Нобелевская премия по физике. Нобелевская премия по физике присуждена за гравитационные волны. Почему ученые так долго не могли зарегистрировать гравитационные волны

Давайте поговорим об этом подробнее и назовём по именам тех, кто удостоился самой громкой мировой научно-культурной премии, которая вручается с начала ХХ века.

Физика: Кип Торн, Райнер Вайсс и Барри Бэрриш

Премия досталась учёным за создание лазерно-интерферометрической гравитационно-волновой обсерватории, работа которой помогла подтвердить существование комических гравитационных волн.

До сих пор наши знания о них не были подтверждены экспериментом, хотя об их существовании ещё сто лет назад заговорил Альберт Эйнштейн. Что же, он оказался прав, и теперь это официально!

МЕДИЦИНА и физиология: Джеффри Холл, Майкл Розбаш и Майкл Янг

В этом году в сфере медицины было отмечено открытие «молекулярных механизмов, которые контролируют циркадные ритмы». Имеются в виду те механизмы, которые контролируют колебания активности живых организмов в разное время суток. Исследователи обнаружили ген, отвечающий за циркадные ритмы.

Подопытными в эксперименте служили любимые генетиками фруктовые мушки, известные своим быстрым размножением и уже сделавшие посильный вклад во множество открытий, связанных с передачей наследственной информации.

Химия: Ричард хендерсон, иохаим франк, Жак Дюбоше

Химики получили награду за разработку криоэлектронной микроскопии для определения структуры молекул с высоким разрешением в растворе. Этот вид исследования позволяет изучать строение биомолекул и создавать их изображения в 3D.

В официальном твиттере Нобелевской премии выложена схема , которая иллюстрирует, как происходит этот процесс.

Литература: Кадзуо Исигуро

Британский писатель японского происхождения удостоился премии за то, что в своих произведениях, по формулировке нобелевского комитета, «раскрыл пропасть под иллюзорным ощущением связи с миром». Кадзуо Исигуро - автор романов «Остаток дня», который рассказывает о жизни английского дворецкого, психологической антиутопии «Не отпускай меня», а также других произведений.

Награждение писателя вызвало позитивную реакцию множества комментаторов и критиков. Не секрет, что вручение Нобелевской премии по литературе регулярно вызывает дебаты о политической ангажированности. Однако в случае с Кадзуо Исигуро, которого заслуженно называют одним из самых талантливых ныне живущих британских писателей, гораздо больше хочется говорить о самих романах.

В прошлом году Нобелевскую премию по литературе получил поэт и музыкант Боб Дилан, который ввёл в замешательство комитет и мировую общественность, долго размышляя, принимать ли награду.

премия мира

Награду, которая вручается Нобелевским комитетом в Осло за выдающийся вклад в укрепление мира во всём мире, получила Международная кампания по отказу от ядерного оружия (International Campaign to Abolish Nuclear Weapons, ICAN).

Активисты движения, которое существует уже 10 лет, оказали влияние на принятие ООН резолюций, касающихся ядерного разоружения. Среди их инициатив - Договор о запрещении ядерного оружия, который предусматривает полный отказ от ядерных боеголовок. На сегодняшний день страны, у которых есть ядерное оружие, эту инициативу не приняли.

Напоминаем, что Часы Судного дня (проект физиков-ядерщиков, созданный в 1947 году для оценки вероятности ядерной войны), идут до сих пор. В 2017 году после заявлений Трампа и на фоне растущих националистических настроений стрелки перевели на полминуты вперёд. Сейчас на Часах Судного дня без двух минут полночь, а это самая худшая ситуация с 1953 года, когда СССР и США испытали термоядерные бомбы.

Всё наше понимание процессов, происходящих во Вселенной, представления о ее структуре сложились на основе изучения электромагнитного излучения, другими словами — фотонов всех возможных энергий, доходящих до наших приборов из глубин космоса. Но фотонные наблюдения имеют свои ограничения: электромагнитные волны даже самых высоких энергий не доходят до нас из слишком далёких областей космоса.

