатуре названия оксидов составляют следующим образом: слово «оксид», далее русское название элемента в родительном падеже, степень окисления элемента (если она переменна). Например: FeO – оксид железа (II), P 2 O 5 – оксид фосфора (V).

Основные оксиды это те, которым соответствуют гидроксиды – основания. Основными называют оксиды, взаимодействующие с кислотами с образованием соли и воды. Основные оксиды образуются только металлами в степени окисления +1,+2 (иногда +3), например: BaO, SrO, FeO, MnO, CrO, Li 2 O, Bi 2 O 3 , Ag 2 O.

Получение основных оксидов :

1) Окисление металлов при нагревании в атмосфере кислорода:

Этот метод практически неприменим для щелочных металлов, которые при окислении обычно дают пероксиды, поэтому оксиды Na 2 O, K 2 O крайне труднодоступны.

2) Обжиг сульфидов:

2СuS+3O 2 =2CuO+2SO 2 ;

4FeS 2 +11O 2 =2Fe 2 O 3 +8SO 2 .

3) Разложение гидроксидов:

Cu(OH) 2 =CuO+H 2 O.

Этим методом нельзя получить оксиды щелочных металлов.

4) Разложение солей некоторых кислородсодержащих кислот:

BaCO 3 =BaO+CO 2 ,

2Pb(NO 3) 2 =2PbO+4NO 2 +O 2

Свойства основных оксидов . Большинство основных оксидов представляет собой твердые кристаллические вещества ионного характера; в узлах кристаллической решетки расположены ионы металлов, достаточно прочно связанные с ионами O 2- , поэтому оксиды типичных металлов обладают высокими температурами плавления и кипения.

Отметим одну характерную для оксидов особенность. Близость ионных радиусов многих ионов металлов приводит к тому, что в кристаллической решетке оксидов часть ионов одного металла может быть заменена на ионы другого металла. Это приводит к тому, что для оксидов часто не выполняется закон постоянства состава, и могут существовать смешанные оксиды переменного состава.

1) Отношение к воде.

Процесс присоединения воды называется гидратацией, а образующееся вещество – гидроксидом. Из основных оксидов с водой взаимодействуют только оксиды щелочных (Li, Na, K, Rb, Cs, Fr) и щелочноземельных металлов (Ca, Sr, Ba, Ra).

Li 2 O+H 2 O=2LiOH;

BaO+H 2 O=Ba(OH) 2 .

Большинство же основных оксидов в воде не растворяются и не взаимодействуют с ней. Соответствующие их гидроксиды получают косвенным путем – действием щелочей на соли (см. ниже).

2) Отношение к кислотам.

CaO+H 2 SO 4 =CaSO 4 +H 2 O;

FeO+2HCl=FeCl 2 +H 2 O.

3) Отношение к кислотным и амфотерным оксидам.

Основные оксиды щелочных и щелочноземельных металлов при сплавлении взаимодействуют с твердыми кислотными и амфотерными оксидами, а также с газообразными кислотными оксидами при обычных условиях.

CaO+CO 2 =CaCO 3;

3BaO+P 2 O 5 =Ba 3 (PO 4) 2 ;

сплавление

Li 2 O+Al 2 O 3 =2LiAlO 2 .

сплавление

Основные оксиды менее активных металлов взаимодействуют только с твердыми кислотными оксидами при сплавлении.

Кислотные оксиды - оксиды, которые при взаимодействии с основаниями образуют соль и воду. Кислотным оксидам соответствуют гидроксиды – кислоты. Кислотные оксиды – это оксиды неметаллов в различных степенях окисления, либо оксиды металлов в высокой степени окисления (+4 и выше). Примеры: SO 2 , SO 3 , Cl 2 O 7 , Mn 2 O 7 , CrO 3 .

Химическая связь в кислотных оксидах – ковалентная полярная. При обычных условиях кислотные оксиды неметаллов могут быть газообразными (CO 2 , SO 2), жидкими (N 2 O 3 , Cl 2 O 7), твердыми (P 2 O 5 , SiO 2).

Получение кислотных оксидов .

1) Окисление неметаллов:

2) Окисление сульфидов:

2ZnS+3O 2 =2ZnO+2SO 2 

3) Вытеснение непрочных слабых кислот из их солей:

CaCO 3 +2HCl=CaCl 2 +CO 2 +H 2 O.

Свойства кислотных оксидов .

1) Отношение к воде.

Большинство кислотных оксидов растворяются в воде, вступая с ней в химическое взаимодействие и образуя кислоты:

SO 3 +H 2 O=H 2 SO 4 ,

CO 2 +H 2 O=H 2 CO 3 .

2) Отношение к основаниям.

Кислотные оксиды взаимодействуют с растворимыми основаниями – щелочами, образуя соль и воду.

