Производная и ее. Дифференциальное исчисление функций. Физический смысл производной

Когда человек сделал первые самостоятельные шаги в изучении математического анализа и начинает задавать неудобные вопросы, то уже не так-то просто отделаться фразой, что «дифференциальное исчисление найдено в капусте». Поэтому настало время набраться решимости и раскрыть тайну появления на свет таблицы производных и правил дифференцирования . Начало положено в статье о смысле производной , которую я настоятельно рекомендую к изучению, поскольку там мы как раз рассмотрели понятие производной и начали щёлкать задачи по теме. Этот же урок носит ярко выраженную практическую направленность, более того,

рассматриваемые ниже примеры, в принципе, можно освоить и чисто формально (например, когда нет времени/желания вникать в суть производной). Также крайне желательно (однако опять не обязательно) уметь находить производные «обычным» методом – хотя бы на уровне двух базовых занятий: Как найти производную? и Производная сложной функции.

Но без чего-чего сейчас точно не обойтись, так это без пределов функций . Вы должны ПОНИМАТЬ, что такое предел и уметь решать их, как минимум, на среднем уровне. А всё потому, что производная

функции в точке определяется формулой:

Напоминаю обозначения и термины: называют приращением аргумента ;

– приращением функции;

– это ЕДИНЫЕ символы («дельту» нельзя «отрывать» от «икса» или «игрека»).

Очевидно, что является «динамической» переменной, – константой и результат вычисления предела – числом (иногда – «плюс» либо «минус» бесконечностью) .

В качестве точки можно рассмотреть ЛЮБОЕ значение , принадлежащее области определения функции , в котором существует производная.

Примечание : оговорка «в котором существует производная» – в общем случае существенна ! Так, например, точка хоть и входит в область определения функции , но производной

Там не существует. Поэтому формула

Не применима в точке ,

и укороченная формулировка без оговорки будет некорректна. Аналогичные факты справедливы и для других функций с «обрывами» графика, в частности, для арксинуса и арккосинуса.

Таким образом, после замены , получаем вторую рабочую формулу:

Обратите внимание на коварное обстоятельство, которое может запутать чайника: в данном пределе «икс», будучи сам независимой переменной, исполняет роль статиста, а «динамику» задаёт опять же приращение . Результатом вычисления предела

является производная функция .

Исходя из вышесказанного, сформулируем условия двух типовых задач:

– Найти производную в точке , используя определение производной.

– Найти производную функцию , используя определение производной. Эта версия, по моим наблюдениям, встречается заметно чаще и ей будет уделено основное внимание.

Принципиальное отличие заданий состоит в том, что в первом случае требуется найти число (как вариант, бесконечность) , а во втором –

функцию . Кроме того, производной может и вовсе не существовать.

Как ?

Составить отношение и вычислить предел .

Откуда появилась таблица производных и правила дифференцирования? Благодаря единственному пределу

Кажется волшебством, но в

действительности – ловкость рук и никакого мошенничества. На уроке Что такое производная? я начал рассматривать конкретные примеры, где с помощью определения нашёл производные линейной и квадратичной функции. В целях познавательной разминки продолжим тревожить таблицу производных , оттачивая алгоритм и технические приёмы решения:

По сути, требуется доказать частный случай производной степенной функции, который обычно фигурирует в таблице: .

Решение технически оформляется двумя способами. Начнём с первого, уже знакомого подхода: лесенка начинается с дощечки, а производная функция – с производной в точке.

Рассмотрим некоторую (конкретную) точку , принадлежащую области определения функции , в которой существует производная. Зададим в данной точке приращение (разумеется, не выходящее за рамки о/о -я) и составим соответствующее приращение функции:

Вычислим предел:

Неопределённость 0:0 устраняется стандартным приёмом, рассмотренным ещё в первом веке до нашей эры. Домножим

числитель и знаменатель на сопряженное выражение :

Техника решения такого предела подробно рассмотрена на вводном уроке о пределах функций .

