Почему у кометы есть хвост? Небесные хамелеоны Всегда ли хвост планеты следует за ней

Почему у кометы есть хвост?

Если рассматривать комету в телескоп, то можно заметить, что у нее есть «голова» и «хвост». «Голова» – это большое облако пылающего газа, называемое эпицентром кометы. Эпицентр может достигать более 1 609 300 километров в диаметре. Эти газы настолько легки, что солнечные ветры относят их назад. Так, образуется «хвост».

Когда комета приближается к Солнцу, ее «хвост» становится все больше и больше, потому что увеличивается давление солнечных ветров. Когда комета удаляется от Солнца в холодную Вселенную, давление солнечных ветров уменьшается, но все же они продолжают задувать газы кометы. По этой причине «хвост» кометы всегда направлен от Солнца.

В эпицентре кометы иногда можно заметить маленькую, сияющую точку света. Эта точка света называется ядром кометы. Астрономы считают, что ядро – это смесь льда и частичек пыли, образующие шар до 50 километров в диаметре.

При вращении вокруг Солнца большинство комет движутся по удлиненным орбитам. Они напоминают по форме длинную, толстую сигару. Комете нужны тысячелетия, чтобы совершить один круг по своей орбите.

Три или четыре раза в столетие комета проходит так близко от Солнца, что ее яркий, сияющий «хвост» легко различим с Земли. Мы можем наблюдать комету только тогда, когда она проходит рядом с Солнцем. Затем Солнце превращает лед ядра кометы в газ. Радиация, исходящая от Солнца, проходит через газы и ионизирует их, что является причиной свечения газов.

Комета Галлея - самая популярная из комет. Она обращается вокруг Солнца с периодом от 74 до 79 лет по сильно вытянутой эллиптической орбите. Во время появления кометы в 1835 году с помощью спектрального анализа было установлено, что в составе кометных атмосфер наблюдались молекулярные полосы циана, угарного газа и других соединений.

Кометы – тела Солнечной системы, имеющие вид туманных объектов, обычно со светлым сгустком-ядром в центре и хвостом. Они представляют собой остаточный материал, образовавшийся при зарождении нашей Солнечной системы. Кометы состоят из различных видов льда – замерзших воды, метана. Аммиака и углекислого газа. В эту ледяную смесь заключены песочная пыль, крупные камни и куски металла. Все эти материалы входили в межзвездное облако, из которого образовались Солнце и планеты. Кометы - самые эффектные и самые загадочные тела Солнечной системы. Такими они были на протяжении всей истории человечества, такими остаются и до настоящего времени. В течение последних 300 лет астрономы узнали многое о кометах, о физическом строении и химическом составе их атмосфер, об эволюции их орбит и научились с большой точностью предсказывать возвращение периодических комет. Однако целый ряд вопросов кометной астрономии - физическое строение и химический состав ядер, процессы, происходящие в голове и хвосте кометы во время ее стремительного полета вблизи Солнца, - до сих пор остаются без ответа; данные, которыми располагает наука, пока не позволяют выходить за рамки гипотез.
Объектом номер "один" для космических исследований целым рядом стран избрана комета Галлея - самый активный старожил среди большого семейства короткопериодических комет.
Комета Галлея - первая в истории астрономии, для которой был достаточно точно определен период обращения вокруг Солнца (он меняется в пределах от 74 до 79 лет). Это исключительно важное открытие было сделано выдающимся и разносторонним английским ученым Э. Галлеем, имя которого благодарное потомство сохранило за удивительной кометой. С кометой Галлея связано окончательное торжество закона всемирного тяготения; она - единственная из периодических комет, движение которой было прослежено по историческим документам в прошлом, и ее история благодаря этому насчитывает 22 века.

