Примеры технологических операций в машиностроении. Реферат на тему “Производственный и технологический процессы в машиностроении”. Изготовление отливок в оболочковых формах

2.1 Технологический процесс

2.2 Элементы технологического процесса

2.3 Технологическое оборудование и технологическая оснастка

2.4 Виды технологического планирования

В соответствии с ГОСТ 3.1109-82 «Процессы технологические. Основные термины и определения» технологический процесс – это часть производственного процесса, включающая действия по изменению и последующему определению состояния предмета труда (заготовок, деталей, машины). Изменения качественного состояния касаются изменения формы, размеров, шероховатости поверхности заготовок, их свойств; относительного положения деталей, внешнего вида машины.

Таким образом, технологический процесс обработки данной детали – это часть производственного процесса, непосредственно связанная с изменением формы, размеров, шероховатости поверхности и свойств заготовки с целью получения готовой детали. Изменение физических свойств детали происходит в процессе термической обработки, старения и т.д.

Выделение технологического процесса из общего процесса производства чисто условно. Во время установки, закрепления, измерения детали, снятия крупной детали со станка выполняется тоже часть технологического процесса.

А транспортировка деталей по цеху относится к производственному процессу (т.к. здесь выполняют работу вспомогательный рабочий и транспортный рабочий).

Для выполнения технологического процесса должно быть организованно и оборудовано рабочее место.

Рабочее место – часть площади цеха, которая предназначена для выполнения работы одним рабочим или группой рабочих, на которой размещено технологическое оборудование, инструмент, приспособления, стеллажи для заготовок, деталей и сборочных единиц, подъемно-транспортное оборудование.

Элементы технологического процесса. Для каждого рабочего места должна быть указана последовательность обработки детали. В связи с этим весь процесс механической обработки детали расчленяется на отдельные составные части: технологическая операция, установ, позиция, технологический переход, вспомогательный переход, рабочий ход, вспомогательный ход.

Технологическая операция – законченная часть (рабочая часть) технологического процесса, выполняемая на одном рабочем месте (на одном станке). Выполнять ее могут один или несколько рабочих. Операция характеризуется неизменностью объекта обработки (детали), оборудования (рабочего места) и рабочих исполнителей.

Операции являются основными элементами, на которые расчленяется технологический процесс при его проектировании, калькуляции затрат на изготовление и планирование. Название операций, связанных с механической обработкой обычно дается по названию станка, на котором производят обработку (токарная, фрезерная операция и т.д.). В свою очередь, технологическая операция также состоит из ряда элементов: технологических и вспомогательных переходов, установа, позиций, рабочего хода.



При выполнении технологической операции часто необходимо изменять относительное положение заготовки и инструмента (рабочих органов станка).

Установ – часть технологической операции, выполняемая при неизменном закреплении одной или нескольких обрабатываемых заготовок.

Например, при обработке на токарном станке детали типа втулка должно быть два установа (рисунок 2).

Установ А
1 Установить заготовку 2 Точить торец 1 3 Расточить отверстие 4 Расточить фаску 2
Установ Б
5 Установить заготовку 6 Точить поверхность 3 7 Точить торец 4 8 Расточить фаску 5

Установ А Установ Б

Рисунок 2

При выполнении некоторых технологических операций установленная и закрепленная заготовка должна занимать ряд последовательных положений относительно рабочих органов оборудования с помощью поворотных или перемещающихся устройств, т.е. занимать различные позиции. Понятие «позиция» применяется при использовании многоместных поворотных приспособлений, при обработке на многошпиндельных станках.

Позиция – это фиксированное положение, занимаемое неизменно закрепленной обрабатываемой заготовкой или собираемой сборочной единицей совместно с приспособлением относительно инструмента или неподвижных частей оборудования при выполнении определенной части операции.

Отличие установа и позиции – на каждом новом установе объект производства меняет свое положения относительно приспособления, стола, станка, рабочего места, а при смене позиции объект производства сохраняет положение относительно приспособления, в котором он установлен и закреплен.

Основными технологическими элементами, из которых формируется и на которые делиться операция, является переход.

Технологический переход – законченная часть технологической операции, выполняемая одними и теми же средствами технологического оснащения при постоянных обрабатываемых поверхностях, технологических режимах и установке.

Рисунок 3

Для многоинструментных станков последовательное точение резцом сначала одной ступени вала, а затем другой будет состоять из двух технологических переходов; если же выполнять обточку этих ступеней одновременно двумя резцами (рисунок 4), то это будет обтачивание в один переход.

Рисунок 4

Обработка одной и той же поверхности заготовки на черновом, а затем чистовом режиме будет состоять из двух технологических переходов, так как изменяется режим резания.

Вспомогательный переход – законченная часть технологической операции, состоящая из действий человека и (или) оборудования, которое не сопровождается изменением формы, размеров и шероховатости поверхностей, но необходимых для выполнения технологического перехода. Примерами вспомогательных переходов являются установка и снятие заготовки перед обработкой, смена инструмента и др.).

Переход состоит из рабочих и вспомогательных ходов.

Рабочий ход – законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, сопровождаемого изменением формы, размеров, шероховатости поверхности или свойств заготовки. За каждый рабочий ход снимается один слой металла заданной толщины при неизменном режиме обработки.

Вспомогательный ход – законченная часть технологического перехода, необходимого для подготовки рабочего хода. Таким образом, вспомогательный ход не связан с изменением формы, размеров, шероховатости или свойств заготовки. (Например, перемещение суппорта токарного станка в исходное положение после выполнения обтачки).

Операциям и переходам в технологической документации присваиваются порядковые номера (00, 05, 10, 15 …, чтобы оставить резерв номеров для совершенствования технологического процесса).

Наименование операций определяется типом станка независимо от характера выполняемой работы. Операции формулируются коротко по виду станка: например, токарная, фрезерная, зубофрезерная и т.д. Правило записи и переходов устанавливает ГОСТ 3.1702-79 «Правило записи операций и переходов. Обработка резанием».

Нумерация основных и вспомогательных переходов должна быть сквозной, последовательной в пределах одной операции. Переходы записывают кратко в повелительном наклонении. Допускается полная или сокращенная запись содержания переходов при обработке резанием.

Полную запись следует выполнять при необходимости перечисления всех выдерживаемых размеров. Данная запись характерна для промежуточных переходов, не имеющих графических иллюстраций. В этом случае в записи содержания перехода следует указывать исполнительные размеры с их предельными отклонениями.

Сокращенную запись следует выполнять при условии ссылки на условное обозначение конструктивного элемента обрабатываемого изделия. Данная запись выполняется при достаточной графической информации.

Пример оформления записи представлен в таблице 1.

Таблица 1 – Запись содержания переходов при обработке резанием

Маршрутное описание содержания операций следует применять в единичном и опытном производстве на соответствующих формах маршрутных карт (МК).

Операционное описание содержания операции следует применять в серийном и массовом производстве.

