Оптика егэ по физике. Глаз как оптическая система. Построение изображения точечного источника света

1(10в-2007) Под водой находится понтон прямоугольной формы длиной 6 м и высотой 1м. расстояние от поверхности воды до нижней поверхности понтона 2,5 м. Небо затянуто сплошным облачным покровом, полностью рассеивающим солнечный свет. Глубина тени под понтоном (отсчитанная от нижней поверхности понтона) равна 2,3 м. Определите ширину понтона. Рассеиванием света водой пренебречь. Показатель преломления воды относительно воздуха принять равным 4/3. a

Решение: область тени – это

очерчивают те лучи света, γ

которые до преломления

распространялись вдоль

поверхности воды, а после γ

преломления касаются краев h

понтона. Согласно рисунку,

глубину h тени можно

определить по формуле

h = где а

тогда Sin γ = tg γ = a = 2,3· . Ответ: 5,2м

2.(2в-2007) Под водой находится понтон прямоугольной формы шириной 4 м длиной 6 м и высотой 1м. Расстояние от поверхности воды до нижней поверхности понтона 2,5 м. Небо затянуто сплошным облачным покровом, полностью рассеивающим солнечный свет. Определите глубину тени под понтоном. (отсчитывая от нижней поверхности понтона) Рассеиванием света водой пренебречь. Показатель преломления воды относительно воздуха принять равным 4/3.

Решение: область тени – это а

пирамида, боковые грани которой

очерчивают те лучи света, γ

которые до преломления

распространялись вдоль

поверхности воды, а после γ

преломления касаются краев h

понтона. Согласно рисунку,

глубину h тени можно

определить по формуле

h = где а – полуширина понтона. Отсюда: а = h·tgγ, Закон преломления: , гдеα = 90 0

тогда Sin γ = tg γ = h = .

3.(1в-2007) На поверхности воды плавает прямоугольный надувной плот длиной 6м. Небо затянуто сплошным облачным покровом, полностью рассеивающим солнечный свет. Глубина тени под плотом равна 2,3 м. Определите ширину плота. Глубиной погружения плота и рассеиванием света водой пренебречь. . Показатель преломления воды относительно воздуха принять равным 4/3.

Решение: область тени – это а

пирамида, боковые грани которой

очерчивают те лучи света, γ

которые до преломления γ

распространялись вдоль

поверхности воды, а после

преломления касаются краев

понтона. Согласно рисунку,

глубину h тени можно

определить по формуле

h = где а – полуширина понтона. Отсюда: а = h·tg γ, Закон преломления: , где α = 90 0

тогда Sin γ = tg γ = a = 2,3· . Ответ: 5,2м

4.(в-5.2007) Равнобедренный прямоугольный треугольник АВС расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет АС лежит на главной оптической оси линзы (рис) Вершина прямого угла С лежит дальше от центра линзы, чем вершина острого угла А. Расстояние от центра линзы до точки С равно удвоенному фокусному расстоянию линзы. АС = 4см. Постройте изображение треугольника и найдите площадь получившейся фигуры.

Решение: Δ АВС – равнобедренный.

СА= а= 4 см

ВС= 4 см (так как треугольник равнобедренный) Площадь Δ А I В I С I S = C I B I · X.

C I B I = ВС = 4см. (для ВС d = f = 2F, увеличение Г = 1)

Для нахождения Х рассматриваем изображение т.А. Формула тонкой линзы:

Здесь = 0,25 дптр, d = 2F – a= 0,8м – 0,04м = 0,76м=76см.

F = 0,8445м. Х = f – 2F = 0,0445м (по рисунку)

S = ½ 4 см · 4,45см = 8,9 см 2 .

5.(в-12-2007) Равнобедренный прямоугольный треугольник АВС расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет АС лежит на главной оптической оси линзы (рис) Вершина прямого угла С лежит ближе к центру линзы, чем вершина острого угла А. Расстояние от центра линзы до точки С равно удвоенному фокусному расстоянию линзы. АС = 4см. Постройте изображение треугольника и найдите площадь получившейся фигуры. (рис) Ответ: 7,3 см 2 .


6.((в-14-2007) Равнобедренный прямоугольный треугольник АВС расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет АС лежит на главной оптической оси линзы (рис) Вершина прямого угла С лежит ближе к центру линзы, чем вершина острого угла А. Расстояние от центра линзы до точки С равно удвоенному фокусному расстоянию линзы. АС = 4см. Постройте изображение треугольника и найдите площадь получившейся фигуры. (рис) Ответ: 9,9см 2 .

2F a F F 2F

7.(в-11-2007) Равнобедренный прямоугольный треугольник АВС расположен перед тонкой собирающей линзой оптической силой 2,5 дптр так, что его катет АС лежит на главной оптической оси линзы (рис) Вершина прямого угла С лежит дальше от центра линзы, чем вершина острого угла А. Расстояние от центра линзы до точки С равно удвоенному фокусному расстоянию линзы. АС = 4см. Постройте изображение треугольника и найдите площадь получившейся фигуры. (рис) Ответ: 6,6 см 2 .


a 2F F y


8.(С4 -2004-5) На оси Ох в точке х 1 = 10 см находится оптический центр тонкой рассеивающей линзы с фокусным расстоянием F 1 = -10см, а в точке х 2 =25 см - тонкой собирающей линзы. Главные оптические оси обеих линз совпадают с осью Ох. Свет от точечного источника, расположенного в точке х = 0, пройдя данную оптическую систему, распространяется параллельным пучком. Найдите фокусное расстояние собирающей линзы F 2 .

Решение: d =X 1 =10см F 1 = -10см,

Изображаем ход лучей. Изображение т.О получается в т. О 1 на расстоянии d 1 от рассеивающей линзы. Это точка и есть фокус собирающей линзы из-за условия параллельности пучка, проходящего через оптическую систему. Тогда формула тонкой линзы для рассеивающей линзы имеет вид: где d 1 – расстояние от линзы до изображения. d 1 = F 2 = d 1 + (X 2 – X 1) = 20см.

9.(С6-2004-5)На оси Ох в точке х 1 = 10 см находится оптический центр тонкой рассеивающей линзы, а в точке х 2 =30 см - тонкой собирающей линзы с фокусным расстоянием F 2 =25 см.. Главные оптические оси обеих линз совпадают с осью Ох. Свет от точечного источника, расположенного в точке х = 0, пройдя данную оптическую систему, распространяется параллельным пучком. Найдите фокусное расстояние рассеивающей линзы F 1 .Ответ: 10 см.