Поскольку в качестве можно выбрать ЛЮБУЮ точку интервала

То, осуществив замену , получаем:

В который раз порадуемся логарифмам:

Найти производную функции , пользуясь определением производной

Решение : рассмотрим другой подход к раскрутке той же задачи. Он точно такой же, но более рационален с точки зрения оформления. Идея состоит в том, чтобы в начале решения избавиться от

подстрочного индекса и вместо буквы использовать букву .

Рассмотрим произвольную точку , принадлежащую области определения функции (интервалу ), и зададим в ней приращение . А вот здесь, кстати, как и в большинстве случаев, можно обойтись без всяких оговорок, поскольку логарифмическая функция дифференцируема в любой точке области определения.

Тогда соответствующее приращение функции:

Найдём производную:

Простота оформления уравновешивается путаницей, которая может

возникнуть у начинающих (да и не только). Ведь мы привыкли, что в пределе изменяется буква «икс»! Но тут всё по-другому: – античная статуя, а – живой посетитель, бодро шагающий по коридору музея. То есть «икс» – это «как бы константа».

Устранение неопределённости закомментирую пошагово:

(1) Используем свойство логарифма .

(2) В скобках почленно делим числитель на знаменатель.

(3) В знаменателе искусственно домножаем и делим на «икс» чтобы

воспользоваться замечательным пределом , при этом в качестве бесконечно малой величины выступает .

Ответ : по определению производной:

Или сокращённо:

Предлагаю самостоятельно сконструировать ещё две табличные формулы:

Найти производную по определению

В данном случае составленное приращение сразу же удобно привести к общему знаменателю. Примерный образец оформления задания в конце урока (первый способ).

Найти производную по определению

А тут всё необходимо свести к замечательному пределу . Решение оформлено вторым способом.

Аналогично выводится ряд других табличных производных . Полный список можно найти в школьном учебнике, или, например, 1- м томе Фихтенгольца. Не вижу особого смысла переписывать из книг и доказательства правил дифференцирования – они тоже порождены

формулой .

Переходим к реально встречающимся заданиям: Пример 5

Найти производную функции , используя определение производной

Решение : используем первый стиль оформления. Рассмотрим некоторую точку , принадлежащую , и зададим в ней приращение аргумента . Тогда соответствующее приращение функции:

Возможно, некоторые читатели ещё не до конца поняли принцип, по которому нужно составлять приращение . Берём точку (число) и находим в ней значение функции: , то есть в функцию

вместо «икса» следует подставить . Теперь берём

Составленное приращение функции бывает выгодно сразу же упростить . Зачем? Облегчить и укоротить решение дальнейшего предела.

Используем формулы , раскрываем скобки и сокращаем всё, что можно сократить:

Индейка выпотрошена, с жаркое никаких проблем:

В итоге:

Поскольку в качестве можно выбрать любое действительное число, то проведём замену и получим .

Ответ : по определению.

В целях проверки найдём производную с помощью правил

дифференцирования и таблицы:

Всегда полезно и приятно знать правильный ответ заранее, поэтому лучше мысленно либо на черновике продифференцировать предложенную функцию «быстрым» способом в самом начале решения.

Найти производную функции по определению производной

Это пример для самостоятельного решения. Результат лежит на поверхности:

Вернёмся к стилю №2: Пример 7

Давайте немедленно узнаем, что должно получиться. По правилу дифференцирования сложной функции :

Решение : рассмотрим произвольную точку , принадлежащую , зададим в ней приращение аргумента и составим приращение

Найдём производную:

(1) Используем тригонометрическую формулу

(2) Под синусом раскрываем скобки, под косинусом приводим подобные слагаемые.

(3) Под синусом сокращаем слагаемые, под косинусом почленно делим числитель на знаменатель.

(4) В силу нечётности синуса выносим «минус». Под косинусом

указываем, что слагаемое .

(5) В знаменателе проводим искусственное домножение, чтобы использовать первый замечательный предел . Таким образом, неопределённость устранена, причёсываем результат.

Ответ : по определению Как видите, основная трудность рассматриваемой задачи упирается в

сложность самого предела + небольшое своеобразие упаковки. На практике встречаются и тот и другой способ оформления, поэтому я максимально подробно расписываю оба подхода. Они равноценны, но всё-таки, по моему субъективному впечатлению, чайникам целесообразнее придерживаться 1-го варианта с «икс нулевым».