Комета Галлея в семье комет

Многочисленная семья комет Солнечной системы относится к группе малых тел, к которой также принадлежат малые планеты (астероиды) и огромное количество метеорных тел. Но в отличие от других малых тел кометы обладают удивительной способностью при приближении к Солнцу развивать из сравнительно небольших по размерам ядер (1 - 5 км) громадные газово-пылевые оболочки (атмосферы), превосходящие по своей протяженности все известные объекты Солнечной системы, включая Солнце.
Среди комет самая знаменитая и широко известная, о которой, вероятно, слышали все, - комета Галлея. В чем же кроется секрет такой популярности и почему эта комета представляет такой интерес для науки? Если ответить кратко, то – в сочетании параметров орбиты с удивительной "молодостью", черты которой комета проявила во всех известных науке появлениях, на протяжении по крайней мере более двух тысячелетий. Кроме того, орбита кометы почти касательна к орбите Земли.
Среди короткопериодических комет можно найти кометы дос-таточно близкие по одному или двум параметрам к комете Галлея – по периоду обращения и по эксцентриситету. И тем не менее об этих кометах никто (кроме специалистов) не слыхал и тем более ни для одной из них не обнаружено ни одного появления в исторических хрониках; комета Галлея в этом отношении явление исключительное!
Особенности орбиты кометы Галлея выделяют ее из всех пе-риодических комет. А сравнительно кратковременное пребывание в окрестности Солнца при возвращении к перигелию – раз в 76 лет! – позволяют ей сохранить в значительной степени нерастраченным тот, по-видимому, громадный запас "горючего материала", который комета получила при своем "рождении" и который так щедро тратит при встречах с Солнцем. Это обстоятельство в значительной мере и привлекает к ней внимание исследователей.
Средний период обращения кометы вокруг солнца, как уже говорилось, составляет Р=76 лет. Однако он может колебаться из-за планетных возмущений в пределах нескольких лет: от 74,4 г. (оборот 1835 – 1910) до 79,2 г. (оборот 451 – 530).
Источником грандиозных голов и хвостов кометы Галлея, на-блюдавшихся различными поколениями жителей Земли в ее много-численных появлениях, является почти трехкилометровое ледяное ядро, загрязненная снежная глыба или ком, состоящий в основном из водяного льда с примесью льдов других жидкостей и газов и твердой компоненты из пыли и более крупных минеральных фрагментов.
С кометой Галлея связано два метеорных потока: Акварид и Орионид. Первый поток Акварид наблюдается ежегодно с 21 апреля по 12 мая, достигая максимума активности 5 мая, когда Земля находится в непосредственной близости от орбиты кометы Галлея. Однако указанный поток труднодоступен для наблюдений в северном полушарии, так как его радиант восходит пред утром и кульминирует в светлое время. Зато в южном полушарии он является вторым по активности. Перед самым рассветом, когда восходит созвездие водолея, в начале мая можно увидеть, как по темному небу быстро скользят красивые яркие метеоры, порожденные кометой Галлея. В среднем один такой метеор наблюдается каждые 2 – 3 минуты.
Второй поток – Ориониды – тоже ежегодный, наблюдается с о 2 октября по 7 ноября, достигая максимума 21 октября, когда Земля приближается к орбите кометы Галлея, попадая в разреженные части метеорного роя, сопутствующего комете. Пространственная плотность Орионид в 7 раз меньше Акварид, но этот поток даже кажется более обильным, чем майские Аквариды, из-за того, что радиант Орионид поднимается высоко над горизонтом. В это время красивое зрелище пролета яркого метеора по ночному небу можно наблюдать примерно через каждые 2 минуты. Оба потока считаются одними из самых древних и длительных.