10.На оси Ох в точке х 1 = 0 см находится оптический центр тонкой рассеивающей линзы с фокусным расстоянием F 1 = -20 см, а в точке х 2 =20 см - тонкой собирающей линзы с фокусным расстоянием F 2 =30 см.. Главные оптические оси обеих линз совпадают с осью Ох. Свет от точечного источника S , расположенного в точке х < 0, пройдя данную оптическую систему, распространяется параллельным пучком. Найдите координату Х точечного источника. .Ответ:

11. (В9-2005)На оси Ох в точке х 1 = 10 см находится оптический центр тонкой рассеивающей линзы с фокусным расстоянием F 1 = - 10 cм, а в точке х 2 > X 1 - тонкой собирающей линзы с фокусным расстоянием F 2 =30 см.. Главные оптические оси обеих линз совпадают с осью Ох. Свет от точечного источника, расположенного в точке х = 0, пройдя данную оптическую систему, распространяется параллельным пучком. Найдите расстояние между линзами. Ответ:

12. (В21-2005) Линза, фокусное расстояние которой 15 см, дает на экране изображение предмета с пятикратным увеличением. Экран пододвинули к линзе вдоль ее главной оптической оси на 30 см. Затем при неизменном положении линзы передвинули предмет, чтобы изображение стало резким. На сколько сдвинули предмет относительно его первоначального положения.

Дано:F = 15 cм

Формула тонкой линзы для первого случая: Г = 5. f = 5d.

Отсюда: . f = 0,9м; f 1 = f – X = 0,6м.

Формула линзы для второго случая: отсюда d 1 =

у = d 1 – d = 0,2м – 0,18м = 0,02м = 2 см.

13(20-2005) Линза, фокусное расстояние которой 15 см, дает на экране изображение предмета с пятикратным увеличением. Экран пододвинули к линзе вдоль ее главной оптической оси на 30 см. Затем при неизменном положении линзы передвинули предмет, чтобы изображение стало резким. Определите увеличение во втором случае. (Ответ: Г 1 =3)

14.(18-2005) Линза, фокусное расстояние которой 15 см, дает на экране изображение предмета с пятикратным увеличением. Экран пододвинули к линзе вдоль ее главной оптической оси. Затем при неизменном положении линзы передвинули предмет, чтобы изображение стало резким. В этом случае получено изображение с трёхкратным увеличением. На сколько сдвинули экран относительно его первоначального положения7 (Ответ: х = 30 см)

15.(2002) Для «просветления оптики» на поверхность линзы наносят тонкую плёнку с показателем преломления 1,25. Какой должна быть минимальная толщина плёнки, чтобы свет с длиной волны 600 нм из воздуха полностью проходил через плёнку? (показатель преломления плёнки меньше показателя преломления стекла линзы).

Решение: Просветление оптики основано на интерференции. На поверхность оптического стекла, наносят тонкую плёнку с показателем преломления n п, меньше показателя преломления стекла n ст. При правильном подборе толщины интерференция отраженных от неё лучей приводит к гашению, а это означает, что свет полностью проходит через неё. Условие минимума: Δd = (2к+1) Разность хода отраженных от верхней и нижней поверхностей плёнки волн равна удвоенной толщине плёнки, с одной стороны. Δd = 2h. С другой стороны разность хода равна Δd = (условие минимума при к = 0). Длина волны λ в плёнке меньше длины волны λ 0 в вакууме в n раз. λ = Отсюда: Δd=λ/4n=120нм

16. Объектив фотоаппарата имеет фокусное расстояние 5 см, а размер кадра 24х35мм. С какого расстояния надо сфотографировать чертёж размером 480х600мм, чтобы получить максимальный размер изображения? Какая часть площади кадра будет при этом занята изображением?

Решение: сделать чертёж.

Найти увеличение: Г =

Формула линзы:

Находим соотношение площадей изображения и кадра: η =

Размер кадра: 24х35. Размер изображения находим: 480:20=24, и 600:20=30 (так как максимальное изображение получается уменьшенным в 20 раз)

№21.(В-5-06рв) Линза, фокусное расстояние которой 12 см, дает на экране изображение предмета с четырехкратным увеличением. Экран передвинули вдоль главной оптической оси линзы. Затем при неизменном положении линзы передвинули предмет, чтобы изображение снова стало резким. В этом случае получено изображение с трехкратным увеличением. На сколько пришлось передвинуть предмет относительно его первоначального положения? (Ответ:1 см)

22.(6-6рв). В темной комнате на столе стоит неоновая газоразрядная лампа, излучающая вертикальную полоску красного свечения. По заданию учителя ученик смотрит на лампу через стеклянную призму спектроскопа и отчетливо видит уже три цветные линии6 красную, желтую, и зеленую. Далее ученик смотрит на лампу через дифракционную решетку, расположив штрихи решетки вертикально. Что в этом случае может увидеть ученик? Обоснуйте свои выводы.

(Ответ: зкжзКзжкз)

№23.(7-6рв). В темной комнате на столе стоит неоновая газоразрядная лампа, излучающая вертикальную полоску синего свечения. По заданию учителя ученик смотрит на лампу через стеклянную призму спектроскопа и отчетливо видит уже три цветные линии: Одну зеленую и две синие. Далее ученик смотрит на лампу через дифракционную решетку, расположив штрихи решетки вертикально. Что в этом случае может увидеть ученик? Обоснуйте свои выводы.

(Ответ: сзссСссзс)

№24.(8-6рв). В темной комнате на столе стоит неоновая газоразрядная лампа, излучающая вертикальную полоску красного свечения. По заданию учителя ученик смотрит на лампу через стеклянную призму спектроскопа и отчетливо видит уже три цветные линии6 красную, оранжевую, и голубую. Далее ученик смотрит на лампу через дифракционную решетку, расположив штрихи решетки вертикально. Что в этом случае может увидеть ученик? Обоснуйте свои выводы.

(Ответ: гкогКгокг)

№25.(7-6рв). В темной комнате на столе стоит неоновая газоразрядная лампа, излучающая вертикальную полоску синего свечения. По заданию учителя ученик смотрит на лампу через стеклянную призму спектроскопа и отчетливо видит уже три цветные линии: две синие и одну фиолетовую. Далее ученик смотрит на лампу через дифракционную решетку, расположив штрихи решетки вертикально. Что в этом случае может увидеть ученик? Обоснуйте свои выводы.