Пользуясь определением, найти производную функции

Это задание для самостоятельного решения. Образец оформлен в том же духе, что предыдущий пример.

Разберём более редкую версию задачи:

Найти производную функции в точке , пользуясь определением производной.

Во-первых, что должно получиться в сухом остатке? Число Вычислим ответ стандартным способом:

Решение : с точки зрения наглядности это задание значительно проще, так как в формуле вместо

рассматривается конкретное значение.

Зададим в точке приращение и составим соответствующее приращение функции:

Вычислим производную в точке:

Используем весьма редкую формулу разности тангенсов и в который раз сведём решение к первому

замечательному пределу:

Ответ : по определению производной в точке.

Задачу не так трудно решить и «в общем виде» – достаточно заменить на или просто в зависимости от способа оформления. В этом случае, понятно, получится не число, а производная функция.

Пример 10 Используя определение, найти производную функции в точке

Это пример для самостоятельного решения.

Заключительная бонус-задача предназначена, прежде всего, для студентов с углубленным изучением математического анализа, но и всем остальным тоже не помешает:

Будет ли дифференцируема функция в точке ?

Решение : очевидно, что кусочно-заданная функция непрерывна в точке , но будет ли она там дифференцируема?

Алгоритм решения, причём не только для кусочных функций, таков:

1) Находим левостороннюю производную в данной точке: .

2) Находим правостороннюю производную в данной точке: .

3) Если односторонние производные конечны и совпадают:

, то функция дифференцируема в точке и

геометрически здесь существует общая касательная (см. теоретическую часть урока Определение и смысл производной ).

Если получены два разных значения: (одно из которых может оказаться и бесконечным) , то функция не дифференцируема в точке .

Если же обе односторонние производные равны бесконечности

(пусть даже разных знаков), то функция не

дифференцируема в точке , но там существует бесконечная производная и общая вертикальная касательная к графику (см. Пример 5 урока Уравнение нормали ) .

Примечание : таким образом, между вопросами «Будет ли дифференцируема функция в точке?» и «Существует ли производная в точке?» есть разница!

Всё очень просто!

1) При нахождении левосторонней производной приращение аргумента отрицательно: , а слева от точки расположена парабола , поэтому приращение функции равно:

И соответствующий левосторонний предел численно равен левосторонней производной в рассматриваемой точке:

2) Справа от точки находится график прямой и приращение аргумента положительно: . Таким образом, приращение функции:

Правосторонний предел и правосторонняя производная в точке:

3) Односторонние производные конечны и различны:

Ответ : функция не дифференцируема в точке .

Ещё легче доказывается книжный случай недифференцируемости модуля в точке , о котором я в общих чертах уже рассказал на теоретическом уроке о производной .

Некоторые кусочно-заданные функции дифференцируемы и в точках «стыка» графика, например, котопёс

обладает общей производной и общей касательной (ось абсцисс) в точке . Кривой, да дифференцируемый на ! Желающие могут убедиться в этом самостоятельно по образцу только что решённого примера.

На этом забавном гибриде и закончим повествование =) Решения и ответы:

Пример 3: Решение : рассмотрим некоторую точку , принадлежащую области определения функции . Зададим в

данной точке приращение и составим соответствующее приращение функции:

Найдём производную в точке :

Так как в качестве можно выбрать любую точку области определения функции , то и

Ответ : по определению производной

Пример 4: Решение : рассмотрим произвольную точку , принадлежащую , и зададим в ней приращение . Тогда соответствующее приращение функции:

Найдём производную:

Используем замечательный предел

Ответ : по определению

Пример 6: Решение : рассмотрим некоторую точку , принадлежащую , и зададим в ней приращение аргумента . Тогда соответствующее приращение функции:

Ответ : по определению

Пример 10: Решение : Зададим приращение в точке . Тогда приращение функции:

Вычислим производную в точке:

Умножим числитель и знаменатель на сопряженное выражение:

Ответ : по определению производной в точке

Производной функции называется базовый элемент в дифференциальном исчислении. Этот элемент и является определенным результатом применения какой-то определенной операции дифференцирования по отношению к исходной функции.