Есть и другие формы излучения — потоки нейтрино и гравитационные волны. Они могут рассказать о том, чего никогда не увидят приборы, регистрирующие электромагнитные волны. Для того, чтобы «увидеть» нейтрино и гравитационные волны, нужны принципиально новые приборы. За создание детектора гравитационных волн и экспериментальное доказательство их существование в этом году удостоились Нобелевской премии по физике трое американских физиков — Райнер Вайс, Кип Торн и Барри Бэрриш.

Слева направо: Райнер Вайсс, Бэрри Бэрриш и Кип Торн.

Существование гравитационных волн предусмотрено общей теорией относительности и было предсказано Эйнштейном еще в 1915 году. Они возникают, когда очень массивные объекты сталкиваются друг с другом и порождают возмущения пространства-времени, расходящиесясо скоростью света во все стороны от места зарождения.

Даже если событие, породившее волну, огромно — например, столкнулись две чёрные дыры — воздействие, которое волна оказывает на пространство-время крайне мал, поэтому зарегистрировать его сложно, для этого нужны очень чувствительные приборы. Сам Эйнштейн считал, что гравиволна, проходя через материю, влияет на нее так мало, что не поддаётся наблюдению. Действительно, самый эффект, который волна оказывает на материю, уловить довольно сложно, зато можно зарегистрировать косвенные эффекты. Именно это сделали в 1974 году американские астрофизики Джозеф Тейлор и Рассел Халс, измерившие излучение двойной звезды-пульсара PSR 1913+16 и доказавшие, что отклонение периода ее пульсации от расчётного объясняется потерей энергии, унесенной гравитационной волной. За это они получили Нобелевскую премию по физике в 1993 году.

14 сентября 2015 года LIGO — лазерно-интерферометрическая гравитационно-волновая обсерватория — впервые напрямую зарегистрировала гравитационную волну. К тому моменту, когда волна достигла Земли, она очень ослабела, но даже этот слабый сигнал означал революцию в физике. Для того, чтобы это стало возможным, потребовался труд тысячи учёных из двадцати стран, построивших LIGO.

На то, чтобы проверить результаты пятнадцатого года, ушло несколько месяцев, поэтому обнародованы они были только в феврале 2016 года. Кроме главного открытия — подтверждения существования гравиволн — в результатах скрывалось еще несколько: первое свидетельство существования чёрных дыр средней массы (20−60 солнечных) и первое доказательство того, что они могут сливаться.

Чтобы добраться до Земли, гравиволне потребовалось больше миллиарда лет Далеко-далеко, за пределами нашей галактики две чёрных дыры врезались друг в друга, прошло 1,3 миллиарда лет — и LIGO сообщил нам об этом событии.

Энергия гравитационной волны огромна, но амплитуда невероятна мала. Почувствовать ее — всё равно что измерить расстояние до далёкой звезды с точностью до десятых долей миллиметра. LIGO на это способен. Концепцию разработал Вайсс: еще в 70-е он подсчитал, какие земные явления могут исказить результаты наблюдений, и как от них избавиться. LIGO — это две обсерватории, расстояние между которым — 3002 километра. Гравитационная волна проходит это расстояние за 7 миллисекунд, поэтому два интерферометра во время прохождения волны уточняют показатели друг друга.


Две обсерватории LIGO, в Ливингстоне (штат Луизиана) и в Хэнфорде (штат Вашингтон) находятся на расстоянии 3002 км друг от друга.

У каждой обсерватории есть два четырехкилометровых плеча, исходящие из одной точки под прямым углом друг к другу. Внутри у них — почти идеальный вакуум. В начале и в конце каждого плеча — сложная система зеркал. Проходя через нашу планету, гравитационная волна чуть-чуть сжимает пространство там, где проложен один рукав, и растягивает второй (без волны длина рукавов строго одинакова). Из перекрестья плечей выпускают луч лазера, разделяют его надвое и пускают отражаться по зеркалам; пройдя свою дистанцию, лучи встречаются в перекрестье. Если это происходит одновременно, значит, пространство-время спокойно. А если одному из лучей потребовалось на прохождение плеча больше времени, чем другому — значит, гравитационная волна удлинила его путь и сократила путь второго луча.