(Ответ:фссфСфссф)

№26.(6-6рв). В темной комнате на столе стоит неоновая газоразрядная лампа, излучающая вертикальную полоску красного свечения. По заданию учителя ученик смотрит на лампу через стеклянную призму спектроскопа и отчетливо видит уже три цветные линии, среди которых самые яркие- одна красная, одна желтая, одна голубая. Далее ученик смотрит на лампу через дифракционную решетку, расположив штрихи решетки вертикально. Что в этом случае может увидеть ученик? Обоснуйте свои выводы.

(Ответ: гкжгКгжкг)

№27.(134-2004) Между краями двух хорошо отшлифованных тонких плоских стеклянных пластинок помещена тонкая проволочка; Противоположные концы пластинок плотно прижаты друг к другу. (см. рис). На верхнюю пластинку нормально к её поверхности падает монохроматический пучок света длиной 600 нм. Определите угол α, который образуют пластинки, если расстояние между наблюдаемыми интерференционными полосами равно 0,6 мм. Считать, что tg α ≈ α.

Дано: λ= 6нм. l = 0,6мм. Решение:

К=1 к=2

Условие максимума: Δd = kλ. (1) h 1 h 2

Разность хода равна: Δd = 2h. (2) α ≈ tgα. (3) α ≈ , (4) l

где Δh = разность расстоянии между пластинами в местах соседних максимумов, l – расстояние между соседними максимумами, α – угол между пластинами.

k=2). Тогда Δh = h 2 – h 1 = Последнее выражение подставляем в (4): α ≈ ,

28.(133-2004) Между краями двух хорошо отшлифованных

тонких плоских стеклянных пластинок помещена

тонкая проволочка диаметром 0,075 мм; противоположные

Концы пластинок плотно прижаты друг к другу (см. рисунок). На верхнюю пластинку нормально к её поверхности падает монохроматический пучок света длиной волны 750 нм. Определите длину пластинки х, если на ней наблюдаются интерференционные полосы,

Расстояние между которыми равно 0,6 мм. Х

Дано: D= 0,075мм

λ = 750 нм. h 1 h 2

Найти: х =?

Условие максимума: Δd = kλ. (1)

Разность хода равна: Δd = 2h. (2) Из подобия треугольников: ;(3) где Δh = h 2 – h 1 – это разность расстояний между пластинами в местах соседних максимумов, l – это расстояние между соседними максимумами, Х – длина пластинки. Из уравнения (3) выражаем Х = (4);

Из уравнений (1) и (2) получаем: kλ. = 2h. отсюда h 1 = (при k =1), h 2 = (при

k=2). Тогда Δh = h 2 – h 1 = Последнее выражение подставляем в (4): Х =

Ответ: Х = 12 см.

29(131-2004) Между краями двух хорошо отшлифованных

тонких плоских стеклянных пластинок помещена тонкая проволочка диаметром 0,085 мм; противоположные концы пластинок плотно прижаты друг к другу (см. рисунок). Расстояние от проволочки до линии соприкосновения пластинок равно 25 см. На верхнюю пластинку нормально к ее поверхности падает монохроматический

пучок света длиной волны 700 пм. Определите количество наблюдаемых

интерференционных полос на 1 см длины клина.

Дано: D= 0,085мм Решение:

Х = 25 см Условие максимума: Δd = kλ. (1) Разность хода равна: Δd = 2h. (2)

λ = 700 нм. Из подобия треугольников: ;(3) где Δh = h 2 – h 1 – это

L = 1 cм разность расстояний между пластинами в местах соседних максимумов,

Найти: n = ? l – это расстояние между соседними максимумами,

Х – длина пластинки. Из уравнения (3) выражаем l = (4); Чтобы найти количество максимумов на 1 см длины учитывая, что Δh = h 2 – h 1 = получаем:

30(127-2004) Между краями двух хорошо отшлифованных 20 см

тонких плоских стеклянных пластинок помещена тонкая

проволочка диаметром 0,05 мм; противоположные концы

пластинок плотно прижаты друг к другу (см. рисунок).

Расстояние от проволочки до линии соприкосновения

пластинок равно 20 см. На верхнюю пластинку нормально

к ее поверхности падает монохроматический

пучок света. Определите длину волны света, если на

1 см длины наблюдается 10 интерференционных полос. Ответ: 500 нм.

31.(82-2007) Мыльная плёнка представляет собой тонкий слой воды. на поверхности которой находятся молекулы мыла. обеспечивающие механическую устойчивость и не влияющие на оптические свойства пленки, Мыльная пленка натянута на квадратную рамку. Две стороны рамки расположены горизонтально. а две другие - вертикально. Под действием силы тяжести плёнка приняла форму клина (см. рисунок), утолщенного внизу, с углом при вершине α = 2·10 -4 рад. При освещении квадрата параллельным пучком света лазера с длиной волны 666 нм (в воздухе), падающим перпендикулярно пленке, часть снега отражается от нее, образуя на ее поверхности интерференционную картину, состоящую из 20 горизонтальных полос. Чему равна высота рамки, если показатель преломления воды равен 4/3 .?

Угол при вершине клина α = , где а – сторона рамки. Отсюда а =

32 (81-2008) Единый государственный экзамен 2006 Физика,11 класс.

Мыльная пленка представляет собой тонкий слой воды, на поверхности которой находятся молекулы мыла, обеспечивающие механическую устойчивость и не влияющие на оптические свойства пленки. Мыльная пленка натянута на квадратную рамку со стороной а = 2,5 см. две стороны рамки расположены горизонтально, а две другие - вертикально. Под действием силы тяжести пленка приняла форму клина (см рисунок), утолщенного внизу, с углом при

вершине α = 2· 10 -4 рад. При освещении квадрата параллельным пучком света лазера с длиной волны 666 нм (в воздухе), падающим перпендикулярно пленке, часть света отражается от нее, образуя на ее поверхности интерференционную картину, состоящую из 20 горизонтальных полос. Чему равен показатель преломления воды?