Определение производной

Для того, чтобы понять, что такое производная, необходимо знать, что название функции происходит непосредственно от слова «произведенная», то есть образовавшаяся от другой какой-либо величины. При этом сам процесс определения производной какой-то определенной функции имеет название - «дифференцирование».

Наиболее распространенный метод представления и определения, при использовании теории пределов, несмотря на то, что она появилась гораздо позже дифференциальных исчислений. По определению данной теории, производной называется предел в отношении приращения функций к приращению аргумента, в случае если таковой предел имеется, и при условии, что данный аргумент стремится к нулевому значению.

Рассмотренный ниже небольшой пример поможет наглядно понять, что такое производная.

  1. Для поиска производной функции f в точке х, нам нужно определить значения данной функции непосредственно в точке х, а так же в точке х+Δх. Причем Δx – это приращения аргумента х.
  2. Найти приращение для функции у приравненное к f(х+Δх) – f(х).
  3. Записать производную при помощи предела отношения f’ = lim(f(x+Δх) – f(x))/Δх, исчислить при Δх → 0.

Обычно производная обозначается знаком апострофа - «’» непосредственно над дифференцируемой функцией. Обозначение в виде одного апострофа обозначает первую производную, в виде двух – вторую. Производную наивысшего порядка принято задавать соответствующей цифрой, к примеру f^(n) – что означает производную n-го порядка, где буква «n» – целое число, которое? 0. Производная нулевого порядка - это и есть сама дифференцируемая функция.

С целью облегчения дифференцирования усложненных функций, были разработаны и приняты определенные правила дифференцирования функций:

  • С’ = 0, где С – обозначение константы;
  • х’ равняется 1;
  • (f + g)’ приравнивается f’ + g’;
  • (С*f)’ приравнено C*f’ и так далее.
  • Для N-кратного дифференцирования удобнее применять формулу Лейбница в виде: (f*g) (n) = Σ C(н) k *f (н-k) *g к, в которой С(н) к – обозначения биномиальных коэффициентов.

Производная и геометрия

Геометрическое осмысление производной заключается в том, что если для функции f имеется конечная производная в пункте х, то значение данной производной будет равняться тангенсу угла от наклона в касательной к функции f в данной точке.

На этом занятии мы будем учиться применять формулы и правила дифференцирования.

Примеры. Найти производные функций.

1. y=x 7 +x 5 -x 4 +x 3 -x 2 +x-9. Применяем правило I , формулы 4, 2 и 1 . Получаем:

y’=7x 6 +5x 4 -4x 3 +3x 2 -2x+1.

2. y=3x 6 -2x+5. Решаем аналогично, используя те же формулы и формулу 3.

y’=3∙6x 5 -2=18x 5 -2.

Применяем правило I , формулы 3, 5 и 6 и 1.

Применяем правило IV , формулы 5 и 1 .

В пятом примере по правилу I производная суммы равна сумме производных, а производную 1-го слагаемого мы только что находили (пример 4 ), поэтому, будем находить производные 2-го и 3-го слагаемых, а для 1-го слагаемого можем сразу писать результат.

Дифференцируем 2-ое и 3-е слагаемые по формуле 4 . Для этого преобразуем корни третьей и четвертой степеней в знаменателях к степеням с отрицательными показателями, а затем, по 4 формуле, находим производные степеней.

Посмотрите на данный пример и полученный результат. Уловили закономерность? Хорошо. Это означает, что мы получили новую формулу и можем добавить ее в нашу таблицу производных.

Решим шестой пример и выведем еще одну формулу.

Используем правило IV и формулу 4 . Получившиеся дроби сократим.

Смотрим на данную функцию и на ее производную. Вы, конечно, поняли закономерность и готовы назвать формулу:

Учим новые формулы!

Примеры.

1. Найти приращение аргумента и приращение функции y=x 2 , если начальное значение аргумента было равно 4 , а новое -4,01 .

Решение.