В содержании операции должны быть отражены все необходимые действия, выполняемые в технологической последовательности исполнителем или исполнителями, по обработке изделия или его составных частей на одном рабочем месте. В случае выполнения на данном рабочем месте прочих видов работ (кроме обработки резанием), выполняемых другими исполнителями, их действия также следует отражать в содержании операции. (например, «Контроль ОТК», «Проверить выполнение перехода 2» и т.п.).

Таблица 2 – Примерная запись содержания операций

– ключевое слово, характеризующее метод обработки, выраженное глаголом в неопределенной форме (точить, сверлить, фрезеровать и т.п.);

– наименование обрабатываемой поверхности или ее условное обозначение;

– информация по размерам или их условным обозначениям;

– дополнительная информация, характеризующая количество одновременно или последовательно обрабатываемых поверхностей, характер обработки (например, предварительно, одновременно, по копиру и т.д.).

Технологическое оборудование и технологическая оснастка служат орудиями производства при выполнении технологических процессов.

К технологическому оборудованию относятся металлорежущие станки, прессы, разметочные плиты, испытательные стенды и т.д.

Понятие технологической оснастки включает различные инструменты (режущие, измерительные, вспомогательные, штамповые) и приспособления.

Приспособление – часть технологической оснастки, предназначенной для установки или направления заготовки или инструмента при выполнении технологической операции.

Подготовка технологического оборудования и оснастки к выполнению определенной технологической операции называется наладкой.

Виды технологического планирования. Проектирование технологических процессов обработки деталей для массового и крупносерийного производства можно вести двумя принципиально различными путями. Можно создать технологический процесс обработки детали, содержащий относительно небольшое количество операций и соответственно этому небольшое число типов станков. В противоположность этому возможно создать процесс, состоящий из относительно большого числа, но простых операций и возрастает число станков.

По первому принципу технологический процесс предусматривает концепцию операций, выполняемых на многошпиндельных автоматах, полуавтоматах, агрегатных, многопозиционных, многорезцовых станках, отдельно на каждом станке или на автоматизированных станках, связанных в одну линию. Подобные станки все шире внедряются в производство, особенно широкое применение они получили в автомобиле и тракторостроении.

Метод концентрации операций подразделяется на последовательную концентрацию, параллельную и параллельно–последовательную:

– последовательная концентрация предусматривает обработку поверхностей детали за несколько установов, используют в единичном производстве;

– параллельная концентрация предусматривает одновременную обработку нескольких поверхностей детали;

– параллельно–последовательная концентрация предусматривает одновременную обработку нескольких поверхностей детали за несколько установов.

Параллельная и параллельно–последовательная концентрации применяются для массового и крупносерийного производства, что значительно уменьшает затраты времени обработки деталей. Метод концентрации операций требует применения высокопроизводительных станков специального назначения, что оправдано с экономической стороны лишь при достаточно большом масштабе производства.

Применение принципа концентрации операций позволяет осуществлять большой объем работ и выпуск большего количества продукции при использовании малых производственных площадей и при небольшом числе рабочих.

По второму принципу технологический процесс дифференцируется (расчленяется) на элементарные операции с примерно одинаковым временем исполнения (тактом) или кратным такту. В связи с этим станки здесь применяются специальные и узкоспециализированные. Принцип дифференциации операций требует рабочих более низкой квалификации, чем при принципе концентрации операций.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

В. А. Ермолаев

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОЕНИИ

для студентов высших учебных заведений

Москва 2011

УДК 669.018.29.004.14(075.8) ББК 34.5я 73 Е-74

Ермолаев В. А. ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОЕНИИ. Конспект лекций. М.: НИЯУ МИФИ, 2011. – 264 с.

Рассмотрены современные и перспективные технологические способы производства чёрных и цветных металлов, изготовление заготовок и деталей машин из металлов и неметаллических материалов: литьём, обработкой добавлением, сваркой, резанием и другими способами.

Пособие предназначено для студентов очной, вечерней и заочной форм обучения по специальности 151001 – Технология машиностроения.

Подготовлено в рамках Программы создания и развития НИЯУ МИФИ.

Рецензент: В.С. Гацков , канд. техн. наук, доцент НГТИ

Редактор Е.Н. Кочубей

Макет подготовлен к печати Е.Н. Кочубей

Национальный исследовательский ядерный университет «МИФИ». 115409, Москва, Каширское шоссе, 31.

ООО «Полиграфический комплекс «Курчатовский». 144000, Московская область, г. Электросталь, ул. Красная, д. 42

Тема 1. ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ

В МАШИНОСТРОИТЕЛЬНОМ ПРОИЗВОДСТВЕ................................

1.1. Понятие о технологии........................................................................

1.2. Изделие как объект производства....................................................

1.3. Обработка деталей...........................................................................

Тема 2. МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ

В МАШИНОСТРОЕНИИ..........................................................................

2.1. Производство чугуна.......................................................................

2.2. Производство стали.........................................................................

2.3. Производство цветных металлов....................................................

Вопросы для самоконтроля...................................................................

Тема 3. ЛИТЕЙНОЕ ПРОИЗВОДСТВО.................................................

3.1. Литье металлов как технологический процесс..............................

3.2. Литейные формы и их конструкции...............................................

3.3. Получение отливок..........................................................................

3.4. Методы литья и области их применения.......................................

Тема 4. ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ................................

4.1. Сущность обработки металлов давлением....................................

4.2. Классификация процессов обработки металлов

давлением и их краткая характеристика........................................

4.3. Прокатывание (прокат) металлов...................................................

4.4. Прессование металлов...................................................................

4.5. Волочение металлов......................................................................

4.6. Ковка металлов...............................................................................

4.7. Объемная штамповка металла.....................................................

4.8. Листовая (плоская) штамповка.....................................................

Вопросы для самопроверки..................................................................

Тема 5. ПОНЯТИЕ О ТЕХНОЛОГИИ ПОРОШКОВОЙ

МЕТАЛЛУРГИИ......................................................................................

5.1. Метод технологии порошковой металлургии.............................

5.2. Прессование металлических порошков.......................................

Вопросы для самоконтроля..................................................................

Тема 6. ОСНОВНЫЕ ПОНЯТИЯ О СВАРКЕ МЕТАЛЛОВ................

6.1. Общие сведения. Развитие сварки, ее направления

и классификация............................................................................

6.2. Виды сварных соединений............................................................

6.3. Подготовка металла под сварку....................................................

6.4. Электрическая сварочная дуга.....................................................

6.5. Металлургические процессы при сварке.....................................

6.6. Электроды для дуговой сварки.....................................................

6.7. Оборудование для сварки металлов.............................................

Вопросы для самоконтроля..................................................................

Тема 7. ВИДЫ СВАРКИ..........................................................................

7.1. Ручная дуговая сварка...................................................................

7.2. Автоматическая и полуавтоматическая сварки...........................

7.3. Газовая сварка................................................................................