SO 2 +2NaOH=Na 2 SO 3 +H 2 O;

P 2 O 5 +6NaOH=2Na 3 PO 4 +3H 2 O

сплавление

3) Отношение к основным и амфотерным оксидам.

Твердые кислотные оксиды взаимодействуют с основными и амфотерными оксидами при сплавлении. Жидкие и газообразные оксиды взаимодействуют с оксидами щелочных и щелочноземельных металлов при обычных условиях.

P 2 O 5 +3CuO=Cu 3 (PO 4) 2 ;

сплавление

3SiO 2 +Al 2 O 3 =Al 2 (SiO 3) 3

сплавление

Амфотерные оксиды взаимодействуют и с кислотами и со щелочами, проявляя свойства кислотных и основных оксидов. Им соответствуют амфотерные гидроксиды. Все они твердые вещества, нерастворимые в воде. Примеры амфотерных оксидов: ZnO, BeO, SnO, PbO, Al 2 O 3 , Cr 2 O 3 , Sb 2 O 3 , MnO 2 .

Свойства амфотерных оксидов .

Амфотерные оксиды реагируют с кислотами как основные:

Al 2 O 3 +6HCl=2AlCl 3 +3H 2 O,

а со щелочами – как кислотные. Состав продуктов реакции зависит от условий. При сплавлении:

ZnO+2NaOH=Na 2 ZnO 2 +H 2 O;

Цинкат натрия

В растворе щелочи образуется растворимая комплексная соль, содержащая гидроксокомплексный ион:

ZnO+2NaOH+H 2 O=Na 2

Тетрагидроксоцинкат натрия

Несолеобразующие оксиды – это оксиды неметаллов, которым не соответствуют гидроксиды и соли. Примеры: CO, N 2 O, NO, SiO.

Оксиды широко распространены в природе. Так вода – самый распространенный оксид покрывает 71% поверхности планеты. Оксид кремния (IV) в виде 400 разновидностей кварца составляет 12% от массы земной коры. Оксид углерода (IV) (углекислый газ) содержится в атмосфере - 0,03% по объему, а также в природных водах. Важнейшие руды: гематит, магнетит, бурый железняк состоят из различных оксидов железа. Бокситы содержат оксид алюминия, и т.д.

ОСНОВАНИЯ – сложные вещества, в которых на атом металла приходится одна или несколько гидроксогрупп ОН - . Степень окисления атомов металла обычно +1, +2 (реже +3). Общая формула оснований Ме(ОН) х, где х – число гидроксогрупп – кислотность основания. (МеОН – однокислотное, Ме(ОН) 2 – двухкислотное, Ме(ОН) 3 – трехкислотное основание).

Названия основаниям дают следующим образом: «гидроксид», затем русское название металла в родительном падеже, а в скобках римскими цифрами – степень окисления, если она переменная. Например: KOH –гидроксид калия, Ni(OH) 2 – гидроксид никеля(II).

При обычных условиях основания – твердые вещества, кроме гидроксида аммония – водного раствора аммиака NH 4 OH (NH 4 + - ион аммония, входящий в состав солей аммония).

Классификация оснований. В зависимости от отношения к воде основания делятся на растворимые (щелочи) и нерастворимые. К растворимым основаниям - щелочам относятся только гидроксиды щелочных и щелочноземельных металлов (LiOH, NaOH, KOH, CsOH, RbOH, FrOH, Ca(OH) 2 , Sr(OH) 2 , Ba(OH) 2 , Ra(OH) 2) а также водный раствор аммиака. Все остальные основания практически нерастворимы в воде.

С точки зрения теории электролитической диссоциации основания – электролиты, диссоциирующие в водном растворе с образованием в качестве анионов только гидроксид-ионов:

Ме(ОН) х  Ме х+ + хОН - .

Наличие в растворе ионов гидроксида определяют с помощью индикаторов: лакмуса (синий), фенолфталеина (малиновый), метилоранжа (желтый). Нерастворимые основания не меняют окраски индикаторов.

Простые вещества . Молекулы состоят из атомов одного вида (атомов одного элемента). В химических реакциях не могут разлагаться с образованием других веществ.

Сложные вещества (или химические соединения).
Молекулы состоят из атомов разного вида (атомов различных химических элементов). В химических реакциях разлагаются с образованием нескольких других веществ.

Резкой границы между металлами и неметаллами нет, т.к. есть простые вещества, проявляющие двойственные свойства.

Аллотропия
Аллотропия - способность некоторых химических элементов образовывать несколько простых веществ, различающихся по строению и свойствам.

С - алмаз, графит, карбин.
O - кислород, озон.
S - ромбическая, моноклинная, пластическая.
P - белый, красный, чёрный.