Новое значение аргумента х=х 0 +Δx . Подставим данные: 4,01=4+Δх, отсюда приращение аргумента Δх =4,01-4=0,01. Приращение функции, по определению, равно разности между новым и прежним значениями функции, т.е. Δy=f (х 0 +Δх) - f (x 0). Так как у нас функция y=x 2 , то Δу =(х 0 +Δx) 2 — (х 0) 2 =(х 0) 2 +2x 0 · Δx+(Δx) 2 — (х 0) 2 =2x 0 · Δx+(Δx) 2 =

2 · 4 · 0,01+(0,01) 2 =0,08+0,0001=0,0801.

Ответ: приращение аргумента Δх =0,01; приращение функции Δу =0,0801.

Можно было приращение функции найти по-другому: Δy =y (х 0 +Δx) -y (х 0)=у(4,01) -у(4)=4,01 2 -4 2 =16,0801-16=0,0801.

2. Найти угол наклона касательной к графику функции y=f (x) в точке х 0 , если f "(х 0) = 1 .

Решение.

Значение производной в точке касания х 0 и есть значение тангенса угла наклона касательной (геометрический смысл производной). Имеем: f "(х 0) = tgα = 1 → α = 45°, так как tg45°=1.

Ответ: касательная к графику данной функции образует с положительным направлением оси Ох угол, равный 45° .

3. Вывести формулу производной функции y=x n .

Дифференцирование — это действие нахождения производной функции.

При нахождении производных применяют формулы, которые были выведены на основании определения производной, так же, как мы вывели формулу производной степени: (x n)" = nx n-1 .

Вот эти формулы.

Таблицу производных легче будет заучить, проговаривая словесные формулировки:

1. Производная постоянной величины равна нулю.

2. Икс штрих равен единице.

3. Постоянный множитель можно вынести за знак производной.

4. Производная степени равна произведению показателя этой степени на степень с тем же основанием, но показателем на единицу меньше.

5. Производная корня равна единице, деленной на два таких же корня.

6. Производная единицы, деленной на икс равна минус единице, деленной на икс в квадрате.

7. Производная синуса равна косинусу.

8. Производная косинуса равна минус синусу.

9. Производная тангенса равна единице, деленной на квадрат косинуса.

10. Производная котангенса равна минус единице, деленной на квадрат синуса.

Учим правила дифференцирования .

1. Производная алгебраической суммы равна алгебраической сумме производных слагаемых.

2. Производная произведения равна произведению производной первого множителя на второй плюс произведение первого множителя на производную второго.

3. Производная «у», деленного на «вэ» равна дроби, в числителе которой "у штрих умноженный на «вэ» минус «у, умноженный на вэ штрих», а в знаменателе — «вэ в квадрате».

4. Частный случай формулы 3.

Учим вместе!

Страница 1 из 1 1

Понятие производной

Пусть функция f (x ) определена на некотором промежутке X. Придадим значению аргумента в точке x 0 Х произволь­ное приращение Δx так, чтобы точка x 0 + Δx также принад­лежала X. Тогда соответствующее приращение функции f(x) составит Δу = f (x 0 + Δx ) - f (x 0 ).

Определение 1. Производной функции f(x) в точке x 0 назы­вается предел отношения приращения функции в этой точке к приращению аргумента при Δx 0 (если этот предел сущест­вует).

Для обозначения производной функции употребимы симво­лы у" (x 0 ) или f "(x 0 ):

Если в некоторой точке x 0 предел (4.1) бесконечен:

то говорят, что в точке x 0 функция f (x ) имеет бесконечную производную.

Если функция f (x ) имеет производную в каждой точке мно­жества X, то производная f"(x) также является функцией от аргумента х, определенной на X.

Геометрический смысл производной

Для выяснения геометрического смысла производной нам понадобится определение касательной к графику функции в данной точке.

Определение 2. Касательной к графику функции у = f (x ) в точке М называется предельное положение секущей MN, ког­да точка N стремится к точке М по кривой f (x ).