История открытия кометы Галлея

История кометы Галлея, теряющаяся в глубине веков, уже триста лет интересует астрономов. За это время были изучены ев-ропейские, китайские, японские, вьетнамские хроники и русские летописи, накоплен богатый исторический материал о появлении комет, из которого удалось путем тщательного и скрупулезного анализа выделить то, что относится к комете Галлея.
Кометная астрономия не знает ни одной периодической кометы, для которой удалось бы в хрониках найти до ее открытия хотя бы одно упоминание, одно наблюдение. Только комета Галлея удо-стоилась этой чести, и ее история, ее движение с большой точностью теперь прослежены в прошлое не на один, не на два, – а на 30 оборотов – более чем на 2 тысячи лет!
Эдмунд Галлей (1656 – 1742) – английский астроном, один из руководителей обсерватории в Гринвиче, математик, востоковед, геофизик, инженер, мореплаватель, переводчик, издатель, дипломат. Он жил в бурную, богатую научными и общественно-политическими событиями эпоху. Был другом Ньютона, который, открыв закон всемирного тяготения, считал, что кометы движутся вокруг Солнца по параболическим орбитам в соответствии с этим законом. Ньютон опубликовал методику расчета этих орбит, и, используя эту методику, Галлей рассчитал орбиты для большого числа комет, появление которых было зафиксировано к тому времени, т. е. наблюдавшихся в промежутке с 1337 по 1698 год.
В 1705 г. Галлей опубликовал "Обзор кометной астрономии". Он непрерывно собирал и обдумывал материал, проводил утомительные вычисления, готовя к публикации один из основных трудов своей жизни, доставивший ему неувядаемую славу. Эта работа, как пишет он сам, "плод обширного и утомительного труда".
В результате этих расчетов выяснилось, что орбиты трех комет, появлявшихся соответственно в 1531, 1607 и 1682 годах, очень схожи между собой. О существовании периодических комет в то время никто еще не подозревал, и Галлей вычислял орбиты в предположении, что кометы движутся по очень вытянутым эллипсам, близким к параболам. Из этого можно было сделать два вывода: либо допустить, что в пространстве по параболическим орбитам, очень близким друг к другу, движутся три кометы (поразительная случайность), либо предположить, что это появление одной и той же кометы. И Галлей делает чрезвычайно смелое, необычное для того времени предположение.
"Довольно многое заставляет меня думать, - пишет он, - что комета 1531 г., которую наблюдал Аппиан, была тождественна с кометой 1607 г., описанной Кеплером и Лонгомонтаном, а также с той, которую я сам наблюдал в 1682 г.: все элементы сходятся в точности, а разность периодов не столь велика, чтобы ее нельзя было приписать каким-нибудь физическим причинам".
Он правильно увидел причину небольших расхождений эле-ментов орбиты кометы в возмущающем влиянии больших планет и, в первую очередь, Юпитера и Сатурна. Определив среднюю величину для периода для этой кометы, Галлей нашел, что она должна вернуться к перигелию либо в конце 1758, либо в начале 1759 года. Удостовериться лично в этом ему не удалось, он умер в 1742 г.
Вся последующая история кометы Галлея и ее появление в 1759 г. связана с именем Алексиса Клеро (1713 – 1765), одного из самых выдающихся математиков Франции, в 25 лет ставшего академиком.
По предложению члена Парижской Академии наук Жозефа Лаланда (1732 – 1807) Клеро первоначально собирался, руково-дствуясь идеей Галлея, учесть влияние Юпитера на комету лишь на небольшой части ее орбиты, когда оба тела были близки друг к другу. В конце концов обнаружилось, что точное решение задачи невозможно без учета влияния Сатурна, масса которого лишь в три раза меньше массы Юпитера. Объем задачи и связанные с нею трудности, казалось, превосходили человеческие силы.
В процессе этого труда Клеро разработал первый математи-ческий метод численного исследования движения кометы в поле тяготения Солнца с учетом возмущений от двух больших планет – Юпитера и Сатурна. Для помощи в проведении вычислений Клеро обратился к Лаланду, обладавшему большим опытом вычислений, который, в свою очередь, привлек к этой работе Николь-Рейн-Этабль де Лабрийер Лепот (1723 – 1788) – женщину, всецело преданную науке, жену знаменитого тогда конструктора и теоретика часовых механизмов.
Благодаря самоотверженному и героическому труду этого за-мечательного трио, гигантская по своим масштабам работа была закончена вовремя. Правда, в течение полугода все торе работали, не щадя здоровья и сил и не считаясь со временем, все отдавая вычислениям.
Пришел наконец долгожданный 1758 год. Все астрономы мира жаждали получить подтверждение предположения, высказанного Галлеем. Честь открытия кометы выпала на долю немецкого астро-нома-любителя Палича. В рождественскую (25 декабря) 1758 г. ночь ему посчастливилось поймать эту комету в объектив своего небольшого телескопа с фокусным расстоянием 2,4 метра. Это был первый случай удачного поиска кометы астрономом-любителем. А также первый успех в использовании телескопа для поиска комет.
Таким образом, был установлен факт существования коротко-периодических комет, которые подобно Венере, Юпитеру, Земле и другим планетам являются членами Солнечной системы, движущимся в космическом пространстве вокруг Солнца под действием его притяжения.
В память о заслугах Галлея эта комета и стала носить его имя. Впоследствии она появлялась и приближалась к Солнцу в 1835, 1910 и 1986 годах.