7.4. Кислородная резка.........................................................................

Вопросы для самоконтроля..................................................................

Тема 8. МЕХАНИЧЕСКАЯ ОБРАБОТКА ЗАГОТОВОК

РЕЗАНИЕМ...............................................................................................

8.1. Методы обработки заготовок резанием.......................................

8.2. Обработка заготовок на токарных станках с ЧПУ......................

Вопросы для самоконтроля..................................................................

Тема 9. ЭЛЕКТРОФИЗИЧЕСКИЕ, ЭЛЕКТРОХИМИЧЕСКИЕ

И ТЕРМИЧЕСКИЕ МЕТОДЫ ОБРАБОТКИ ДЕТАЛЕЙ....................

9.1. Характеристика электрофизических

и электрохимических методов обработки...................................

9.2. Термическая обработка в технологическом

процессе изготовления изделий....................................................

Вопросы для самоконтроля..................................................................

Тема 10. ИЗНОСОСТОЙКИЕ И АНТИКОРРОЗИОННЫЕ

ПОКРЫТИЯ..............................................................................................

Вопросы для самоконтроля..................................................................

Тема 11. ПАЯНЫЕ И КЛЕЕВЫЕ СОЕДИНЕНИЯ................................

11.1. Пайка.............................................................................................

11.2. Склеивание...................................................................................

Вопросы для самоконтроля..................................................................

Тема 12. ТЕХНОЛОГИЧЕСКАЯ ПОДГОТОВКА

ПРОИЗВОДСТВА ИЗДЕЛИЙ.................................................................

12.1. Цели и задачи технологической подготовки

производства.................................................................................

12.2. Технологическая документация.................................................

12.3. Методы обеспечения технологичности

и конкурентоспособности изделий машиностроения................

Вопросы для самоконтроля..................................................................

Литература................................................................................................

Тема 1. ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ В МАШИНОСТРОИТЕЛЬНОМ ПРОИЗВОДСТВЕ

Предметом курса «Технологические процессы в машиностроительном производстве» (ТПМ) являются современные рациональные и распространенные в промышленности прогрессивные способы формообразования заготовок и деталей машин.

Курс ТПМ занимает в становлении современного инженерамашиностроителя особое место, так как в последующем инженер должен реализовать в металле различные конструкции машин.

Создавая конструкции машин и приборов, обеспечивая на практике их заданные характеристики и надежность работы с учетом экономических показателей, инженер должен уверенно владеть методами изготовления деталей машин и их сборки. Для этого он должен обладать глубокими технологическими знаниями.

1.1. Понятие о технологии

Технологический процесс определяется как:

1) совокупность производственных методов и процессов в определенной отрасли производства, а также научное описание спосо-

бов производства (Ожегов С.И. Толковый словарь русского языка);

2) совокупность методов изготовления, обработки, изменения свойств, состояния, формы сырья, полуфабриката, материала, осуществляемых в процессе производства продукции (Васюков И.А. Словарь иностранных слов).

В обоих определениях фигурирует ключевые слова – производ-

ственные, производства, и это вполне логично, ведь уровень жизни людей в современном обществе определяется эффективностью производства!

Первоочередной задачей отечественной экономики является по-

вышение производительности труда и качества выпускаемой про-

дукции . Это может быть достигнуто на основе высокоэффективных технологий.

Развитие и совершенствование любого производства в настоящее время связано с его автоматизацией, созданием робототехни-

ческих комплексов, широким использованием вычислительной техники, применением станков с ЧПУ. Все это составляет базу, на которой создаются автоматизированные системы управления, становятся возможными оптимизация технологических процессов и режимов обработки, создание гибких производственных систем.

Важным направлением научно-технического прогресса является также создание и широкое использование новых конструкционных материалов. В производстве широко применяют сверхчистые, сверхтвердые, жаропрочные, композиционные, порошковые, полимерные и другие материалы, позволяющие резко повысить технический уровень и надежность оборудования. Например, космический корабль «Буран» облицован термостойким композиционным материалом, легким и прочным, выдерживающим t > 1000 ° C; у атомной подлодки «Курск» стенки корпуса толщиной 200 мм из титана – твердого, прочного и легкого материала; в обрабатывающей промышленности используются ВОК – искусственные алмазы.

1.2. Изделие как объект производства

Изделия машиностроения и их составные части. Изделием

в машиностроении называется любой предмет производства, подлежащий изготовлению на предприятии. Изделием может быть машина, ее элементы в сборе и даже отдельная деталь в зависимости от того, что является продуктом конечной стадии данного производства. Например, для автомобильного завода изделием является автомобиль, для карбюраторного завода – карбюратор, для автоматического завода поршней – поршень.

Деталь – это изделие (составная часть изделия), изготовленное из однородного по наименованию и марке материала без применения сборочных операций. Характерный признак детали – отсутствие в ней разъемных и неразъемных соединений. Деталь – это первичный сборочный элемент каждой машины.

Сборочная единица – это изделие, составные части которого подлежат соединению. Характерным признаком составной части изделия с технологической точки зрения является возможность ее сборки обособленно от других элементов изделия. Составная часть

в зависимости от конструкции может состоять либо из отдельных

деталей, либо из составных частей высших порядков и деталей. Различают составные части первого, второго и более высоких порядков. Составная часть первого порядка входит непосредственно в составную часть изделия. Она состоит либо из отдельных деталей, либо из одной или нескольких составных частей второго порядка и деталей. Составная часть второго порядка входит в составную часть первого порядка. Она расчленяется на детали или на составные части третьего порядка и детали и т.д., составная часть, наивысшего порядка расчленяется только на детали. Рассмотренное деление изделия, на составные части производится по технологическому признаку.

Существует другое деление, когда изделие расчленяется на составные части по функциональному признаку. К ним можно, например, отнести механизм газораспределения двигателя, систему его смазки или охлаждения. Эти составные части изделия не являются сборочными с технологической точки зрения, так как их в большинстве случаев нельзя обособлено и полностью собрать отдельно от других элементов изделия. Деление изделия на составные части и оформление чертежей и других технических документов в машиностроении дано в ГОСТ 2.101–68.

В современном машиностроении сборка расчленяется на общую

и узловую. Объектом общей сборки является изделие, объектом узловой сборки являются его составные части.

Служебное назначение изделия. Под служебным назначени-

ем машины понимают четко сформулированную конкретную задачу, для решения которой предназначена машина.

Формулировка служебного назначения машины должна содержать подробные сведения, конкретизирующие общую задачу и уточняющие условия, при которых эта задача может быть решена. Так, формулируя служебное назначение автомобиля, недостаточно сказать, что автомобиль предназначен для перевозки грузов. Необходимо конкретизировать характер грузов, их массу и объем, условия, расстояния и скорость перевозки, состояние дорог, климат, требования к внешнему виду автомобиля и многое другое с тем, чтобы исчерпывающе определить именно ту задачу, которую должен выполнять создаваемый автомобиль.