Явление аллотропии вызывается двумя причинами:

1) различным числом атомов в молекуле, например кислород O 2 и озон O 3

2) образованием различных кристаллических форм, например алмаз и графит.

ОСНОВАНИЯ
Основания - сложные вещества, в которых атомы металлов соединены с одной или несколькими гидроксильными группами (с точки зрения теории электролитической диссоциации, основания - сложные вещества, при диссоциации которых в водном растворе образуются катионы металла (или NH 4 +) и гидроксид - анионы OH -).

Классификация. Растворимые в воде (щёлочи) и нерастворимые . Амфотерные основания проявляют также свойства слабых кислот.

Получение
1. Реакции активных металлов (щелочных и щелочноземельных металлов) с водой:
2Na + 2H 2 O ® 2NaOH + H 2 -
Ca + 2H 2 O ® Ca(OH) 2 + H 2 -
2. Взаимодействие оксидов активных металлов с водой:
BaO + H 2 O ® Ba(OH) 2
3. Электролиз водных растворов солей
2NaCl + 2H 2 O ® 2NaOH + H 2 - + Cl 2 -

Химические свойства

Щёлочи Нерастворимые основания
1. Действие на индикаторы.
лакмус - синий
метилоранж - жёлтый
фенолфталеин - малиновый
--
2. Взаимодействие с кислотными оксидами.
2KOH + CO 2 ® K 2 CO 3 + H 2 O
KOH + CO 2 ® KHCO 3
--
3. Взаимодействие с кислотами (реакция нейтрализации)
NaOH + HNO 3 ® NaNO 3 + H 2 O Cu(OH) 2 + 2HCl ® CuCl 2 + 2H 2 O
4. Обменная реакция с солями
Ba(OH) 2 + K 2 SO 4 ® 2KOH + BaSO 4 ¯
3KOH+Fe(NO 3) 3 ® Fe(OH) 3 ¯ + 3KNO 3
--
5. Термический распад.
--
Cu(OH) 2 - t ° ® CuO + H 2 O

ОКСИДЫ

Классификация
Оксиды - это сложные вещества, состоящие из двух элементов, один из которых кислород.

ОКСИДЫ
Несолеобразующие CO, N 2 O, NO
Солеобразующие Основные
-это оксиды металлов, в которых последние проявляют небольшую степень окисления +1, +2
Na 2 O; MgO; CuO

Амфотерные
(обычно для металлов со степенью окисления +3, +4). В качестве гидратов им соответствуют амфотерные гидроксиды
ZnO; Al 2 O 3 ; Cr 2 O 3 ; SnO 2

Кислотные
-это оксиды неметаллов и металлов со степенью окисления от +5 до +7
SO 2 ; SO 3 ; P 2 O 5 ; Mn 2 O 7 ; CrO 3


Основным оксидам соответствуют основания,
кислотным - кислоты,
амфотерным - и те и другие

Получение

1. Взаимодействие простых и сложных веществ с кислородом:
2Mg + O 2 ® 2MgO
4P + 5O 2 ® 2P 2 O 5
S + O 2 ® SO 2
2CO + O 2 ® 2CO 2
2CuS + 3O 2 ® 2CuO + 2SO 2
CH 4 + 2O 2 ® CO 2 + 2H 2 O
4NH 3 + 5O 2 - кат. ® 4NO + 6H 2 O
2. Разложение некоторых кислородсодержащих веществ (оснований, кислот, солей) при нагревании:
Cu(OH) 2 - t ° ® CuO + H 2 O
(CuOH) 2 CO 3 - t ° ® 2CuO + CO 2 + H 2 O
2Pb(NO 3) 2 - t ° ® 2PbO + 4NO 2 + O 2
2HMnO 4 - t ° ;H 2 SO 4 (конц.) ® Mn 2 O 7 + H 2 O

Химические свойства

Основные оксиды Кислотные оксиды
1. Взаимодействие с водой
Образуется основание:
Na 2 O + H 2 O ® 2NaOH
CaO + H 2 O ® Ca(OH) 2
Образуется кислота:
SO 3 + H 2 O ® H 2 SO 4
P 2 O 5 + 3H 2 O ® 2H 3 PO 4
2. Взаимодействие с кислотой или основанием:
При реакции с кислотой
образуется соль и вода
MgO + H 2 SO 4 - t ° ® MgSO 4 + H 2 O
CuO + 2HCl - t ° ® CuCl 2 + H 2 O
При реакции с основанием
образуется соль и вода
CO 2 + Ba(OH) 2 ® BaCO 3 + H 2 O
SO 2 + 2NaOH ® Na 2 SO 3 + H 2 O
Амфотерные оксиды взаимодействуют
с кислотами как основные:
ZnO + H 2 SO 4 ® ZnSO 4 + H 2 O
с основаниями как кислотные:
ZnO + 2NaOH ® Na 2 ZnO 2 + H 2 O
(ZnO + 2NaOH + H 2 O ® Na 2 )
3. Взаимодействие основных и кислотных оксидов между собой приводит к солям.
Na 2 O + CO 2 ® Na 2 CO 3
4. Восстановление до простых веществ:
3CuO + 2NH 3 ® 3Cu + N 2 + 3H 2 O
P 2 O 5 + 5C ® 2P + 5CO