Решение: Условие образование интерференционной картины:

Δd = k ; где λ I = (длина волны в воде), k – число полос, Δd –разность хода, в данном случае разность толщины плёнки в нижней и верхней частях плёнки. Δd = k ;

Угол при вершине клина α = , где а – сторона рамки. n =

33. (79-2006) Мыльная пленка представляет собой тонкий слой воды, на

поверхности которой находятся молекулы мыла, обеспечивающие механическую устойчивость и не влияющие на оптические свойства пленки. Мыльная пленка натянута на квадратную рамку со стороной, а = 2.5 см. Две стороны рамки расположены горизонтально, а две другие - вертикально. Под действием силы тяжести пленка приняла форму клина (см. рисунок), утолщенного внизу, с углом при вершине α. При освещении квадрата параллельным пучком света лазера с длиной волны 666 нм (в воздухе), падающим перпендикулярно пленке, часть света отражается от нее, образуя на ее поверхности интерференционную картину, состоящую из 20 горизонтальных полос. Чему равен угол при вершине клина, если показатель преломления воды n = 4/3? (ответ: α ≈ 2·10 -4 рад.)

34.(80-2006) Мыльная пленка представляет собой тонкий слой воды, на поверхности которой находятся молекулы мыла, обеспечивающие механическую устойчивость и не влияющие на оптические свойства пленки. Мыльная пленка натянута на квадратную рамку со стороной а = 2,5 см. две стороны рамки расположены горизонтально, а две другие - вертикально. Под действием силы тяжести пленка приняла форму клина (см. рисунок), утолщенного внизу, с углом при вершине α = 2·10 -4 рад. При освещении квадрата параллельным пучком света лазера с длиной волны 666 нм (в воздухе), падающим перпендикулярно пленке, часть света отражается от нее, образуя на ее поверхности интерференционную картину, состоящую из горизонтальных полос. Сколько полос наблюдается на пленке, если показатель преломления воды равен 4/3. (Ответ: 20)

Все формулы взяты в строгом соответствии с Федеральным институтом педагогических измерений (ФИПИ)

3.6 ГЕОМЕТРИЧЕСКАЯ ОПТИКА

3.6.1 Прямолинейное распространение света в однородной среде. Луч света

ПОСТУЛАТ 1

В однородной среде свет распространяется прямолинейно.

ПОСТУЛАТ 2

Пересекающиеся световые лучи не взаимодействуют друг с другом.

Луч – часть прямой, указывающей направление распространения света.

3.6.2 Законы отражения света

1)Падающий луч , отражённый луч и перпендикуляр к границе двух сред , восставленный в точке падения луча , лежат в одной плоскости .

2)Угол падения луча а равен углу отражения луча ß . Углы падения и отражения измеряются между направлением лучей и перпендикуляром .

3.6.3 Построение изображений в плоском зеркале

Построение изображения точечного источника света

S – точечного источника света
MN – зеркальную поверхность
На нее падают расходящиеся лучи SO, SO 1 , SO 2
По закону отражения эти лучи отражаются под таким же углом:
SO под углом 0 0 ,
SO 1 под углом β 1 = α 1 ,
SO 2 под углом β 2 = α 2
В глаз попадает расходящийся пучок света.
Если продолжить отраженные лучи за зеркало, то они сойдутся в точке S 1 .
В глаз попадает расходящийся пучок света, как будто исходящий из точки S 1 .
Эта точка называется мнимым изображением точки S.

Построение изображения предмета

  1. К зеркалу прикладываем линейку так, чтобы одна сторона прямого угла лежала вдоль зеркала.
  2. Двигаем линейку так, чтобы точка, которую хотим построить лежала на другой стороне прямого угла
  3. Проводим линию от точки А до зеркала и продляем ее за зеркало на такое же расстояние и получаем точку А 1 .
  4. Аналогично все проделываем для точки В и получаем точку В 1
  5. Соединяем точку А 1 и точку В 1 , получили изображение А 1 В 1 предмета АВ.

Изображение должно быть таким же по размерам, как и предмет, находиться за зеркалом на таком же расстоянии, как и предмет перед зеркалом.

3.6.4 Законы преломления света

  1. Падающий и преломлённый лучи и перпендикуляр, проведённый к границе раздела двух сред в точке падения луча, лежат в одной плоскости.
  2. Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред, равная относительному показателю преломления.

Преломление света:

Абсолютный показатель преломления:

Относительный показатель преломления:

Ход лучей в призме

Проходя через призму, белый цвет (луч) не только преломляется, но и разлагается в цветной радужный спектр.

Соотношение частот и длин волн при переходе монохроматического света через границу раздела двух оптических сред:

3.6.5 Полное внутреннее отражение

Предельный угол полного внутреннего отражения:

3.6.6 Собирающие и рассеивающие линзы. Тонкая линза. Фокусное расстояние и оптическая сила тонкой линзы:

3.6.7 Формула тонкой линзы:

Увеличение, даваемое линзой:

3.6.8 Ход луча, прошедшего линзу под произвольным углом к её главной оптической оси. Построение изображений точки и отрезка прямой в собирающих и рассеивающих линзах и их системах

Собирающая линза

Если параллельные лучи будут падать на собирающуюся линзу, то они встретятся в фокусе, если же они будут выходить из мнимого фокуса и попадать на линзу, то после нее они пройдут параллельно друг другу.

Если же параллельные лучи пойдут под некоторым углом к основной оси, то они так же соберутся в одной точке, однако она будет назваться побочным фокусом, который находится в фокальной плоскости.

Правила хода лучей:

1. Лучи, попавшие в оптический центр, не изменяют траектории движения.

2. Параллельный к главной оси луч собирается в фокусе.

3. Чтобы понять, куда пойдет луч, падающий под некоторым углом на линзу, следует построить побочную ось, что будет ему параллельна.

Вести её следует до точки пересечения с фокально плоскостью. Это позволит определить побочный фокус.

Рассеивающая линза

В рассеивающейся линзе пучок собирается во мнимом фокусе и расходится за пределами линзы.

Если же лучи будут падать под некоторым углом к линзе, то они в любом случае будут расходиться, однако перед линзой соберутся в мнимом побочном фокусе.

Правила хода лучей:

1. Данное правило справедливо для всех линз — лучи, проходящие через оптический центр, не меняют траектории.

2. Если луч, параллельный главной оптической оси, попадает на линзу, то он рассеивается, но пересекает мнимый фокус.

3. Для определения побочного мнимого фокуса для луча, который падает на линзу под углом, следует провести побочную ось, параллельную ходу лучей.

Построение изображений

Если перед линзой находится некоторая точка, излучающая свет, то изображение от данной точки можно получить в случае пересечения лучей в фокусе.

Действительное изображение — лучи пересекаются в некоторой точке после того, как преломились.