1910 год. Земля проходит через хвост кометы Галлея

Еще в 1835 г. были названы две даты следующего возвращения кометы Галлея к перигелию в 1910 г. – 9 мая (Розенбергер) и 24 мая (Понтекулан). В 1907 – 1908 гг. гринвичские астрономы Ф. Г. Коуэлл (1870 – 1949) и А. К. Кроммелин (1865 – 1939) опубликовали предварительные результаты своих вычислений (начатых с целью проверки данных Понтекулана), в соответствии с которыми момент прохождения через перигелий приходился на 8 апреля. В своих вычислениях они впервые использовали численное интегрирование с переменным шагом, что значительно повышало точность вычислений и уменьшало их объем. Были учтены возмущения от Венеры, Земли, Юпитера, Сатурна, Урана и Нептуна. Убедившись в том, что предсказание Понтекулана нуждается в уточнении, Коуэлл и Кроммелин предприняли новые, более точные, вычисления с 1759 по 1910 гг. и опубликовали новый момент прохождения через перигелий – 17 апреля 1910 г. поиски кометы начались почти за полтора года до этой даты – с начала 1909 г. – но долго оставались безуспешными. Комету в созвездии Рыб обнаружил 11 сентября 1909 г. Макс Вольф – директор Гейдельбергской обсерватории. 15 сентября комету наблюдали визуально с помощью крупнейшего в мире метрового рефрактора Йерксской обсерватории (США, Чикаго). Уже первые наблюдения показали, что поправка к результатам Коуэлла и Кроммелина составляет 3 дня, т. е. точность предсказания осталась на уровне прошлого появления.
Коуэлл и Кроммелин тщательно проверили свои вычисления, повторили их с уменьшением вдвое шага интегрирования, увеличили точность и устранили некоторые мелкие ошибки. Тем не менее для момента прохождения через перигелий было получено значение лишь немного лучше данного ими ранее, а именно Т=17,51 апреля 1910 г. После соответствующего анализа они пришли к выводу, что по крайней мере 2 дня из оставшегося расхождения не могут быть объяснены ошибками вычислений, неточным знанием положений больших планет или их масс. Сейчас мы знаем, что причина этих расхождений кроется в действии негравитационных сил.
Взаимное положение Земли и кометы при этом появлении было таково, что утром 19 мая комета точно располагалась между Солнцем и Землей на расстоянии 22,5 млн. километров от Земли. Так как длина хвоста кометы Галлея к этому времени превышала 30 млн. км, то Земля, двигаясь по своей орбите, должна была пройти через ее хвост. Сообщения об этом проникли в широкую печать.
В это время с помощью спектрального анализа было твердо установлено, что в составе кометных атмосфер наблюдались моле-кулярные полосы циана, угарного газа и других соединений. Поэтому быстро распространились слухи об отравлении земной атмосферы опасными для здоровья людей ядовитыми кометными газами. Газеты запестрели тревожными сообщениями о большой опасности, которая грозит человечеству 19 мая 1910 г.
Как и предсказывали астрономы, Земля 19 мая 1910 г. "столкнулась" с хвостом кометы Галлея. Однако даже самые чувст-вительные приборы не зафиксировали никаких необычных явлений в атмосфере Земли, которые можно было бы однозначно связать с этим событием. Это лишний раз подтверждало издавна известную астрономам истину, что кометы – это "видимое ничто", через которое без всяких последствий и прошла наша Земля. Так что волна страха, прокатившаяся по многим странам в мае 1910 г., не имела под собой никакой почвы.
Пройдя через хвост кометы Галлея, Земля сыграла роль свое-образного зонда. К сожалению, ученые в то время не располагали космическими ракетами (до запуска первого искусственного спутника Земли оставалось еще более 47 лет). Между тем тогда достаточно было подняться над земной атмосферой, чтобы оказаться непосредственно в кометном хвосте и собрать некоторое количество кометной пыли и газа для анализа.
Следует отметить, что Земля уже неоднократно проходила через хвосты комет и эффект всегда был одним и тем же – никакого влияния на процессы в земной атмосфере вещество хвостов различных комет не оказывало.
Астрономы, а также многие любители астрономии внимательно следили за всеми изменениями, происходившими в хвосте и голове кометы Галлея с момента ее открытия М. Вольфом 11 сентября 1909 г. и до последнего наблюдения 15 июня 1911 г.
За весь период наблюдений кометы Галлея при ее появлении 1909 – 1911 гг. было получено более тысячи ее астронегативов, более сотни спектрограмм, много сотен рисунков кометы и большое число определений ее экваториальных координат в различные моменты времени. Весь этот богатый материал позволил детально исследовать характер движения кометы по орбите, изучить изменение блеска и геометрических размеров головы и хвоста с изменением гелиоцентрического расстояния, изучить типы хвостов, структурные особенности и химический состав головы и хвоста, а также ряд других физических параметров ядра кометы и окружающей его атмо-сферы.
Основные итоги изучения громадного и разнообразного мате-риала, состоящие из 26 пунктов, были опубликованы Бобровниковым в 1931 г.

Природа и происхождение кометы
Галлея

Элементы орбит комет претерпевают значительные изменения при сближениях кометы с планетами. Особенно же сильная транс-формация кометной орбиты происходит при тесных сближениях комет с одной из планет-гигантов. Это обстоятельство необходимо обязательно учитывать при исследовании вековых изменений эле-ментов орбит комет как в прошлом, так и в будущем. Такие расчеты позволяют установить, откуда кометные ядра приходят во внутренние области Солнечной системы, а также решить проблему про-исхождения короткопериодических комет. Совместными усилиями таких выдающихся астрономов, как Эпик, Оорт, Марсден, Секанина, Эверхарт, К. А. Штейнс, Е. И. Казимирчак-Полонская была доказана реальность существования на периферии Солнечной системы неистощимого резервуара кометных ядер, которое получило название "облака Эпика – Оорта".
Как образовалось кометное облако Эпика – Оорта на окраинах Солнечной системы? В настоящее время общепринятой является гипотеза гравитационной конденсации всех тел Солнечной системы из первичного газово-пылевого облака, имевшего такой же химический состав, что и Солнце. В холодной зоне протопланетного облака сконденсировались планеты-гиганты Юпитер, Сатурн, Уран и Нептун со своими многочисленными спутниками. Остатки протопланетного вещества, возможно, наблюдаются и сейчас вблизи этих планет в виде колец. Планеты-гиганты вобрали в себя наиболее обильные элементы протопланетного облака, и массы их возросли настолько, что они легко стали захватывать не только пылевые частицы, но и газы. В этой же холодной зоне образовались и ледяные ядра комет, которые частично пошли на формирование планет-гигантов, а частично, по мере роста масс планет-гигантов, стали отбрасываться последними на периферию Солнечной системы, где и образовали грандиозный источник комет – облако Эпика – Оорта.
Ядро кометы Галлея в далеком прошлом, вероятно, было одним из бесчисленного множества ледяных кометных ядер облака Эпика – Оорта. Обращаясь вокруг Солнца по почти параболической орбите с периодом 106 – 107 лет, это ядро не могло наблюдаться с Земли даже в перигелии, который должен был находиться далеко за планетной системой. Но однажды, возможно, в результате существенной трансформации первичной орбиты какой-то звездой нашей Галактики, проходившей недалеко от облака Эпика – Оорта, ядро кометы Галлея оказалось в непосредственной близости от Нептуна и было захвачено им в свое кометное семейство. Сейчас нам известно ок. 10 комет этого семейства, и, конечно, их значительно больше, однако вследствие наблюдательной селекции мы видим только те из них, перигелии которых располагаются вблизи Земли.
Среди 10 комет семейства Нептуна три из них, в том числе и комета Галлея, характеризуются обратным движением по орбите. Таким же периодом как у кометы Галлея, т. е. 76 лет, обладает еще одна комета из этого семейства – комета де Вико, но она на-блюдалась только при одном появлении (в 1846 г.) и с тех пор ее больше не видели. Только комета Галлея наблюдалась уже при 30 возвращениях к перигелию.