Служебное назначение машины описывают не только словесно, но и системой количественных показателей, определяющих ее конкретные функции, условия работы и ряд дополнительных моментов в соответствии с задачей, которую предстоит решать с помощью создаваемой машины. Формулировка служебного назначения машины является важнейшим документом в задании на ее проектирование.

Показатели качества изделия. Под качеством машины по-

нимают совокупность ее свойств, обусловливающих способность выполнять свое служебное назначение. К показателям качества машины можно отнести лишь то, что характеризует меру полезности машины, т.е. ее способность удовлетворять потребности людей в соответствии со своим назначением. Такими показателями являются качество продукции, производимой машиной, производительность машины, ее надежность, долговечность физическая и моральная, безопасность работы и удобство управления, уровень шума, коэффициент полезного действия, степень механизации и автоматизации, техническая эстетичность и т.п.

В проектирование машины, ее изготовление, эксплуатацию, техническое обслуживание и ремонты вкладывается конкретный труд. Создание машины, ее эксплуатация, обслуживание и ремонты сопряжены с использованием энергии, технических средств и материалов. Все вместе взятое образует стоимостное свойство машины – ее экономичность. Показателем Э экономичности машины может служить сумма затрат на проектирование Зпр , изготовление Зизг , эксплуатацию Зэ , техническое обслуживание Зт.о и ремонты Зрем , отнесенная к количеству N продукции, произведенной за период ее службы:

Э = З пр +З изг +З э +З т.о +З рем .

Между показателями качества и экономичности машины существуют связи, приводящие к влиянию одних на другие. Например, повышение качества машины по любым показателям сопряжено с увеличением ее стоимости. Но в то же время повышение уровня такого показателя качества, как надежность машины, сократит за-

траты труда на устранение отказов, техническое обслуживание и ремонты. Потребление машиной энергии, топлива, материалов при эксплуатации, в известной мере характеризующее экономичность машины, во многом зависит от качества ее изготовления и т.п.

Наличие связей между показателями качества и экономичности не означает свободу отнесения того или иного показателя к любой из категорий. Возможность такой свободы исключается принципиальным различием между показателями качества и экономичности. Первые из них отражают степень пригодности, полезности, наконец, те блага, которые извлекает человек, используя машину, вторые – цену этих благ, их стоимость.

Качество машины обеспечивается уровнем проектных решений, от которого зависит техническое совершенство конструкции машины, и технологией, определяющей качество деталей, сборки и отделки машины (рис. 1.1).

Экономичность машины находится в более сложной зависимости от технического совершенства конструкции машины и технологии ее изготовления. Например, стоимость машины зависит от качества, количества и стоимости материалов, выбранных конструктором в процессе проектирования. Однако конечные затраты на материалы, входящие в себестоимость, можно определить лишь после осуществления технологического процесса ее изготовления.

Уровень унификации и технологичности машины определяет конструктор. Но влияние этих факторов на себестоимость машины проявляется не прямым путем, а через технологию ее изготовления. Влияние этих же факторов скажется и на затратах по техническому обслуживанию и ремонту машины. Такие экономические показатели, как потребление машиной энергии, топлива и материалов в процессе эксплуатации, в первую очередь, зависят от качества конструкторских решений. Однако на значения этих показателей влияет качество реализации технологического процесса и т.д.

Таким образом, обеспечение качества и экономичности машины процессе ее создания является общей задачей конструктора и технолога. Ее успешное решение возможно при тесном сотрудничестве и взаимопонимании друг с другом.

Рис. 1.1. Совокупности свойств, определяющих качества и экономичность машины

Первые достоверно известные технологические процессы были разработаны в древнем Шумере — на глиняной табличке клинописью был описан по операциям порядок приготовления пива. С тех пор способы описания технологий производства продуктов питания, инструментов, домашней утвари, оружия и украшений — всего, что изготавливало человечество, многократно усложнились и усовершенствовались. Современный технологический процесс может состоять из десятков, сотен и даже тысяч отдельных операций, он может быть многовариантным и ветвиться в зависимости от различных условий. Выбор той или иной технологии- это непросто выбор тех или иных станков, инструмента и оснастки. Нужно также обеспечить соответствие требованиям технических условий, плановых и финансовых показателей.

Определение и характеристика

ГОСТ дает научно строгое, но сформулированное слишком сухим и наукообразным языком определение технологического процесса. Если же говорить о понятии технологического процесса более понятным языком, то технологический процесс — это совокупность выстроенных в определенном порядке операций. Он направлен на превращение сырья и заготовок в конечные изделия. Для этого с ними совершают определенные действия, обычно выполняемые механизмами. Технологический процесс не существует сам по себе, а является важнейшей частью более общего , включающего в себя в общем случае также процессы контрактации, закупки и логистики, продажи, управления финансами, административного управления и контроля качества.

Технологи на предприятии занимают весьма важное положение. Они являются своего рода посредниками между конструкторами, создающими идею изделия и выпускающими его чертежи, и производством, которому предстоит воплощать эти идеи и чертежи в металл, дерево, пластмассу и другие материалы. При разработке техпроцесса технологи работают в тесном контакте не только с конструкторами и производством, но и с логистикой, закупками, финансами и службой контроля качества. Именно техпроцесс и является той точкой, в которой сходятся требования всех этих подразделений и находится баланс между ними.

Описание технологического процесса должно содержаться в таких документах, как:

  • Маршрутная карта - описание высокого уровня, в нем перечислены маршруты перемещения детали или заготовки от одного рабочего места к другому или между цехами.
  • Операционная карта – описание среднего уровня, более подробное, в нем перечислены все операционные переходы, операции установки-съемки, используемые инструменты.
  • Технологическая карта — документ самого низкого уровня, содержит самое подробное описание процессов обработки материалов, заготовок, узлов и сборок, параметры этих процессов, рабочие чертежи и используемая оснастка.

Технологическая карта даже для простого на первый взгляд изделия может представлять собой довольно толстый том.

Для сравнения и измерения технологических процессов серийного производства применяются следующие характеристики:

  • Цикл технологической операции — длительность (измеряется в секундах, часах, днях, месяцах) операции, повторяющейся с определенной периодичностью. Отсчитывается от момента начала операции до момента ее окончания. Длительность цикла не зависит от числа заготовок или деталей, обрабатываемых одномоментно.
  • Такт выпуска изделия – промежуток времени, через который выпускается это изделие. Рассчитывается как отношение времени, за которое выпускается определенное количество изделий, к этому количеству. Так, если за 20 минут было выпущено 4 изделия, то такт выпуска будет равен 20/4=5 минут/штуку.
  • Ритм выпуска – величина, обратная такту, определяется как число изделий, выпускаемых в единицу времени (секунду, час, месяц и т.п.).

В дискретном производстве такие характеристики технологических процессов не находят применения ввиду малой повторяемости изделий и больших сроков их выпуска.