Схема работы обсерватории LIGO.

LIGO разработал Вайсс (и, конечно, его коллеги), Кип Торн — ведущий мировой эксперт в теории относительности — выполнил теоретические расчёты, Барри Бэриш присоединился к команде LIGO в 1994 году и превратил небольшую — всего из 40 человек — группу энтузиастов в огромную международную коллаборацию LIGO/VIRGO, благодаря слаженной работе участников которой и стал возможен фундаментальный пропыв, осуществлённый двадцать лет спустя.

Работа на детекторах гравитационных волн продолжается. За первой зарегистрированной волной последовали вторая, третья и четвертая ; последнюю «поймали» не только детекторы LIGO, но и недавно запущенный европейский VIRGO. Четвертая гравитационная волна, в отличие от трёх предыдущих, родилась не в абсолютной тьме (в результате слияния чёрных дыр), а при полной иллюминации — при взрыве нейтронной звезды; космические и наземные телескопы зарегистрировали и оптический источник излучения в том районе, откуда пришла волна гравитационная.

Александр Сергеев объяснил суть уникального открытия

Гравитационные волны притянули Нобелевскую премию своим первооткрывателям спустя всего полтора года после объявления об их поимке. Мало того, все физики, кого мы не спрашивали накануне , как один предсказывали победу именно группы исследователей из международной коллаборации LIGO. Физики Райнер Вайсс, Барри Бариш и Кип Торн экспериментально доказали существование гравитационных волн. В этом списке, на мой взгляд, должна была быть еще одна фамилия нашего с вами соотечественника Владислава Пустовойта из МГТУ им. Баумана, ведь именно по предложенной им и Михаилом Герценштейном из НИИ ядерной физики МГУ методике и решили ловить гравитационные волны американцы. Но, увы, за идеи, Нобелевские премии почти никогда не выдаются, главное - реализация этих идей на практике. О деталях открытия «МК» поведал один из участников проекта LIGO с российской стороны - директор нижегородского Института прикладной физики, президент РАН Александр СЕРГЕЕВ.

Гравитационные волны - это изменения гравитационного поля, распространяющиеся подобно волнам. Их существование предсказал в 1916 году Альберт Эйнштейн, а впервые обнаружили 14 сентября 2015 года на установках LIGO - лазерно-интерферометрической гравитационно-волновой обсерватории члены международной группы, объединившей тысячи ученых из 15 стран. Сигнал исходил от слияния двух черных дыр массами 36 и 29 солнечных масс на расстоянии около 1,3 млрд световых лет от Земли. Об открытии ученые сообщили 11 февраля 2016 года.

Это достижение сразу поставили в один ряд с появлением телескопа и объявили о вступлении человечества в эру гравитационно-волновой астрономии. Детектор, при помощи которого были пойманы волны, назвали инструментом, который позволит «слушать» Вселенную напрямую, невзирая на газо-пылевые облака.

Мы не говорим, что Нобелевская премия по физике в 2017 году объявлена «за открытие» гравитационных волн, все-таки само открытие их сделал, что называется, на кончике пера Альберт Эйнштейн. Мы говорим сейчас об экспериментальном подтверждении существования гравитационных волн, - уточняет руководитель нижегородской группы участников эксперимента LIGO, президент РАН Александр Сергеев. - Если говорить о важности этой работы, - это безусловно триумф человечества. Долгое время теоретики исследовали возможности возникновения гравитационных волн: либо в результате процессов слияния звезд, либо в результате вспышек сверхновых... Безусловно оценивались возможности их детектирования здесь, на земле.