ЗАКЛЮЧЕНИЕ

Комета Галлея стала первой, открытой "на кончике пера" ко-роткопериодической кометой. Честь величайшего открытия при-надлежит английскому ученому Э. Галлею. Тщательные расчеты движения этой кометы, выполненные впоследствии астрономами Клеро, Лаландом и Лепот, дали результаты, которые полностью подтвердились, когда комета, совершив полный оборот вокруг Солнца, вновь появилась перед изумленными наблюдателями в марте 1759 г. Это был настоящий триумф закона всемирного тяготения, открытого Ньютоном, а за кометой после этого прочно закрепилось название кометы Галлея, предсказавшего ее появление.
Комплексные исследования кометы Галлея как с Земли, так и из космоса, помогут пролить свет на возможную функцию кометных ядер – оказывать влияние на зарождение и развитие жизни на Земле. Это могло произойти, так как ядра комет довольно часто сталкивались с Землей, особенно на ранних стадиях развития планетной системы.
Ученые полагают, что кометы позволят изучить первичное вещество Солнечной системы в сравнительно неизменном состоянии, поскольку они, в противоположность планетам, не подвергались глубоким структурным изменениям в результате воздействия силы тяжести, тепла и вулканической деятельности. Предполагается, что ядра комет состоят из реликтового вещества и образовались путем аккреции (слипания) еще до того времени, когда сформировались планеты, т. е. около 4,6 миллиарда лет тому назад. Следовательно, кометы хранят "золотой ключик" от дверцы, за которой находится тайна происхождения более крупных тел Солнечной системы.

По современным фотографиям легко можно познакомиться с разнообразием форм комет и проследить изменения этих форм, позволяющие назвать кометы небесными хамелеонами - так они изменчивы.

Большие и яркие кометы, наблюдавшиеся невооруженным глазом, все, как правило, были с хвостами. Кометы небольшие и неяркие часто имеют едва заметные короткие хвосты, видимые лишь на фотографиях, а иногда даже не имеют их вовсе. Многие кометы видимы лишь в телескоп, как слабые туманные пятнышки, размытые по краям; их называют телескопическими. Но и всякая яркая комета бывает телескопической, маленькой и слабой, когда она далека от Солнца. Хвост у нее появляется и растет по мере ее приближения к Солнцу, а с удалением от него опять уменьшается и пропадает. Кометы, как ящерицы, способны, теряя свои хвосты, восстанавливать их снова.

Видимый размер и блеск кометы зависят, конечно, и от ее расстояния до Земли. Огромная комета, проскользнувшая далеко от нас, может казаться маленькой, и наоборот. Зная три определения положения кометы на небе, сделанные в разное время, можно уже вычислить ее орбиту и после этого учесть влияние расстояния от Земли на вид кометы. Конечно, для того чтобы орбита ее была вычислена надежнее, надо располагать не тремя, а большим числом наблюдений над ее положением.

Блеск кометы (исправленный с учетом влияния расстояния от Земли) в зависимости от ее расстояния до Солнца меняется по-разному, но обычно гораздо быстрее, чем обратно пропорционально квадрату расстояния, как это впервые было установлено проф. С.В. Орловым в Москве. Например, при приближении к Солнцу вдвое блеск кометы увеличивается раз в десять - двадцать. Это показывает, что кометы светят не просто отраженным светом. Иначе блеск комет менялся бы как блеск планет, т. е. просто обратно пропорционально квадрату расстояния, и при приближении к Солнцу вдвое - увеличивался бы только в четыре раза. Подробнее законы изменения блеска комет были изучены С.К. Всехсвятским и Б.Ю. Левиным.


Хвост кометы, как известно, всегда направлен в сторону, противоположную Солнцу, и когда комета удаляется от Солнца, то хвост движется впереди кометы - чуть ли не единственный случай в природе среди созданий, обладающих хвостом...