Мнимое изображение — изображение из-за пересечения лучей вблизи мнимого фокуса.

Построение изображения в собирающей линзе

1. Расстояние от предмета до линзы больше, чем фокусное расстояние: d>F .

Для получения изображения направим один луч SO через центр линзы, а второй SX произвольный. Параллельно к произвольному расположим побочную оптическую ось OP до пересечения с фокальной плоскостью. Проведем луч через точку пересечения фокальной плоскости и побочной оси. Будем вести луч до тех пор, пока он не пересечется с лучом SO . В данной точке и покажем изображение.

Если светящаяся точка находится в некотором месте на оси, то поступаем таким же образом — ведем произвольный луч до линзы, параллельно ему побочную ось, после линзы пропускаем луч через точку пересечения фокальной плоскости и побочной оси. Место, где данный луч пересечет главную оптическую ось, и будет местом расположения изображения.

Существует так же более простой способ построения изображения. Однако, он используется только в том случае, когда светящаяся точка находится вне главной оси.

От предмета проводим два луча — один через оптический центр, а другой параллельно главной оси до пересечения с линзой. Когда второй луч пересек линзу, направляем его через фокус. Место, где пересекутся два луча — это и есть место для расположения изображения.

Полученные изображения от предметов после собирающей линзы

1. Предмет находится между первым и вторым фокусом, то есть 2F > d >F .

Если один край предмета находится на главной оси, то следует находить расположение за линзой только конечной его точки. Как проецировать точку, мы уже знаем.

Стоит отметить тот факт, что если тело находится между первым и вторым фокусами, то благодаря собирающей линзе его изображение получается перевернутым, увеличенным и действительным .

Увеличение находится следующим образом:

2. Изображение за вторым фокусом d > 2F .

Если местонахождение предмета сместилось левее относительно линзы, то в ту же сторону сместится и полученное изображение.

Изображение получается уменьшенное, перевернутое и действительное .

3. Расстояние до предмета меньше расстояния до фокуса: F > d .

В данном случае, если мы воспользуемся известными правилами и проведем один луч через центр линзы, а второй параллельно, а потом через фокус, то увидим, что они будут расходиться. Соединятся они только в том случае, если их продолжить перед линзой.

Данное изображение получится мнимое, увеличенное и прямое .

4. Расстояние до предмета равно расстоянию до фокуса: d = F .

Лучи после линзы идут параллельно — это значит, что изображения не будет.

Рассеивающая линза

Для данной линзы используем все те же правила, что и раньше. В результате построения аналогичных изображений, получим:

Вне зависимости от расположения предмета относительно рассеивающей линзы: изображение мнимое, прямое, увеличенное.

3.6.9 Фотоаппарат как оптический прибор

Глаз как оптическая система

Сначала лучи попадают на защитную часть глаза, называемую роговицей.

Роговица — это сферическое прозрачное тело, а, значит, она преломляет лучи, попавшие на нее.

В зависимости от того, на каком расстоянии находится предмет, хрусталик меняет радиусы кривизны, что улучшает фокусировку. Процесс, при котором хрусталик непроизвольно подстраивается к расстоянию предмета, называется аккомодация. Данный процесс происходит, когда мы смотри на приближающийся или отдаляющийся предмет.

Перевернутое и уменьшенное изображение попадает на сетчатку, где нервные окончания сканируют его, переворачивают и отправляют в мозг.

Проблемы со зрением

Как известно, существует две основных проблемы со зрением: дальнозоркость и близорукость. Обе болезни описываются исключительно с точки зрения физики, а объясняются свойствами и толщиной линзы (хрусталика).

Если лучи от предмета соединяются перед сетчаткой, то человек страдает на близорукость .

Исправить данную проблему можно с помощью рассеивающей линзы, то есть именно поэтому больным выписывают очки.

Дальнозоркость — при такой болезни лучи соединяются после сетчатки, то есть фокус находится за пределами глаза.

Для исправления такого зрения используют очки с собирающими линзами.

Кроме природного оптического прибора существуют и искусственные: микроскопы, телескопы, очки, камеры и прочие предметы. Все они имеют аналогичное строение. Для улучшения или увеличения изображения используется система из линз (в микроскопе, телескопе).

Фотоаппарат

Искусственным оптическим прибором можно назвать фотоаппарат. Рассматривать строение современных фотоаппаратов — достаточно сложно. Поэтому в школьном курсе физики рассмотрим самую простую модель, один из первых фотоаппаратов.

Основным оптическим преобразователем, который способен зафиксировать большой объект на пленке, является объектив. Объектив состоит из одной или более линз, которые позволяют фиксировать изображение. Объектив имеет возможность изменять положение линз относительно друг друга, чтобы фокусировать изображение, то есть делать его четким. Все мы знаем, как выглядит сфокусированное изображение — оно четкое, полностью описывает все детали предмета. Если же линзы в объективе не сфокусированы, то изображение получается нечетким и размытым. Аналогичным образом видит человек, обладающим плохим зрением, поскольку изображение не попадает в фокус.

Чтобы получить изображение от отражения света для начала необходимо открыть затвор — только в данном случае пленка будет освещаться в момент фотографирования. Чтобы обеспечить необходимый поток света, его регулируют с помощью диафрагмы.

В результате преломления лучей на линзах объектива, на пленке можно получить перевернутое, действительное и уменьшенное изображение.

«Система подготовки учащихся к ЕГЭ.

Разбор проблемных задач

из КИМов ЕГЭ-2010»

(практикум)


1. При коротком замыкании выводов аккумулятора сила тока в цепи равна 12 А. При подключении к выводам аккумулятора электрической лампы электрическим сопротивлением 5 Ом сила тока в цепи равна 2 А. По результатам этих экспериментов определите внутреннее сопротивление аккумулятора.

Дано: Решение:

I к.з. = 12 А I к.з. = ε / r I = ε /( R+r)

R = 5 Ом ε = I к . з . ∙r ε = I (R + r)

I = 2 А I к . з . ∙r = I (R + r)

I к . з . ∙r = I∙R + I∙r

r - ? I к . з . ∙r - I∙r = I∙R

r (I к . з . – I) = I∙R

r = IR /( I к.з. - I )

r = 2 А∙5 Ом/(12А - 2А) =1 Ом

Ответ: 1 Ом


2. Найти внутреннее сопротивление и ЭДС источника тока, если при силе тока 30 А мощность во внешней цепи равна 180 Вт, а при силе тока 10 А эта мощность равна 100 Вт.