Одним из самых важных обстоятельств на пути к успешному эксперименту стала демонстрация первого лазера в 1960-м году. Ученым стало понятно, что лазерное излучение обладает важными свойствами для того, чтобы использовать его для детектирования гравитационных волн. В 1962 году появилась статья двух советских ученых Михаила Герценштейна и Владислава Пустовойта, которые и предложили эту схему. Их теоретическая статья была предтечей того, что американцы сделали в дальнейшем. Поэтому можно с полным правом считать, что идейный приоритет, связанный с поимкой гравитационных волн, принадлежит именно нашим ученым. Ныне здравствующий академик Владислав Иванович Пустовойт, безусловно, заслуживает чтобы быть в числе нобелевских лауреатов. Ну а если говорить о тех, кто Нобелевку получил, я их тоже хорошо знаю. Это Барри Бариш - очень интересный человек, который пришел в проект из ускорительной физики (он был одним из руководителей создания техасского коллайдера). Когда программа с коллайдером была в 90-е годы закрыта, американцы очень прозорливо бросили команду строителей суперколлайдера на создание установки по детектированию гравитационных волн. Два друг ученых - Райнер Вайсс и Кип Торн давно работают именно в области изучения гравитационных волн, являются ее пионерами. Когда Российская академия наук в лице нижегородского Института прикладной физики вступала в коллаборацию LIGO в 1997 году, именно эти два исследователя оказали нам большую дружескую поддержку. Надо отметить, что кроме нашего института в проекте LIGO участвовала и группа сотрудников из МГУ. Поэтому среди соавторов работы, безусловно, есть и часть российских ученых. Хотя, к большому сожалению, эта часть не была определяющей.

За что дали самую ожидаемую Нобелевскую премию 2017 года, какое отношение к ней имеют фильм «Интерстеллар» и новый президент РАН и ждать ли новых премий за гравитационные волны, читайте в материале сайт.

Однако премия будет разделена не поровну: половину ее (4,5 миллиона шведских крон) получит Райнер Вайсс, а оставшуюся половину разделят (по 2,25 млн) Барри Бариш и знаменитый не только теоретическими работами, но и своей популяризаторской деятельностью (фильм «Интерстеллар» смотрели?) Кип Торн.

Райнер Вайсс родился в 1932 году в Берлине. В 1962 году он получил степень Массачусетского технологического института, где он и работает до сих пор. Барри Бариш родился в американском городе Омаха в 1936-м. В 1962 году он защитил диссертацию в Калифорнийском университете в Беркли, сейчас работает в Калифорнийском технологическом институте (Калтех). Кип Торн родился в 1940 году в американском городе Логан. В 1965 получил степень PhD Принстонского университета, сейчас также работает в Калтехе.

Слева направо: Райнер Вайсс, Барри Бариш и Кип Торн

LIGO Lab/Caltech

Что такое LIGO?

Итак, что же такое гравитационные волны и LIGO? Если говорить просто, то гравитационные волны предсказываются Общей теорией относительности Эйнштейна, в которой гравитация рассматривается как искривление пространства-времени, а гравитационные волны - бегущая по этому пространству со скоростью света «рябь». В этом контексте гравитационные волны испускаются любой массой, движущейся с ускорением, но не любое ускорение тут подойдет. Как говорят физики, для появления гравитационных волн важно изменение так называемого квадрупольного момента системы масс.

В принципе, любой идущий человек или едущий автомобиль с движущимися внутри него деталями будет испускать гравитационные волны, но очень слабые. Однако вращающиеся вокруг общего центра масс объекты испускают уже более мощные волны. Сливающиеся и массивные черные дыры массой в несколько солнечных – еще более мощные волны, поскольку перед самым слиянием раскручиваются очень быстро, и заметная часть их массы напрямую переходит в гравитационные волны.

Гравитационные волны, которые исходят от сталкивающихся черных дыр

Как же их возможно «поймать»? Вот как раз с идеей устройства, которое может зарегистрировать волны от слияния, и выступили Кип Торн и Райнер Вайсс в середине 1970-х годов. Барри Барриш возглавил созданный интерферометр LIGO (Laser Interferometer Gravitational-Wave Observatory - лазерная интерферометрическая гравитационно-волновая обсерватория) и привел проект к важнейшему результату: в прошлом феврале было объявлено о первых событиях, которые зафиксировала обсерватория, - слившихся черных дырах.