Комета состоит из нескольких частей, весьма различных по своей природе. Поэтому нередко возникают недоразумения, если говорят о том или другом свойстве кометы, не указывая, о какой ее части, собственно говоря, идет речь.

В комете следует различать ядро (точнее, видимое ядро), голову (называемую также комой , если комета без хвоста) и хвост . Голова, или кома, - это самая яркая часть кометы, более яркая в центре, в котором обычно бывает видно подобие звездочки, часто туманной. Это и есть видимое ядро кометы. Только оно, может быть, является сплошным твердым телом, но вернее, что и оно состоит из отдельных твердых частей.


Размеры ядер очень невелики; их трудно даже измерить. Например, в 1910 г. комета Галлея проходила в точности между Землей и Солнцем. Если бы ее сплошное и непрозрачное ядро было более 50 км в диаметре, оно было бы видно как черная точка на фоне лучезарного солнечного диска. Между тем ничего подобного, - никакой даже малейшей тени на Солнце не было замечено. В 1927 г. комета Понса - Виннеке подошла очень близко к Земле. У ядра ее в сильные телескопы не заметили ни малейшего диска. Отсюда следует, что оно было меньше 2 км диаметром. Из оценки его яркости, предполагая, что оно является сплошным телом и отражает свет Солнца в такой же степени, как поверхность Луны, можно было заключить, что его диаметр составляет всего лишь 400 м. Вероятнее, однако, что ядро состоит не из одной, а из многих глыб, но еще меньшего размера и отодвинутых друг от друга. В пользу этого вывода говорят еще многие другие факты, с которыми мы познакомимся в следующих главах.


Иногда звездообразное ядро кометы бывает окружено довольно резко очерченным ярким туманом, который некоторые наблюдатели также включают в понятие ядра. От этого тоже происходят иногда недоразумения.


Ядро телескопической и вообще слабой кометы всегда окружено большой туманной массой, довольно размытой по краям. Она более или менее круглой формы и ярче к ядру, но часто по мере приближения к Солнцу становится продолговатой. Тогда ее вытянутость направлена вдоль линии, соединяющей ядро кометы с Солнцем. Иногда из такой туманной массы или комы в сторону, противоположную Солнцу, вытягивается тонкий светлый луч, часто несколько лучей, придающих комете вид луковицы. У более ярких комет по мере приближения к Солнцу такой тонкий «луковичный» хвост развивается в широкий и длинный хвост, и тогда кома получает название головы.

Передняя часть головы, или оболочка ядра кометы, как ее еще называют, имеет форму параболоида. Если будем вращать параболу около ее оси, то поверхность, описываемая ею, и будет параболоидом. Бывали случаи, когда у кометы образовывалось несколько оболочек, как бы вложенных друг в друга наподобие детских разъемных деревянных шариков.

1957 г. подарил нам две яркие кометы с замечательными хвостами. Одну из них открыли Аренд и Ролан в Бельгии, а другую - Мркос в Чехословакии. Быть может и вам, читатель, случалось их видеть?

Когда комета удаляется от Солнца, то явления происходят в обратном порядке, т. е. хвост становится более коротким и менее ярким, потом остается лишь продолговатая кома и, наконец, комета превращается просто в туманное пятнышко с ядром или даже без него.

Появление, развитие и изменение вида хвоста у разных комет происходят весьма по-разному, и даже у одной кометы они не протекают симметрично относительно момента прохождения ее через перигелий. Бывает, что в некоторые дни хвост внезапно ослабевает в яркости, потом снова усиливается. Общий блеск кометы также обнаруживает иногда неправильные колебания. У некоторых комет наблюдалось, обычно временно, сразу по два и даже по три хвоста, хотя неопытный наблюдатель всегда может прямолинейные или чуть кривящиеся лучи, образующие один хвост, принять за отдельные хвосты. Нечто в этом роде обнаружил в 1944 г. советский ученый С.В. Орлов, изучая рисунки кометы 1744 г. Шезо, обладавшей, по мнению современников, якобы шестью хвостами.

Нередко наблюдалось, как из ядра больших комет выбрасывались время от времени, иногда с промежутками лишь в несколько часов, светлые облака, постепенно удалявшиеся в хвост и как бы таявшие в нем с течением времени.

Совокупность таких наблюдений, в особенности сопоставленных, с изменениями спектров комет (о которых скажем ниже), рисует нам кометы как весьма капризные и изменчивые создания.

Изменчивость этих небесных хамелеонов затрудняет их изучение, но в то же время позволяет глубже проникнуть в тайну их строения и развития. Но прежде чем говорить подробнее о физической природе косматых небесных странниц, мы уделим внимание их движению.

Если стоять лицом к радианту, можно увидеть несколько метеоров, хотя и ярких, но с очень короткими траекториями. Траектории кажутся короткими, потому что метеоры летят почти прямо на вас. Но, к счастью, элементы метеорных потоков очень мелкие и не достигают земли.