Производственная программа — представляет собой список названий и учетных номеров выпускаемых изделий, причем для каждой позиции приводится объемы и сроки выпуска.

Производственная программа предприятия складывается из производственных программ его цехов и участков. Она содержит:

  • Перечень выпускаемых изделий с детализацией типов, размеров, количества.
  • Календарные планы выпуска с привязкой к каждой контрольной дате определенного объема выпускаемых изделий.
  • Количество запасных частей к каждой позиции в рамках процесса поддержки жизненного цикла изделий.
  • Подробную конструкторско-технологическую документацию, трехмерные модели, чертежи, деталировки и спецификации.
  • Техусловия на производство и методики управления качеством, включая программы и методики испытаний и измерений.

Производственная программа является разделом общего бизнес-плана предприятия на каждый период планирования.

Виды техпроцессов

Классификация техпроцессов проводится по нескольким параметрам.

По критерию частоты повторения при производстве изделий технологические процессы подразделяют на:

  • единичный технологический процесс, создается для производства уникальной по конструктивным и технологическим параметрам детали или изделия;
  • типовой техпроцесс, создается для некоторого количества однотипных изделий, схожих по своим конструктивным и технологическим характеристикам. Единичный техпроцесс, в свою очередь, может состоять из набора типовых техпроцессов. Чем больше типовых техпроцессов применяется на предприятии, тем меньше затраты на подготовку производства и тем выше экономическая эффективность предприятия;
  • групповой техпроцесс подготавливается для деталей, различных конструктивно, но сходных технологически.

По критерию новизны и инновационности различают такие виды технологических процессов, как:

  • Типичные. Основные технологические процессы используют традиционные, проверенные конструкции, технологии и операции обработки материалов, инструмента и оснастки.
  • Перспективные. Такие процессы используют самые передовые технологии, материалы, инструменты, характерные для предприятий — лидеров отрасли.

По критерию степени детализации различают следующие виды технологических процессов:

  • Маршрутный техпроцесс исполняется в виде маршрутной карты, содержащей информацию верхнего уровня: перечень операций, их последовательность, класс или группа используемого оборудования, технологическая оснастка и общая норма времени.
  • Пооперационный техпроцесс содержит детализированную последовательность обработки вплоть до уровня переходов, режимов и их параметров. Исполняется в виде операционной карты.

Пооперационный техпроцесс был разработан во время Второй Мировой войны в США в условиях нехватки квалифицированной рабочей силы. Детальные и подробные описания каждой стадии технологического процесса позволили привлечь к работе людей, не имевших производственного опыта и в срок выполнить большие военные заказы. В условиях мирного времени и наличия, хорошо обученного и достаточно опытного производственного персонала использование такого вида технологического процесса ведет к непроизводительным расходам. Иногда возникает ситуация, в которой технологи старательно издают толстые тома операционных карт, служба технической документации тиражирует их в положенном числе экземпляров, а производство не открывает эти талмуды. В цеху рабочие и мастера за многие годы работы накопили достаточный опыт и приобрели достаточно высокую квалификацию для того, чтобы самостоятельно выполнить последовательность операций и выбрать режимы работы оборудования. Таким предприятиям имеет смысл подумать об отказе от операционных карт и замене их маршрутными.

Существуют и другие классификации видов технологических процессов.

Этапы ТП

В ходе конструкторско-технологической подготовки производства различают такие этапы написания технологического процесса, как:

  • Сбор, обработка и изучение исходных данных.
  • Определение основных технологических решений.
  • Подготовка технико-экономического обоснования (или обоснования целесообразности).
  • Документирование техпроцесса.

Трудно с первого раза найти технологические решения, обеспечивающие и плановые сроки, и необходимое качество, и плановую себестоимость изделия. Поэтому процесс разработки технологии – это процесс многовариантный и итеративный.

Если результаты экономических расчетов неудовлетворительны, то технологи повторяют основные этапы разработки технологического процесса до тех пор, пока не достигнут требуемых планом параметров.

Сущность технологического процесса

Процессом называют изменение состояния объекта под воздействием внутренних или внешних по отношению к объекту условий.

Внешними факторами будут механические, химические, температурные, радиационные воздействия, внутренними — способность материала, детали, изделия сопротивляться эти воздействиям и сохранять свою исходную форму и фазовое состояние.

В ходе разработки техпроцесса технолог подбирает те внешние факторы, под воздействием которых материал заготовки или сырья изменит свою форму, размеры или свойства таким образом, чтобы удовлетворять:

  • техническим спецификациям на конечное изделие;
  • плановым показателям по срокам и объемам выпуска изделий;

За долгое время были выработаны основные принципы построения технологических процессов.

Принцип укрупнения операций

В этом случае в рамках одной операции собирается большее число переходов. С практической точки зрения такой поход позволяет улучшить точность взаимного расположения осей и обрабатываемых поверхностей. Такой эффект достигается за счет выполнения всех объединяемых в операцию переходов за одну остановку на станок или многокоординатный обрабатывающий центр.

Подход также упрощает внутреннюю логистику и снижает внутрицеховые расходы за счет снижения числа установок и наладок режимов работы оборудования.

Особенно важно это для крупногабаритных и сложных деталей, установка которых отнимает много времени.

Принцип применяется при работе на револьверных и многорезцовых токарных станках, многокоординатных обрабатывающих центрах.

Принцип расчленения операций

Операция разбивается на ряд простейших переходов, наладка режимов работы обрабатывающего оборудования выполняется единожды, для первой детали серии, далее оставшиеся детали проходят обработку на тех же режимах.

Такой подход эффективен при больших размерах серий и относительно несложной пространственной конфигурации изделий.

Принцип дает существенный эффект снижения относительной трудоемкости за счет улучшенной организации рабочих мест, совершенствования у рабочих навыка однообразных движений по постановке-снятию заготовок, манипуляций с инструментом и оборудованием.

Абсолютное число установок при этом растет, но сокращается время на настройку режимов оборудования, за счет чего и достигается положительный результат.

Чтобы получить этот положительный эффект, технологу придется позаботиться о применении специализированной оснастки и приспособлений, позволяющих быстро и, главное, точно устанавливать и снимать заготовку. Размер серии также должен быть значительным.

Обработка дерева и металла

На практике одну и ту же деталь, одного и того же размера и веса, из одного и того же материала можно изготовить разными, иногда сильно отличающимися друг от друга методами.

На этапе конструкторско-технологической подготовки производства конструкторы и технологи совместно прорабатывают несколько вариантов описания технологического процесса, изготовления и последовательности обработки изделия. Эти варианты сравниваются по ключевым показателям, насколько полно они удовлетворяют:

  • техническим условиям на конечный продукт;
  • требованиям производственного плана, срокам и объемам отгрузки;
  • финансово-экономическим показателям, заложенным в бизнес-план предприятия.