Пусть точка М на кривой f (x ) соответствует значению ар­гумента x 0 , а точка N - значению аргумента x 0 + Δx (рис. 4.1). Из определения касательной следует, что для ее существования в точке x 0 необходимо, чтобы существовал предел , который равен углу наклона касательной к оси Оx . Из треугольника MNA следует, что

Если производная функции f (x ) в точке x 0 существует, то, согласно (4.1), получаем

Отсюда следует наглядный вывод о том, что производная f "(x 0 ) равна угловому коэффициенту (тангенсу угла наклона к положительному направлению оси Ох) касательной кграфику функции у = f (x ) в точке М (x 0 , f (x 0 )). При этомуголнаклона касательной определяется из формулы (4.2):

Физический смысл производной

Предположим, что функция l = f (t ) описывает закон дви­жения материальной точки по прямой как зависимость пути l от времени t. Тогда разность Δl = f(t + Δt) - f(t) - это путь, пройденный за интервал времени Δt , а отношение Δl t - средняя скорость за время Δt . Тогда предел определяет мгновенную скорость точки в момент вре­мени t как производную пути по времени.

В определенном смысле производную функции у = f(x) можно также трактовать как скорость изменения функции: чем больше величина f "(x ), тем больше угол наклона касательной к кривой, тем круче график f (x ) и быстрее растет функция.



Правая и левая производные

По аналогии с понятиями односторонних пределов функ­ции вводятся понятия правой и левой производных функции в точке.

Определение 3. Правой (левой) производной функции у = f(x) в точке x 0 называется правый (левый) предел отноше­ния (4.1) при Δx 0, если этот предел существует.

Для обозначения односторонних производных используется следующая символика:

Если функция f (x ) имеет в точке x 0 производную, то она имеет левую и правую производные в этой точке, которые сов­падают.

Приведем пример функции, у которой существуют одно­сторонние производные в точке, не равные друг другу. Это f (x ) = |x |. Действительно, в точке х = 0 имеем f’ + (0) = 1, f" - (0) = -1 (рис. 4.2) и f’ + (0) ≠ f’ - (0), т.е. функция не имеет производной при х = 0.

Операцию нахождения производной функции называют ее дифференцированием; функция, имеющая производную в точ­ке, называется дифференцируемой.

Связь между дифференцируемостью и непрерывностью функции в точке устанавливает следующая теорема.

ТЕОРЕМА 1. Если функция дифференцируема в точке x 0 , то она и непрерывна в этой точке.

Обратное утверждение неверно: функция f (x ), непрерыв­ная в точке, может не иметь производную в этой точке. Таким примером является функция у = |x |; она непрерывна в точке x = 0, но не имеет производной в этой точке.

Таким образом, требование дифференцируемости функции является более сильным, чем требование непрерывности, по­скольку из первого автоматически вытекает второе.

Уравнение касательной к графику функции в данной точке

Как было указано в разделе 3.9, уравнение прямой, про­ходящей через точку М (x 0 , у 0 ) с угловым коэффициентом k имеет вид

Пусть задана функция у = f (x ). Тогда посколькуее произ­водная в некоторой точке М (x 0 , у 0 ) является угловым коэффи­циентом касательной к графику этой функции в точке М, то отсюда следует, что уравнение касательной к графику функ­ции f (x ) в этой точке имеет вид

Пусть функция определена в точкеи некоторой ее окрестности. Придадим аргументуприращениетакое, что точкапопадает в область определения функции. Функция при этом получит приращение.

ОПРЕДЕЛЕНИЕ. Производной функции в точке называется предел отношения приращения функции в этой точке к приращению аргумента , при(если этот предел существует и конечен), т.е.

Обозначают: ,,,.

Производной функции в точкесправа (слева) называется

(если этот предел существует и конечен).

Обозначают: ,– производнаяв точкесправа,

,– производнаяв точкеслева.

Очевидно, что справедлива следующая теорема.

ТЕОРЕМА. Функция имеет производную в точкетогда и только тогда, когда в этой точке существуют и равны между собой производные функции справа и слева. Причем

Следующая теорема устанавливает связь между существованием производной функции в точке и непрерывностью функции в этой точке.