Подробную информацию о метеорах и кометах можно найти на сайте Североамериканской метеорной сети (Web.InfoAve.Net/~meteorobs), на сайте Гэри Кронка (comets.amsmeteors.org) и на сайте Международной метеорной организации (www.imo.net).

Все о кометах

Кометы, гигантские сгустки льда и грязи, медленно движутся по небу и выглядят как расплывчатые пятна, за которыми тянется газовый шлейф; они появляются из глубин Солнечной системы. Эти космические странники всегда вызывали к себе интерес. Каждые 75–77 лет знаменитая комета Галлея приближается к Солнцу и Земле. Если вам не удалось увидеть ее в 1986 году, то попробуйте повторить попытку в 2061! Не хотите ждать так долго? Что ж, есть и другие кометы. Например, менее знаменитая комета Хейла-Боппа (недавно приближавшаяся к Земле) гораздо ярче кометы Галлея.

Многие люди путают метеоры и кометы, но отличить их легко. Вспышка, порожденная метеором, длится секунды, а комета видна на протяжении нескольких дней, недель и даже месяцев. Метеоры быстро проносятся в небе и вспыхивают на краткий миг, потому что входят в атмосферу Земли на расстоянии примерно 150 км от наблюдателя. А при наблюдении за кометами кажется, что они движутся медленно, потому что их отделяют от нас многие миллионы километров. Метеоры - это довольно частое явление, а кометы, которые легко увидеть невооруженным глазом, появляются в среднем только раз в год или еще реже.

Раньше астрономы описывали кометы как состоящие из головы и хвоста (или хвостов). Впоследствии яркую световую точку в голове кометы стали называть ядром . Сегодня мы знаем, что ядро - это и есть комета, так называемый "грязный снежок", смесь льда, замерзших газов (например, угарного и углекислого газов) и твердых частиц (пыли или грязи) (рис. 4.3). Все остальные видимые части кометы - это просто результат испарения льда ядра.

Рис. 4.3. Комета - это, в сущности, грязный снежок

Структура кометы: голова и хвост

Если комета находится далеко от Солнца, она представляет собой только ядро; у нее еще нет ни головы, ни хвоста. Диаметр этого ледяного шара может составлять десятки километров или всего пару километров. По астрономическим стандартам это очень мало, и поскольку ядро светится только отраженным светом Солнца, далекая комета почти не видна и поэтому ее трудно обнаружить.

Фотографии ядра кометы Галлея, сделанные с помощью зонда Европейского космического агентства (European Space Agency - ESA), показали, что этот ледяной комок неправильной формы имеет кору темного цвета (очень похоже на шарик ванильного мороженого, политый шоколадом). Увы, кометы не так вкусны, но зато для глаз это - истинное наслаждение! Но стоит только Солнцу немного нагреть поверхность ядра, и из него, как гейзеры, в окружающее пространство начинают вырываться струи газа и пыли. (Ну и кора! Толку никакого!)

По мере того как комета приближается к Солнцу, лед ее ядра начинает испаряться и потоки газа и пыли выбрасываются в космос. Газ и пыль образуют вокруг ядра что-то вроде туманного светящегося облака, которое называется кома (coma); этот термин происходит от латинского слова "волосы" и не имеет ничего общего с коматозным состоянием больного (шутка). Почти все путают кому с головой кометы, но голова, строго говоря, состоит из комы и ядра.

Свечение комы кометы - это отчасти свет Солнца, отраженный миллионами мельчайших пылевых частиц, а отчасти слабое излучение, исходящее от атомов и молекул комы.

Пыль и газ, содержащиеся в коме кометы, подвергаются действию возмущающих сил, поэтому у кометы образуются хвосты.

Под воздействием солнечного ветра пылевые частицы отбрасываются в направлении, противоположном Солнцу (рис. 4.4), формируя пылевой хвост кометы.

Рис. 4.4. Хвост кометы направлен в противоположную от Солнца сторону

Пылевой хвост светится отраженным светом Солнца. Он ровный, иногда с легким искривлением, и бледно-желтый.

Снова кома?

Первое правило наблюдения комет: подальше из города! Хотя ядро кометы может быть только 8-16 км в диаметре, кома, формирующаяся вокруг него, достигает иногда десятков тысяч или даже сотен тысяч километров в диаметре. Газы выделяются из ядра точно так же, как дым из сигареты. Рассеиваясь, они постепенно исчезают из виду. Поэтому размер комы кометы зависит не только от того, сколько вещества выделяет комета, но и от чувствительности человеческого глаза либо фотопленки (или электронного датчика). Видимый размер комы также зависит от степени темноты неба. Яркая комета в центре города кажется намного меньше, чем за городом, где небо гораздо темнее.

Некоторая часть газа в коме ионизируется , т. е. приобретает электрический заряд, под воздействием ультрафиолетового излучения Солнца. В этом состоянии газы подвергаются воздействию солнечного ветра , невидимого потока электронов и протонов, излучаемого Солнцем в космическое пространство (подробнее - в главе 10). Солнечный ветер отбрасывает электризованный кометный газ в направлении, также противоположном Солнцу, в результате чего образуется ионный или плазменный хвост кометы. Плазменный хвост - это как ветроуказатель в аэропорту: он показывает астрономам, наблюдающим комету, в какую сторону "дует" солнечный ветер в той точке космоса, где находится комета.