На следующем этапе проводится сравнение этих вариантов, из них выбирается оптимальный. Большое влияние на выбор варианта оказывает тип производства.

В случае единичного, или дискретного производства вероятность повторения выпуска одной и той же детали невелика. В этом случае выбирается вариант с минимальными издержками на разработку и создание специальной оснастки, инструмента и приспособлений, с максимальным задействованием универсальных станков и настраиваемой оснастки. Однако исключительные требования к точности соблюдения размеров или к условиям эксплуатации, таким, как радиация ил высоко агрессивные среды, могут вынудить применять и специально изготовленную оснастку, и уникальные инструменты.

При серийном же выпуске процесс производства разбивается на выпуск повторяющихся партий изделий. Технологический процесс оптимизируют с учетом существующего на предприятии оборудования, станком и обрабатывающих центров. Оборудование при этом снабжают специально разработанной оснасткой и приспособлениями, позволяющими сократить непроизводительные потери времени хотя бы на несколько секунд. В масштабе всей партии эти секунды сложатся вместе и дадут достаточный экономический эффект. Станки и обрабатывающие центры подвергают специализации, за станком закрепляют определенные группы операций.

При массовом производстве размеры серий весьма высоки, а выпускаемые детали достаточно долгий срок не подвергаются конструктивным изменениям. Специализация оборудования заходит еще дальше. В этом случае технологически и экономически оправдано закрепление за каждым станком одной и той же операции на все время выпуска серии, а также изготовление спецоснастки и применение отдельного режущего инструмента и средств измерений и контроля.

Оборудование в этом случае физически перемещают в цеху, располагая его в порядке следования операций в технологическом процессе

Средства выполнения технологических процессов

Технологический процесс существует сначала в головах технологов, далее он фиксируется на бумаге, а на современных предприятиях — в базе данных программ, обеспечивающих процесс управления жизненным циклом изделия (PLM). Переход на автоматизированные средства хранения, написания, тиражирования и проверки актуальности технологических процессов- это не вопрос времени, в вопрос выживания предприятия в конкурентной борьбе. При этом предприятиям приходится преодолевать сильное сопротивление высококвалифицированных технологов строй школы, привыкших за долгие годы писать техпроцессы от руки, а потом отдавать их на перепечатку.

Современные программные средства позволяют автоматически проверять упомянутые в техпроцессе инструмент, материалы и оснастку на применимость и актуальность, повторно использовать ранее написанные техпроцессы целиком или частично. Они повышают производительность труда технолога и существенно снижают риск человеческой ошибки при написании техпроцесса.

Для того чтобы из идей и расчетов технологический процесс превратился в реальность, необходимы физические средства его выполнения.

Технологическое оборудование предназначено для установки, закрепления, ориентации в пространстве и подачи в зону обработки сырья, заготовок, деталей, узлов и сборок.

В зависимости от отрасли производства сюда входят станки, обрабатывающие центры, реакторы, плавильные печи, кузнечные прессы, установки и целые комплексы.

Оборудование обладает длительным сроком использования и может изменять свои функции в зависимости от использования той или иной технологической оснастки.

Технологическая оснастка включает в себя инструмент, литейные формы, штампы, приспособления для установки и снятия детали, для облегчения доступа рабочих к зоне выполнения операций. Оснастка дополняет основное оборудование, расширяя его функциональность. Она имеет более короткий срок использования и иногда специально изготавливается для конкретной партии изделий или даже для одного уникального изделия. При разработке технологии следует шире применять универсальную оснастку, применимую для нескольких типоразмеров изделия. Особенно это важно на дискретных производствах, где стоимость оснастки не распределяется на всю серию, а целиком ложится на себестоимость одного изделия.

Инструмент предназначен для оказания непосредственного физического воздействия на материал заготовки с целью доведения ее формы размеров, физических, химических и других параметров до заданных в технических условиях.

Технолог при выборе инструмента должен принимать во внимание не только цену его покупки, но и ресурс и универсальность. Часто бывает, что более дорогой инструмент позволяет без его замены выпустить в несколько раз больше продукции, чем дешевый аналог. Кроме того, современный универсальный и высокоскоростной инструмент позволит также сократить время машинной обработки, что также прямо ведет к снижению себестоимости. С каждым годом технологи приобретают все больше экономических знаний и навыков, и написание техпроцесса из дела чисто технологического превращается в серьезный инструмент повышения конкурентоспособности предприятия.

Производственным процессом в машиностроении называют совокупность всех этапов, которые проходят полуфабрикаты на пути их превращения в готовую продукцию: металлообрабатывающие станки, литейные машины, кузнечно-прессовое оборудование, приборы и другие.

На машиностроительном заводе производственный процесс включает:

Подготовку материалов и заготовок для последующей обработки, хранение;

Различные виды обработки (механическую, термическую и т.д.);

Сборку изделий и их транспортирование, контроль качества обработки или сборки на всех этапах производства

Транспортирование заготовок и изделий по цехам и участкам или всему заводу;

Отделку, окраску и упаковку,

Хранение готовой продукции.

Наилучший результат дает всегда тот производственный процесс, в котором все этапы строго организационно согласованы и экономически обоснованы.

Технологическим процессом называют часть производственного процесса, содержащую действия по изменению и последующему определению состояния предмета производства. В результате выполнения технологических процессов изменяются физико-химические свойства материалов, геометрическая форма, размеры и относительное положение элементов деталей, качество поверхности, внешний вид объекта производства и т.д. Технологический процесс выполняют на рабочих местах. Рабочее место представляет собой часть цеха, в котором размещено соответствующее оборудование. Технологический процесс состоит из технологических и вспомогательных операций (например, технологический процесс обработки валика состоит из токарных, фрезерных, шлифовальных и других операций).

Производственная программа машиностроительного завода содержит номенклатуру изделий, изготавливаемых с указанием их типов и размеров, количество изделий каждого наименования, подлежащих изготовлению в течение года, перечень и количество запасных частей к выпускаемых изделий. На основе общей производственной программы завода собираются детальные производственные программы по цехам, в которых определены наименование, количество, черная и чистый вес деталей, которые должны быть изготовлены в данном цехе либо изготавливаются в нескольких цехах. Составляется производственная программа для каждого цеха и одна сводная, указывающая какие детали и в каком количестве проходят через каждый цех. При составлении подетальных программ по цехам к общему количеству деталей прилагаются запасные детали к выпускаемых машин, выпускаемых, а также для обеспечения бесперебойной эксплуатации в течение заданного периода. Количество запасных деталей принимают в процентном отношении к количеству основных деталей.
К производственной программе прилагаются чертежи общих видов, чертежи сборочных узлов и отдельных деталей, спецификация деталей и ТУ на их изготовление и сдачу.
3. Механические и физические свойства материалов. Технологические и эксплуатационные свойства материалов.


Основные свойства металлов и сплавов.

Свойства металлов подразделяют на механические, физико-химические, технологические и эксплуатационные.