LIGO состоит из двух «обсерваторий», в каждой из которой расположена L-образная вакуумная лазерная система c длиной каждого плеча 4 км, в которой расположены интерферометры (до пяти в каждой). Проходящая гравитационная волна создает возмущения в интерферометрической картине в вакуумной системе, однако самого по себе возмущения недостаточно. Между Хэнфордом и Ливингстоном, двумя частями LIGO, 3002 километра, что дает задержку в 10 миллисекунд при прохождении фронта гравитационной волны со скоростью света. Во-первых, это позволяет понять, что прошла именно гравитационная волна, а не случайный шум, который может быть вызван, например, сейсмикой. Во-вторых, можно «прикинуть» направление и сектор неба, откуда она пришла. Новый детектор, который заработал в этом году в Италии, VIRGO, делает эту точность еще больше, поскольку теперь у астрономов есть трехмерная сеть детекторов.

Схема работы одного из детекторов LIGO

Johan Jarnestad/The Royal Swedish Academy of Sciences

Кстати, в составе коллаборации LIGO работает и две группы российских ученых: из МГУ (руководитель - профессор Валерий Митрофанов) и из Института прикладной физики РАН в Нижнем Новгороде (руководитель - новоиспеченный президент РАН ).

Зачем это нужно?

Но почему это так важно? Специально для сайт развернутый комментарий по премии дал доктор физико-математических наук, профессор РАН, астрофизик Сергей Попов, автор многих статей и научно-популярных лекций о гравитационных волнах.

«Действительно очень здорово и все-таки отчасти удивительно, что LIGO так быстро дали премию, потому что люди, открывшие бозон Хиггса, до сих пор премию не получили, получили только теоретики. Было неочевидно, что комитет решит давать быстро и только LIGO, потому что через год можно было бы разделить ее с VIRGO. Поэтому можно сделать предсказание, что это не последняя премия за гравитационные волны, там еще много интересной физики. Детекторы LIGO уже работают, VIRGO на подходе, так что, наверное, премия будет еще.

Две обсерватории LIGO

Johan Jarnestad/The Royal Swedish Academy of Sciences

Открытие очень четкое, очень интересное, очень надежное, поэтому такое решение комитета возражений ни у кого не может вызывать, все его поддерживают и одобряют. Наверное, были вопросы (они обсуждались уже давно), кто же именно те три человека, которые премию получат, и был вопрос: как Нобелевские премии мира, которые вручают организациям (их может получить Красный Крест или МАГАТЭ), не пора ли вручать и научные премии прямо коллаборациям? А уж кто там приедет получать медаль, это выбор коллаборации.

Нобелевский комитет остался консервативен и выбрал людей. Кстати, больших вопросов выбор персоналий не вызывал. Называли их всех, безусловно: и Кип Торн, и Райнер Вайсс не вызывают никаких сомнений, и Бариш, но во всех вариантах тройки лауреатов, которые обсуждались, я, по крайней мере, видел Вайсса и Торна. Так что действительно ожидаемая премия. Вопрос был только в том, насколько быстро. И получилось очень быстро.

Это открытие важно тем, что это такое последнее "окно во Вселенную", которое надо было прорубить. Это последний вид излучения от астрономических объектов, и он несет совершенно уникальную информацию. На мой взгляд, есть еще минимум одна, а может и две премии, связанных с гравитационными волнами. Все мы в ожидании того, что в октябре объявят о первой регистрации событий с участием нейтронных звезд. Первая регистрация слияния нейтронных звезд позволит так точно, как раньше невозможно было, измерить их параметры, что важно для понимания их внутреннего строения, а это важно для ядерной физики. Поэтому потенциально экспериментальное, астрофизическое решение вопроса об уравнениях состояний вещества при сверхвысокой плотности - потенциально нобелевский результат, конечно же. Потому это то, над чем экспериментаторы и теоретики на ускорителях и с помощью астрономических наблюдений бьются уже достаточно давно.