В отличие от пылевого хвоста, плазменный хвост кометы голубого цвета и "волокнистый" на вид, а иногда даже перекрученный или разорванный.

Иногда некоторая часть плазменного хвоста отрывается от кометы и улетает в направлении, которое "указывает" хвост. Затем у кометы (как у ящерицы) формируется новый плазменный хвост. Длина хвостов кометы может составлять от миллионов до сотен миллионов километров.

Когда голова кометы обращена к Солнцу, ее хвост (или хвосты) развеваются за ней. Когда комета, обогнув Солнце, направляется за пределы Солнечной системы, ее хвост по-прежнему направлен в противоположную от Солнца сторону, так что теперь комета следует за своим хвостом! Таким образом, комета ведет себя по отношению к Солнцу, как придворный - по отношению к императору: никогда не поворачивается к своему господину спиной. Как показано на рис. 4.4, комета может двигаться по часовой или против часовой стрелки, но в любом случае ее хвост всегда будет направлен в противоположную от Солнца сторону.

Кома и хвосты кометы - это составляющие процесса ее исчезновения. Ядро выделяет газ и пыль, формируя кому, а хвосты уже потеряны кометой навсегда - они просто рассеиваются. К тому времени, как комета уйдет далеко за орбиту Юпитера (а именно оттуда появляется большинство комет), от нее снова останется только одно ядро. Но пыль, которую она потеряла, в один прекрасный день может "выпасть" на Землю метеорным дождем, если пересечет ее орбиту.

"Кометы века"

Каждые несколько лет появляется комета, достаточно яркая и удачно расположенная в небе, так что ее можно легко видеть невооруженным глазом или с помощью небольшого бинокля. Я не могу сказать, когда прилетит такая комета, потому что кометы, появление которых в ближайшем будущем точно предсказывают астрономы, не будут особенно яркими. Но дело в том, что почти все яркие и удивительные по красоте кометы были открыты, а не предсказаны.

Самое большое тело в Солнечной системе - Солнце! Так? Нет, это заблуждение.

Если комета заденет Землю своим хвостом - всем нам будет плохо! Так? Нет, это заблуждение.

Хвост кометы всегда сзади нее. Так? Нет, это тоже заблуждение.

Кометы и Солнце

Кометы поражают астрономов своими размерами. Так, комета 1843 года обладала хвостом, простиравшимся на 300 миллионов километров, а голова сравнительно небольшой кометы – 1908-III имела 300 тысяч километров в поперечнике, и в этой комете могли бы уместиться все планеты Солнечной системы вместе взятые. Поперечник головы кометы 1811-I равнялся миллиону километров, то есть эта комета по объему соперничала с Солнцем. Более того, комета 1729 года была больше Солнца. Именно кометы, а не Солнце, как принято считать, и являются самыми большими телами Солнечной системы.

Отметим, что, несмотря на столь колоссальные размеры, косматые светила обладают совершенно ничтожными массами. Подсчитано, что того количества воздуха, которое содержится в футбольном мяче, хватило бы для образования кометного хвоста объемом в 35 кубических километров.

Справка.

Первое письменное упоминание о появлении кометы датируется 2296 годом до нашей эры. Древние греки видели в ярких и видимых невооружённым взглядом кометах голову с распущенными волосами. Древнегреческое «кометис» означало «волосатый», т.е. кометы – это «волосатые звезды».

Куда направлен хвост кометы?

Порой думают, что кометы тащат за собой хвост, как паровой локомотив дым в тихую погоду. Это не так. Еще в глубокой древности было замечено, что хвосты комет всегда поворачиваются в сторону, противоположную Солнцу. Римский философ Сенека писал: “Хвосты комет бегут перед солнечными лучами. А китайский летописец Мин Туань-Линь, живший в начале нашего тысячелетия, упоминает о комете, являвшейся в марте 837 года и сообщает о законе, установленном китайскими астрономами: “У кометы, которая находится к востоку от Солнца, хвост по отношению к ядру направлен к востоку, если же комета является на западе, то и хвост направлен к западу”.

Комета и ее хвост.

Хвост кометы всегда откинут в том же направлении, в котором падает тень от ее ядра. Следовательно, когда “волосатая звезда” огибает Солнце ее хвост летит рядом с ней, а когда комета удаляется от светила, то ее хвост отворачивается все круче и круче и он обгоняет голову, и комета летит хвостом вперед (получается нечто, похожее на луч света фары, освещающий страннице путь в межзвездном пространстве). И только в очень редких случаях (когда частицы, образующие хвост кометы, достаточно массивны), солнечное притяжение превышает давление солнечной радиации, и тогда хвост кометы (его называют в этом случае аномальным) направлен прямо к Солнцу.