Дано: Решение:

Р 1 = 180 Вт Р 1 = I 1 2 R 1 Р 2 = I 2 2 R 2 R 1 ≠ R 2

I 1 = 30 А R 1 = Р 1 / I 1 2 R 2 = Р 2 / I 2 2

P 2 = 100 Вт ε = I 1 (R 1 + r) ε = I 2 (R 2 + r)

I 2 = 10 А ε = I 1 ( Р 1 / I 1 2 + r) ε = I 2 ( Р 2 / I 2 2 + r)

ε - ? r - ? I 1 ( Р 1 / I 1 2 + r) = I 2 ( Р 2 / I 2 2 + r)

Р 1 / I 1 + I 1 ∙ r = Р 2 / I 2 + I 2 ∙r

I 1 ∙ r – I 2 ∙ r = Р 2 / I 2 - Р 1 / I 1

r (I 1 – I 2 ) = Р 2 / I 2 - Р 1 / I 1

r (I 1 – I 2 ) = (I 1 P 2 -I 2 P 1 ) / I 1 I 2 r = (I 1 P 2 -I 2 P 1 ) / I 1 I 2 (I 1 – I 2 )

r = 0,2 Ом

ε = Р 1 / I 1 + I 1 r ε = 12 В

Ответ: 12 В; 0,2 Ом


3. Батарея состоит из 100 источников тока с ЭДС, равным 1 В и внутренним сопротивлением 0,1 Ом каждый. Источники соединили в группы по 5 штук последовательно, а эти группы соединили параллельно. Какая максимальная полезная мощность может выделяться в нагрузочном сопротивлении этой батареи?

Дано: Решение:

ε = 1 В ε – ЭДС 1 элемента, 5ε – ЭДС одной группы

r = 0,1 Ом и всей батареи

n = 5 r – внутреннее сопротивление элемента, 5 r – группы,

N = 100 5 r /20 = r /4 – внутреннее сопротивление батареи.

Р -? Максимальная мощность Р m будет при условии

равенства внутреннего и внешнего сопротивлений

R = r /4.