К основным механическим свойствам относят прочность, твердость, пластичность, ударную вязкость, усталостную прочность. Внешняя нагрузка вызывает в твердом теле напряжение и деформацию. Напряжение – это сила, отнесенная к площади поперечного сечения, МПа.

Деформация – это изменение формы и размеров тела под влиянием воздействия внешних сил или в результате процессов, возникающих в самом теле (например, фазовых превращений, усадки и т. п.). Деформация может быть упругая (исчезающая после снятия нагрузки) и пластическая (остающаяся после снятия нагрузки). При увеличении нагрузки упругая деформация переходит в пластическую; при дальнейшем повышении нагрузки происходит разрушение тела.

Прочность - это способность твердого тела сопротивляться деформации

или разрушению под действием статических или динамических нагрузок. Прочность определяют с помощью специальных механических испытаний образцов, изготовленных из исследуемого материала.

Для определения прочности при статических нагрузках образцы испытывают на растяжение, сжатие, изгиб, и кручение. Испытание на растяжение обязательны. Прочность при статических нагрузках оценивается временным сопротивлением и пределом текучести; временное сопротивление - это условное напряжение, соответствующее наибольшей нагрузке, предшествующей разрушению образца;

предел текучести- это напряжение, при котором начинается пластическое течение металла.

Прочность при динамических нагрузках определяют по данным испытаний:

На ударную вязкость (разрушению ударом стандартного образца на копре),

На усталостную прочность (определению способности материала выдерживать, не разрушаясь, большое число повторно-переменных нагрузок),

На ползучесть (определение способности нагретого материала медленно и непрерывно деформироваться при постоянных нагрузках).

Наиболее часто применяют испытания на ударную вязкость.

Пластичность - это способность материала получать остаточное изменение формы и размера без разрушения. Пластичность характеризуется относительным удлинением при разрыве, %.

Твердость – это способность материала сопротивляться внедрению в него

другого, не получающего остаточных деформаций тела. Значение твердости и ее размерность для одного и того же материала зависят от применяемого метода измерения. Значения твердости, определенные различными методами, пересчитывают по таблицам и эмпирическим формулам. Например, твердость по Бринеллю (НВ, МПа) определяют из отношения нагрузки Р, приложенной к шарику, к площади поверхности полученного отпечатка шарика F отп: HB=P/Fотп.

Ударная вязкость – способность металлов и сплавов оказывать сопротивление действию ударных нагрузок.

К физическим свойствам металлов и сплавов относятся температура плавления, плотность, температурные коэффициенты линейного и объемного расширения, электросопротивление и электропроводимость.

Физические свойства сплавов обусловленны их составом и структурой.

К химическим свойствам относят способность к химическому взаимодействию с агрессивными средами, а также антикоррозионные свойства.

Способность материала подвергаться различным методам горячей и холодной обработки определяют по его технологическим свойствам.

К технологическим свойствам металлов и сплавов относятся литейные свойства, деформируемость, свариваемость и обрабатываемость режущим инструментом. Эти свойства позволяют производить формоизменяющую обработку и получать заготовки и детали машин.

Литейные свойства определяются способностью расплавленного металла

или сплава к заполнению литейной формы, степенью химической неоднородности по сечению полученной отливки, а также величиной усадки– сокращением размеров при кристаллизации и дальнейшем охлаждении.

Деформируемость – это способность принимать необходимую форму под

влиянием внешней нагрузки без разрушения и при наименьшем сопротивлении нагрузке.

Свариваемость – это способность металлов и сплавов образовывать неразъемные соединения требуемого качества.

Обрабатываемостью называют свойства металлов поддаваться обработке резанием. Критериями обрабатываемости являются режимы резания и качество поверхностного слоя.

Технологические свойства часто определяют выбор материала для конструкции. Разрабатываемые материалы могут быть внедрены в производство только в том случае, если их технологические свойства удовлетворяют необходимым требованиям.

Современное автоматизированное производство, оснащенное гибкими системами управления, нередко предъявляет к технологическим свойствам материала особые требования, которые должны позволять осуществлять комплексный технологический процесс на всех стадиях получения изделия с заданным ритмом: например, проведение сварки на больших скоростях, ускоренный темп охлаждения отливок, обработка резанием на повышенных режимах и т. п. при обеспечении необходимого условия - высокого качества получаемой продукции.

К эксплуатационным свойствам в зависимости от условия работы машины или конструкции относят износостойкость, коррозионную стойкость, хладостойкость, жаропрочность, жаростойкость, антифрикционность материала и др.

Износостойкость – это способность материала сопротивляться поверхностному разрушению под действием внешнего трения.

Коррозионная стойкость – сопротивление сплава действию агрессивных кислотных и щелочных сред.

Хладостойкость – способность сплава сохранять пластические свойства при температурах ниже 0 градусов по Цельсию.

Жаропрочность – способность сплава сохранять механические свойства при высоких температурах.

Антифрикционность – способность сплава прирабатываться к другому сплаву.

Эти свойства определяются в зависимости от условия работы машин или конструкций специальными испытаниями

Кафедра технологии и организации машиностроительного производства

Дисциплина

"Технологические основы машиностроения" (ТОМ)

Конспект лекций

Э.П. Выскребенцев

Для студентов специальности "Металлургическое оборудование"

3-й курс дневного обучения

4-й курс заочного обучения

Основная

1. Ковшов А.Н. Технология машиностроения: учебник для вузов. – М.: Машиностроение, 1987

Дополнительная.

2. Горбацевич А.Ф., Шкред В.А. Курсовое проектирование по технологии машиностроения. – Минск: Вышейша школа, 1985.

3. Воробьев А.Н. Технология машиностроения и ремонт машин: Учебник. – М.: Высшая школа, 1981.

4. Корсаков В.С. Технология машиностроения. – М.: Машиностроения, 1987.

5. Справочник технолога-машиностроителя: в 2 кн. под. ред. Косиловой А. Г, – 3-е изд. – М.: Машиностроение, 1985.

6. Балабанов А.Н. Краткий справочник технолога-машиностроителя. – М.:

Изд. стандарт. 1992.