С другой стороны, при улучшении точности - с детекторами следующего поколения - можно будет узнавать много нового и интересного о черных дырах, изучать эти объекты. Совсем недавно был большой содержательный обзор, где люди обсуждали, как можно с помощью гравитационных сигналов зондировать области вблизи горизонта, как гравитационные волны отражаются от горизонта и гипотетических поверхностей обсуждаемых альтернативных объектов, если это не черные дыры, а что-то похожее. Это все станет возможно в относительно близком будущем, даже существующие детекторы фактически сейчас начали на несуществовавшем уровне изучать теорию гравитации, потому что, когда заработал VIRGO, и теперь три детектора территориально разнесены друг от друга, они сильно по-разному оказываются ориентированы, потому что Земля круглая, и можно изучать поляризацию гравитационного излучения, и здесь разные теории гравитации делают совсем разные предсказания.

И вот здесь произошло открытие (имеется в виду то, что гравитационные волны были ) , о котором было объявлено на прошлой неделе. Оно показало, что общая теория относительности прекрасно объясняет наблюдаемый сигнал, в том числе и в смысле поляризации, то есть нужно всего две поляризации для гравитационной войны. Это все можно и нужно изучать точнее, и все это будет делаться. С одной стороны, это прекрасные установки для изучения гравитации, с другой, астрономические телескопы для изучения в первую очередь нейтронных звезд и черных дыр», - говорит астроном.

И еще немного о персоналиях: в прошлом году за обнаружение гравитационных волн была присуждена очень престижная премия Грубера по космологии (ее размер составляет полмиллиона долларов). И тоже трем лауреатам, списочный состав которых совпадает с нобелевским на две трети: груберовский комитет отметил Кипа Торна, Райнера Вайсса и Рональда Древера - основателей LIGO. Возможно, нобелевский комитет остановил бы свой выбор именно на этой троице, однако 5 марта 2017 года Древера не стало.

О премии

Нобелевская премия по физике сегодня была присуждена в 111-й раз. Как и все остальные, она вручается с 1901 года: первым лауреатом стал Вильгельм Конрад Рентген, который получил ее за открытие «Х-лучей». Шесть раз мир оставался без нового лауреата: в 1916, 1931, 1934, 1940, 1941, и 1942 годах.

Всего с 1901 по 2017 год премию получило 203 человека. Однако лауреатов насчитывается 204. Почему так? Физик Джон Бардин получил премию дважды: в 1956 году за открытие транзистора и в 1972 году за БКШ-теорию сверхпроводимости (Бардин - Купер - Шриффер). Еще один человек, в 1903 году став лауреатом по физике, получил потом премию по химии - Мария Кюри.

Забавный факт: один из величайших физиков (и выдающихся физиков-снобов) мира, Эрнест Резерфорд прославился, в числе прочего, фразой о том, что вся наука делится на физику и коллекционирование марок. Возможно, именно поэтому Нобелевский комитет присудил ему премию… по химии.

Зато премия по физике, пожалуй, самая семейная: две премии отошло семейству Кюри в составе четырех человек: в 1903 году получили Пьер и Мария Кюри, а в 1935 году – их дочь Ирен Жолио-Кюри вместе с мужем Фредериком. В 1915 году премию за рентгеновскую кристаллографию получили Уильям и Лоуренс Брэгги, отец и сын. Нобелевские лауреаты 1906 года Джозеф Джон Томсон, 1922 года Нильс Бор и лауреат 1925 года Манне Сигбан оставили после себя сыновей-лауреатов 1937 года (Джордж Паджет Томсон), 1975 года (Оге Бор) и 1981 года (Карл Сигбан).

Лауреаты этого года разделят между собой 9 миллионов шведских крон – это около миллиона долларов США.