Классификация неорганических веществ основана на их способности к разложению. Простые вещества, состоящие из атомов только одного химического элемента (O 2 , H 2 , Mg), не распадаются. Легко разлагаются сложные вещества, состоящие из атомов двух и более элементов (CO 2 , H 2 SO 4 , NaOH, KCl).

Простые

Классификация классов неорганических веществ включает:

  • металлы - элементы, обладающие тепло- и электропроводностью, высокой пластичностью, ковкостью, металлическим блеском;
  • неметаллы - более хрупкие, чем металлы, элементы, не обладающие электропроводностью и проявляющие окислительные свойства.

Рис. 1. Схема классификации неорганических веществ.

Металлы расположены в нижнем левом углу периодической таблицы, неметаллы - в правом верхнем углу и включают благородные газы.

Рис. 2. Расположение металлов и неметаллов в таблице Менделеева.

Многие простые химические элементы обладают аллотропией - свойством образовывать несколько простых веществ. Например, при присоединении ещё одного атома к кислороду образуется простое вещество озон (О 3), углерод в зависимости от количества атомов образует графит, уголь или алмаз.

Сложные

Сложные вещества классифицируют на следующие классы:

  • оксиды - состоят из двух элементов, один из которых является кислородом;
  • кислоты - состоят из атомов водорода и кислотного остатка;
  • основания - состоят из металла и одной или нескольких гидроксильных групп;
  • соли - состоят из металла и кислотного остатка.

Отдельно выделяют амфотерные гидроксиды, которые проявляют свойства кислот и оснований. Это твёрдые вещества, являющиеся слабыми электролитами. К ним относятся гидроксиды металлов со степенью окисления +3 и +4. Исключениями являются Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 , Pb(OH) 2 .

Более подробная классификация сложных веществ представлена в таблице с примерами.

Вид

Номенклатура

Химические свойства

Пример

Оксиды - Е х О у

Оксид элемента (степень окисления)

Выделяют основные оксиды, которые при взаимодействии с кислотами образуют соли, и кислотные оксиды, образующие при взаимодействии с основаниями кислоты. Отдельно выделяют амфотерные оксиды, взаимодействующие с кислотами и основаниями (образуется соль)

Na 2 O - оксид натрия, Fe 2 O 3 - оксид железа (III), N 2 O 5 - оксид азота (V)

Основания - Ме(ОН) х

Гидроксид металла (степень окисления)

В соответствии с растворимостью выделяют щёлочи и нерастворимые в воде основания. Щёлочи взаимодействуют с неметаллами и кислотными оксидами. Нерастворимые основания взаимодействуют с кислотами и способны разлагаться при высоких температурах

Fe(OH) 2 - гидроксид железа (II), Cu(OH) 2 - гидроксид меди (II), NaOH - гидроксид натрия

Кислоты - H n Ac

Читается в зависимости от кислотного остатка

Взаимодействуют с металлами, стоящими левее водорода в ряде активности, с оксидами, солями. Способны разлагаться при высоких температурах

H 2 SO 4 - серная кислота, HCl - соляная кислота, HNO 3 - азотная кислота

Соли - Ме х (Ас) у

Кислотный остаток металла (степень окисления)

Реагируют с кислотами, щелочами, металлами и солями

Na 2 SO 4 - сульфат натрия, CaCO 3 - карбонат кальция, KCl - хлорид калия

Рис. 3. Список названий кислот.

Генетические связи между классами основаны на взаимном превращении веществ. При химических реакциях атомы переходят от одного вещества к другому, образуя генетические ряды (ряды превращений). Металл при присоединении кислорода образует оксид, который при взаимодействии с водой превращается в основание. Из неметалла образуется кислотный оксид, который, взаимодействуя с водой, образует кислоту. Любой генетический ряд заканчивается солью.

Что мы узнали?

Неорганические вещества включают простые и сложные соединения. Простые вещества состоят из атомов одного и того же элемента. К ним относятся металлы и неметаллы. Сложные соединения включают вещества, состоящие из нескольких элементов. К ним относятся оксиды, кислоты, основания, соли и амфотерные гидроксиды. Все вещества генетически связаны между собой. Из простого вещества можно получить более сложное вещество. Наиболее сложными веществами считаются соли.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 102.