ВВЕДЕНИЕ 5

1 ТИПЫ ПРОИЗВОДСТВА, ФОРМЫ ОРГАНИЗАЦИИ И ВИДЫ

ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ 6

1.1 Типы производства 6

1.2 Виды технологических процессов 9

1.3 Структура технологического процесса и его основные

характеристики 11

1.3.1 Характеристики технологического процесса 15

1.4 Трудоёмкость технологической операции 16

1.5 Основные принципы технологического проектирования 21

2 ТОЧНОСТЬ МЕХАНИЧЕСКОЙ ОБРАБОТКИ 23

2.1 Точность и её определяющие факторы 23

3 ОСНОВЫ БАЗИРОВАНИЯ И БАЗЫ ЗАГОТОВКИ 27

3.1 Погрешность закрепления ε з, 36

3.2 Погрешность положения заготовки ε пр, вызываемая

неточностью приспособления 37

3.3 Базирование заготовки в приспособлении 38

4 КАЧЕСТВО ПОВЕРХНОСТИ ДЕТАЛЕЙ МАШИН И

ЗАГОТОВОК 41

4.1 Влияние технологических факторов на величину

шероховатости 41

4.2 Методы измерения и оценки качества поверхности 46

5 ЗАГОТОВКА ДЕТАЛЕЙ МАШИН 49

5.1 Выбор исходной заготовки и методов ее изготовления 49

5.2 Определение припусков на механическую обработку 51

6 ОСНОВНЫЕ ЭТАПЫ ПРОЕКТИРОВАНИЯ ТЕХНОЛОГИЧЕСКИХ

ПРОЦЕССОВ МЕХАНИЧЕСКОЙ ОБРАБОТКИ 60

6.1 Общие положения разработки технологических

процессов 60

6.2 Выбор технологического оборудования 63

6.З. Выбор технологической оснастки 64

6.4. Выбор средств контроля 65

6.5. Формы организации технологических процессов и их

разработка 65

6.6. Разработка групповых технологических процессов 67

6.7. Разработка типовых технологических процессов 70

7 ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ТИПОВЫХ ДЕТАЛЕЙ 72

7.1 Технология производства валов 72

7.2 Технология производства корпусных деталей 82

7.2.1 Технологический маршрут обработки заготовок

корпусов 84

7.3 Технология производства цилиндров 92

7.4 Обработка зубчатых колёс 94

7.4.1 Конструктивные особенности и технические требования к зуб-

чатым колёсам 94

7.4.2 Обработка заготовок зубчатых колёс с центральным отверстием. 95

7.4.3 Нарезание зубьев 97

7.4.4 Изготовление крупногабаритных зубчатых колёс 100

7.4.5 Обработка заготовок до нарезания зубьев 101

7.5 Технология изготовления рычагов 102

8. ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ СБОРКИ 111

ВВЕДЕНИЕ

Технология машиностроения - наука, занимающаяся изучением закономерностей процессов изготовления машин, с целью использования этих закономерностей для обеспечения выпуска машин заданного качества, в установленном производственной программой количестве и при наименьших народнохозяйственных затратах.

Технология машиностроения развивалась с развитием крупной промышленности, накапливая соответствующие методы и приемы для изготовления машин. В прошлом технология машиностроения получила наибольшее развитие в оружейных мастерских и заводах, где изготовлялось оружие в больших количествах.

Так, на Тульском оружейном заводе еще в 1761 г. впервые в мире было разработано и внедрено изготовление взаимозаменяемых деталей и их контроль с помощью калибров.

Технология машиностроения создавалась трудами российских ученых: А.П. Соколовского, Б.С. Балакшина, В.М. Кована, B.C. Корсакова и др,

К технологии машиностроения относятся следующие области производства: технология литья; технология обработки давлением; технология сварки; технология механической обработки; технология сборки машин, т. е. технология машиностроения охватывает все этапы процесса изготовления машиностроительной продукции.

Однако под технологией машиностроения обычно понимают научную дисциплину, изучающую преимущественно процессы механической обработки заготовок и сборки машин к попутно затрагивающие вопросы выбора заготовок методы их изготовления. Это объясняется тем, что в машиностроении заданные формы деталей с требуемой точностью и качеством их поверхностей достигаются в основном механической обработкой. Сложность процесса механической обработки и физической природы, происходящих при этом явлений, вызвана трудностью изучения всего комплекса вопросов в пределах одной технологической дисциплины и обусловила образование нескольких таких дисциплин: резание металлов; режущие инструменты; металлорежущие станки; конструирование приспособлений; проектирование машиностроительных цехов и заводов; взаимозаменяемость, стандартизация и технические измерения; технология конструкционных материалов; автоматизация и механизация технологических процессов и др.

1 ТИПЫ ПРОИЗВОДСТВА, ФОРМЫ ОРГАНИЗАЦИИ И ВИДЫ

ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

1.1 Типы производства

Тип производства - классификационная категория производства, выделяемая по признакам широты номенклатуры, регулярности, стабильности и объема выпуска изделий.

Объем выпуска изделий - количество изделий определенных наименования, типоразмера и исполнения, изготовленных или ремонтируемых объединением, предприятием или его подразделением в течение планируемого интервала времени.

Реализуют следующие типы производства: единичное; серийное; массовое. Одной из основных характеристик типа производства является коэффициент закрепления операций. Коэффициент закрепления операций – отношение числа всех различных технологических операций, выполненных или подлежащих выполнению в течение месяца, к числу рабочих мест.

Единичное производство - производство, характеризуемое широкой номенклатурой изготовляемых или ремонтируемых изделий и малым объемом выпуска изделий.

В единичном производстве изделия изготовляются единичными экземплярами, разнообразными по конструкции или размерам, причем повторяемость этих изделий редка или совсем отсутствует (турбостроение, судостроение). В этом типе производства, как правило, используется универсальные оборудование, приспособления и измерительный инструмент, рабочие имеют высокую квалификацию, сборка производится с использованием слесарнопригоночных работ, т. е. по месту и т. п. Станки располагаются по признаку однородности обработки, т. е. создаются участки станков, предназначенных для одного вида обработки - токарных, строгальных, фрезерных и др.

Коэффициент закрепления операций > 40.

Серийное производство - производство, характеризуемое ограниченной номенклатурой изделий, изготовляемых или ремонтируемых периодически повторяющимися партиями выпуска.

В зависимости от количества изделий в партии или серии и значение коэффициента закрепления операций различают мелкосерийное, среднесерийное и крупносерийное производство.

Коэффициент закрепления операций в соответствии со стандартом принимают равным:

а) для мелкосерийного производства - свыше 20 до 40 включительно;

б) для среднесерийного производства - свыше 10 до 20 включительно;

в) для крупносерийного производства - свыше 1 до 10 включительно.

Основные признаки серийного производства: станки применяются разнообразных типов: универсальные, сспециализированные, специальные, автоматизированные; кадры различной квалификации;

работа может производиться на настроенных станках; применяется и разметка, и специальные приспособления; сборка без пригонки и т. д.

Оборудование располагается в соответствии с предметной формой организации работы.

Станки располагаются в последовательности технологических операций для одной или нескольких деталей, требующиходинакового порядка выполнения операций. В той же последовательности, очевидно, образуется и движение деталей (так называемые, предметно-замкнутые участки). Обработка заготовок производится партиями. При этом время выполнения операций на отдельных станках может быть не согласовано с временем операций на других станках.

Изготовленные детали хранятся во время работы у станков и затем транспортируются всей партией.

Массовое производство - производство, характеризуемое узкой номенклатурой и большим объемом выпуска изделий, непрерывно изготовляемых или ремонтируемых в течение продолжительного времени.

Коэффициент закрепления операций для массового производства принимают равным единице.