Через нагрузочное сопротивление идёт ток

I = 5 ε / (R + r /4) = 5 ε / (r /4 + r /4) = 5 ε∙ 4/2 r = 10 ε / r

P m = I 2 R = 100 ε 2 / r 2 ∙ r /4 = 25 ε 2 / r

P m = 250 Вт

Ответ : 250 Вт




Решение задач ЕГЭ части С: Геометрическая оптика с решениями C1.1. Тонкая линза Л даѐт чѐткое действительное изображение предмета АВ на экране Э (см. рис. 1). Что произойдѐт с изображением предмета на экране, если верхнюю половину линзы закрыть куском чѐрного картона К (см. рис. 2)? Постройте изображение предмета в обоих случаях. Ответ поясните, указав, какие физические закономерности вы использовали для объяснения. С5.1. К потолку комнаты высотой 6 м прикреплено светящееся панно-лампа в виде круга диаметром 2 м. На высоте 3 м от пола параллельно ему расположен непрозрачный квадрат со стороной 2 м. Центр панно и центр квадрата лежат на одной вертикали. Определите минимальный линейный размер тени на полу. Ответ: 2 м. С5.2. В дно водоема глубиной 3 м вертикально вбита свая, скрытая под водой. Высота сваи 2 м. Свая отбрасывает на дне водоема тень длиной 0,75 м. Определите угол падения солнечных лучей на поверхность 4 воды. Показатель преломления воды n = . 3 4  28º.  = arcsin 73    H h L С5.3. В горизонтальное дно водоема глубиной 3 м вертикально вбита свая, полностью скрытая под водой. При угле падения солнечных лучей на поверхность воды, равном 30°, свая отбрасывает на дно водоема тень длиной 0,8 м. Определите высоту сваи. Коэффициент преломления воды. Ответ: h ≈ 2 м. С5.4. В горизонтальное дно водоема глубиной 3 м вертикально вбита свая, скрытая под водой. Высота сваи 2 м. Угол падения солнечных лучей на поверхность воды равен 30°. Определите длину тени сваи на дне водоѐма. Коэффициент преломления воды. Ответ: L ≈ 0,8 м. С5.5. Бассейн глубиной 3 м заполнен водой, относительный показатель преломления на границе воздух - вода 1,33. Каков радиус светового круга на поверхности воды от электрической лампы на дне бассейна? Ответ: ВС ≈ 3,4 м. С5.6. Бассейн глубиной 4 м заполнен водой, относительный показатель преломления на границе воздух-вода 1,33. Какой кажется глубина бассейна наблюдателю, смотрящему в воду вертикально вниз? 1 Решение задач ЕГЭ части С: Геометрическая оптика с решениями Ответ: h` = 3 м. С5.7. На поверхности воды плавает надувной плот шириной 4 м и длиной 6 м. Небо затянуто сплошным облачным покровом, полностью рассеивающим солнечный свет. Определите глубину тени под плотом. Глубиной погружения плота и рассеиванием света водой пренебречь. Показатель преломления воды относительно воздуха 4 принять равным. 3 Ответ: 1,76 м. С5.8. У самой поверхности воды в реке летит комар, стая рыб находится на расстоянии 2 м от поверхности воды. Каково максимальное расстояние до комара, на котором он еще виден рыбам на этой глубине? Относительный показатель преломления света на границе воздух- вода равен 1,33. С5.9. Луч света падает на плоский экран под углом α = 45° и создает на экране светлую точку. Перед экраном на пути луча помещают плоскую стеклянную пластинку, грани которой параллельны экрану. Толщина пластинки d = 4 см, показатель преломления стекла п = √2,5 = 1,58. Луч проходит через обе грани пластинки. На какое расстояние сместится на экране светлая точка? Ответ: s = 2 см. С5.10. На экране с помощью тонкой линзы получено изображение стержня с пятикратным увеличением. Стержень расположен перпендикулярно главной оптической оси, и плоскость экрана также перпендикулярна этой оси. Экран передвинули на 30 см вдоль главной оптической оси линзы. Затем, при неизменном положении линзы, передвинули стержень так, чтобы изображение снова стало резким. В этом случае получено изображение с трехкратным увеличением. Определите фокусное расстояние линзы. Ответ: , или. С5.11. На экране с помощью тонкой линзы получено изображение предмета с пятикратным увеличением. Экран передвинули на 30 см вдоль главной оптической оси линзы. Затем при неизменном положении линзы передвинули предмет, чтобы изображение снова стало резким. В этом случае получилось изображение с трехкратным увеличением. На каком расстоянии от линзы находилось изображение предмета в первом случае? С5.12. Линза, фокусное расстояние которой 15 см, даѐт на экране изображение предмета с пятикратным увеличением. Экран пододвинули к линзе вдоль еѐ главной оптической оси на 30 см. Затем при неизменном положении линзы передвинули предмет так, чтобы изображение снова стало резким. На какое расстояние сдвинули предмет относительно его первоначального положения? С5.13. Определите увеличение, даваемое линзой, фокусное расстояние которой равно F = 0,26 м, если предмет отстоит от нее на расстоянии а = 30 см. Ответ: 6,5. 2 Решение задач ЕГЭ части С: Геометрическая оптика с решениями С5.14. Равнобедренный прямоугольный треугольник ABC площадью 50 см2 расположен перед тонкой собирающей линзой так, что его катет AC лежит на главной оптической оси линзы. Фокусное расстояние линзы 50 см. Вершина прямого угла C лежит ближе к центру линзы, чем вершина острого угла A. Расстояние от центра линзы до точки C равно удвоенному фокусному расстоянию линзы (см. рисунок). Постройте изображение треугольника и найдите площадь получившейся фигуры. С5.15. Небольшой груз, подвешенный на длинной нити, совершает гармонические колебания, при которых его максимальная скорость достигает 0,1 м/с. При помощи собирающей линзы с фокусным расстоянием 0,2 м изображение колеблющегося груза проецируется на экран, расположенный на расстоянии 0,5 м от линзы. Главная оптическая ось линзы перпендикулярна плоскости колебаний маятника и плоскости экрана. Максимальное смещение изображения груза на экране от положения равновесия равно А1 = 0,1 м. Чему равна длина нити I? Ответ: l ≈ 4,4 м. С5.16. Небольшой груз, подвешенный на нити длиной 2,5 м, совершает гармонические колебания, при которых его максимальная скорость достигает 0,2 м/с. При помощи собирающей линзы с фокусным расстоянием 0,2 м изображение колеблющегося груза проецируется на экран, расположенный на расстоянии 0,5 м от линзы. Главная оптическая ось линзы перпендикулярна плоскости колебаний маятника и плоскости экрана. Определите максимальное смещение изображения груза на экране от положения равновесия. Ответ: А1 = 0,15 м. С5.17. Груз массой 0,1 кг, прикрепленный к пружине жесткостью 0,4 Н/м, совершает гармонические колебания с амплитудой 0,1 м. При помощи собирающей линзы с фокусным расстоянием 0,2 м изображение колеблющегося груза проецируется на экран, расположенный на расстоянии 0,5 м от линзы. Главная оптическая ось линзы перпендикулярна траектории груза и плоскости экрана. Определите максимальную скорость изображения груза на экране. Ответ: и = 0,3 м/с. С5.18. Человек читает книгу, держа ее на расстоянии 50 см от глаз. Если это для него расстояние наилучшего видения, то какой оптической силы очки позволят ему читать книгу на расстоянии 25 см? Ответ: D2 = 2 дптр. С5.19. Школьника с нормальным зрением (расстояние наилучшего зрения L = 25 см) укусила в лоб над глазом пчела. Посмотревшись в плоское зеркало, он не смог разглядеть, не осталось ли жало в месте укуса. Тогда он взял маленькую лупу оптической силой D = 16 дптр, и при помощи того же зеркала увидел, что жала нет. Как он это сделал? Нарисуйте возможную оптическую схему, примененную школьником, и найдите расстояние от зеркала до лупы в этой схеме. Все углы падения лучей считать малыми. Ответ: Лупа помещается вплотную к глазу, зеркало – на расстоянии 2,5 см от лупы. 3 Решение задач ЕГЭ части С: Геометрическая оптика с решениями С5.20. Объектив проекционного аппарата имеет оптическую силу 5,4 дптр. Экран расположен на расстоянии 4 м от объектива. Определите размеры экрана, на котором должно уместиться изображение диапозитива размером 69 см. С5.21. На оси X в точке х1 = 10 см находится тонкая рассеивающая линза, а в точке х2 = 30 см - тонкая собирающая линза с фокусным расстоянием f2 = 24 см. Главные оптические оси обеих линз лежат на оси X. Свет от точечного источника, расположенного в точке х = 0, пройдя данную оптическую систему, распространяется параллельным пучком. Найдите оптическую силу D рассеивающей линзы. Ответ: 15 Дптр. С5.22. Объектив фотоаппарата имеет фокусное расстояние F = 5 см, а размер кадра фотопленки h · l = 24 · 36 мм. С какого расстояния d надо сфотографировать чертеж размером Н· L = 240 · 300 мм, чтобы получить максимальный размер изображения? Ответ: 55 см. С5.23. Телескоп имеет объектив с фокусным расстояние 1 м и окуляр с фокусным расстоянием 5 см. Какого диаметра изображение Солнца можно получить с помощью этого телескопа, если есть возможность удалять экран от окуляра до расстояния 1,5 м? Угловой диаметр Солнца 30". С5.24. Условимся считать изображение на плѐнке фотоаппарата резким, если вместо идеального изображения точки на плѐнке получается изображение пятна диаметром не более 0,05 мм. Поэтому если объектив находится на фокусном расстоянии от плѐнки, то резкими считаются не только бесконечно удалѐнные предметы, но и все предметы, находящиеся дальше некоторого расстояния d. Объектив имеет переменное фокусное расстояние. При этом расстояние, на которое он настроен (в данном случае), не изменяется. При «относительном отверстии» α = 4 минимальное расстояние, на котором предметы получаются резкими, меняется (при изменении фокусного расстояния объектива) от 12,5 до 50 м. («Относительное отверстие» - это отношение фокусного расстояния к диаметру входного отверстия объектива.) В каком диапазоне изменяется фокусное расстояние объектива? При расчѐтах считать объектив тонкой линзой. Сделайте рисунок, поясняющий образование пятна. Ответ: фокусное расстояние изменяется от 5 до 10 см С5.25. Условимся считать изображение на пленке фотоаппарата резким, если вместо идеального изображения в виде точки на пленке получается изображение пятна диаметром не более некоторого предельного значения. Поэтому, если объектив находится на фокусном расстоянии от пленки, то резкими считаются не только бесконечно удаленные предметы, но и все предметы, находящиеся дальше некоторого расстояния d. Оцените предельный размер пятна, если при фокусном расстоянии объектива 50 мм и диаметре входного отверстия 5 мм резкими оказались все предметы, находившиеся на расстояниях более 5 м от объектива. Сделайте рисунок, поясняющий образование пятна. Ответ: δ= 0,05 мм. 4

Свеча находится на расстоянии =3, 75 м от экрана. Между свечой и экраном помещают собирающую линзу, которая дает на экране четкое изображение свечи при двух положениях линзы. Найти фокусное расстояние линзы F, если расстояние между положениями линзы b =0, 75 м.