ТЕОРЕМА (необходимое условие существования производной функции в точке). Если функция имеет производную в точке, то функцияв этой точке непрерывна.

ДОКАЗАТЕЛЬСТВО

Пусть существует . Тогда

,

где – бесконечно малая при.

Замечание

производной функции и обозначают

дифференцированием функции .

    ГЕОМЕТРИЧЕЧКИЙ И ФИЗИЧЕСКИЙ СМЫСЛ

1) Физический смысл производной . Если функция и ее аргументявляются физическими величинами, то производная– скорость изменения переменнойотносительно переменнойв точке. Например, если– расстояние, проходимое точкой за время, то ее производная– скорость в момент времени. Если– количество электричества, протекающее через поперечное сечение проводника в момент времени, то– скорость изменения количества электричества в момент времени, т.е. сила тока в момент времени.

2) Геометрический смысл производной.

Пусть – некоторая кривая,– точка на кривой.

Любая прямая, пересекающая не менее чем в двух точках называетсясекущей .

Касательной к кривой в точке называется предельное положение секущей , если точкастремится к, двигаясь по кривой.

Из определения очевидно, что если касательная к кривой в точке существует, то она единственная

Рассмотрим кривую (т.е. график функции). Пусть в точкеон имеет невертикальную касательную. Ее уравнение:(уравнение прямой, проходящей через точкуи имеющую угловой коэффициент).

По определению углового коэффициента

где – угол наклона прямойк оси.

Пусть – угол наклона секущейк оси, где. Так как– касательная, то при

Следовательно,

Таким образом, получили, что – угловой коэффициент касательной к графику функции в точке (геометрический смысл производной функции в точке). Поэтому уравнение касательной к кривой в точкеможно записать в виде

Замечание . Прямая, проходящая через точку перпендикулярно касательной, проведенной к кривой в точке, называетсянормалью к кривой в точке . Так как угловые коэффициенты перпендикулярных прямых связаны соотношением , то уравнение нормали к кривойв точкебудет иметь вид

, если .

Если же , то касательная к кривойв точкебудет иметь вид

а нормаль .

    УРАВНЕНИЯ КАСАТЕЛЬНОЙ И НОРМАЛИ

Уравнение касательной

Пусть функция задается уравнением y =f (x ), нужно написать уравнение касательной в точке x 0. Из определения производной:

y /(x )=limΔx →0Δy Δx

Δy =f (x x )−f (x ).

Уравнение касательной к графику функции: y =kx +b (k ,b =const ). Из геометрического смысла производной: f /(x 0)=tg α=k Т.к. x 0 и f (x 0)∈ прямой, то уравнение касательной записывается в виде: y f (x 0)=f /(x 0)(x x 0) , или

y =f /(x 0)·x +f (x 0)−f /(x 0)·x 0.

Уравнение нормали

Нормаль - это перпендикуляр к касательной (см. рисунок). Исходя из этого:

tg β=tg (2π−α)=ctg α=1tg α=1f /(x 0)

Т.к. угол наклона нормали -- это угол β1, то имеем:

tg β1=tg (π−β)=−tg β=−1f /(x ).

Точка (x 0,f (x 0))∈ нормали, уравнение примет вид:

y f (x 0)=−1f /(x 0)(x x 0).

ДОКАЗАТЕЛЬСТВО

Пусть существует . Тогда

,

где – бесконечно малая при.

Но это означает, что непрерывна в точке(см. геометрическое определение непрерывности). ∎

Замечание . Непрерывность функции в точке не является достаточным условием существования производной этой функции в точке. Например, функциянепрерывна, но не имеет производной в точке. Действительно,

и, следовательно, не существует.

Очевидно, что соответствие является функцией, определенной на некотором множестве. Ее называютпроизводной функции и обозначают

Операцию нахождения для функции ее производной функции называютдифференцированием функции .

    Производная суммы и разности

Пусть даны функции f(x) и g(x), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:

    (f + g)’ = f ’ + g ’

    (f − g)’ = f ’ − g ’

Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h)’ = f ’ + g ’ + h ’.

Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f − g можно переписать как сумму f + (−1) · g, и тогда останется лишь одна формула - производная суммы.