Объективы современных фотоаппаратов имеют переменное фокусное расстояние. При изменении фокусного расстояния «наводка на резкость» не сбивается. Условимся считать изображение на плёнке фотоаппарата резким, если вместо идеального изображения в виде точки на плёнке получается изображение пятна диаметром не более 0, 05 мм. Поэтому если объектив находится на фокусном расстоянии от плёнки, то резкими считаются не только бесконечно удалённые предметы, но и все предметы, находящиеся дальше некоторого расстояния d. Оказалось, что это расстояние равно 5 м, если фокусное расстояние объектива 50 мм. Как изменится это расстояние, если, не меняя «относительного отверстия» изменить фокусное расстояние объектива до 25 мм? («Относительное отверстие» – это отношение фокусного расстояния к диаметру входного отверстия объектива.) При расчётах считать объектив тонкой линзой. Сделайте рисунок, поясняющий образование пятна F D d b f

Решение. 1. Выразим расстояние d из формулы тонкой линзы: (1) 2. Из подобия треугольников следует: (2) где D – диаметр линзы, b – диаметр пятна на экране. 3. Решаем совместно (1) и (2) и получаем значение d: (3), 4. По условию задачи «относительное отверстие» с = F/D величина постоянна, значит они пропорциональны другу. С уменьшением фокусного расстояния, во столько же раз должен уменьшится диаметр линзы. Значит, при уменьшении в два раза фокусного расстояния в четыре раза уменьшается расстояние, с которого можно считать предмет бесконечно далеким.

Решение 1. Определить, на каком расстоянии от линзы находится мнимое изображение источника S`: , От зеркала – на расстоянии 7 см. 2. Однако свет отражается от зеркала и образует действительное изображение в точке S``. Отраженный луч симметричен, откуда, зная расстояние между зеркалом и линзой, можно найти, на каком расстоянии от линзы оно находится. Х = 8 – 7 = 1 см. Значит, от источника света его действительное изображение будет на расстоянии 8, 5 см.

Линза + плоское зеркало Плоское зеркало вплотную прижато к тонкой собирающей линзе с фокусным расстоянием F. Изображение предмета находится на расстоянии 2 F от линзы. С каким увеличением изображен предмет? Решение: Оптическая система имеет оптическую силу равную Do = D 1 + D 2 + Dз. Это обосновывается тем, что луч два раза преломляется и один раз отражается, Dз – оптическая сила плоского зеркала, которая равна 0. Значит, система имеет фокусное расстояние F/2. Отсюда можно определить расстояние от источника до линзы d = 2 F/3, и увеличение равно Г = 3.

1. На каком расстоянии друг от друга следует расположить две линзы: сначала рассеивающую с фокусным расстоянием 4 см, затем собирающую с фокусным расстоянием 9 см, чтобы пучок параллельных главной оптической оси лучей, пройдя обе линзы, оставался параллельным? 2. На каком расстоянии друг от друга следует расположить две линзы: сначала собирающую с фокусным расстоянием 30 см, затем рассеивающую с фокусным расстоянием 20 см, чтобы пучок параллельных главной оптической оси лучей, пройдя обе линзы, оставался параллельным? Линза + линза

Одна сторона толстой стеклянной пластины имеет ступенчатую поверхность, как показано на рисунке. На пластину, перпендикулярно ее поверхности, падает световой пучок, который после отражения от пластины собирается линзой. Длина падающей световой волны l. При каком наименьшем из указанных значений высоты ступеньки d интенсивность света в фокусе линзы будет минимальной?

1. Небольшой груз, подвешенный на нити длиной 2, 5 м, совершает гармонические колебания с амплитудой 0, 1 м. При помощи собирающей линзы с фокусным расстоянием 0, 2 м изображение колеблющегося груза проецируется на экран, расположенный на расстоянии 0, 5 м от линзы. Главная оптическая ось линзы перпендикулярна плоскости колебания маятника и плоскости экрана. Определить максимальную скорость изображения груза на экране. Обозначим максимальную скорость маятника υмакс = Aω и изображения υ`макс =A`ω. (1). 2) Связь между амплитудами можно определить по формуле тонкой линзы с использованием линейного поперечного увеличения: 3. Частота колебания маятника равна Отсюда А` = A(f - F)/F (2), 4) Подставим (2) в формулу (1) и определим искомую величину:

Боковая сторона прямоугольной трапеции АВСД примыкающей к ее прямым углам, расположена на главной оптической оси тонкой линзы. Линза создает действительное изображение трапеции в виде трапеции с теми же самыми углами. Если повернуть трапецию АВСД на 1800 вокруг стороны АВ, то линза создает изображение трапеции в виде прямоугольника. С каким увеличением отображается сторона АВ? В D А

В C 2 F D A 2 F F D` A` C` C`` В` 1. Построить изображение трапеции, соответствующее условию задачи «с теми же самыми углами» . Это значит, что сторона ВС до линзы и после линзы должны лежать на одной прямой. Это будет в том случае, если эта прямая проходит через двойной фокус. Второй луч выгоднее провести через фокус, Получается трапеция A`B`C`D`. 2. По условию задачи при повороте трапеции через АВ изображение получается в виде прямоугольника. Построим его. Луч, который проходит через фокус через новую точку С дает ее новое изображение на уровне B`. Только, если АВ расположена в середине отрезка возможно такое. 3. На основе формулы тонкой линзы, с учетом d = 2/3 F, получаем f = 3 F, Соответственно, увеличение стороны АВ равно Г = f/d = 2

Тонкая стеклянная бипризма с преломляющим углом 0, 05 рад, показателем преломления 1, 5 и шириной 20 см стоит вертикально в пучке параллельных световых лучей. Найдите расстояние от бипризмы до экрана, при котором ширина тени в центре экрана равна ширине бипризмы Положение экрана и изображения на нем