Из скольки нуклеотидов состоит днк. Виды нуклеиновых кислот, нуклеотидный состав, функции в организме. Структура молекулы РНК

В организме человека находится большое количество органических соединений, без которых невозможно представить стабильное течение обменных процессов, поддерживающих жизнедеятельность всех . Одними из таких веществ являются нуклеотиды – это фосфорные эфиры нуклеозидов, которые играют важнейшую роль в передаче информационных данных, а также химических реакциях с выделением внутриклеточной энергии.

Как самостоятельные органические единицы формируют наполнительный состав всех нуклеиновых кислот и большинства коферментов. Рассмотрим более подробно, что такое нуклеозидфосфаты и какую роль они играют в человеческом организме.

Из чего состоит вещество нуклеотид. Оно считается крайне сложным эфиром, относящимся к группе кислот фосфора и нуклеозидов, которые по своим биохимическим свойствам относятся к числу N-гликозидов и содержат гетероциклические фрагменты, связанные с молекулами глюкозы и атомом азота.

В природе наиболее распространенными являются нуклеотиды ДНК.

Кроме этого, еще различают органические вещества с похожими характеристиками строения: рибонуклеотиды, а также дезоксирибонуклеотиды. Все они без исключения являются мономерными молекулами, относящимися к сложным по строению биологическим веществам полимерного типа.

Из них формируется РНК и ДНК всех живых существ, начиная от простейших микроорганизмов и вирусных инфекций, заканчивая человеческим организмом.

Остаток молекулярной структуры фосфора среди нуклеозидфосфатов, образует эфирную связь с двумя, тремя, а в некоторых случаях сразу с пятью гидроксильными группами. Практически все без исключения нуклеотиды относятся к числу эфирных веществ, которые образовались из остатков ортофосфорной кислоты, поэтому их связи устойчивы и не распадаются под воздействием неблагоприятных факторов внутренней и внешней среды.

Обратите внимание! Строение нуклеотидов всегда сложное и основывается на моноэфирах. Последовательность нуклеотидов может меняться под воздействием стрессовых факторов.

Биологическая роль

Влияние нуклеотидов на течение всех процессов в организме живых существ изучают ученые, которые исследуют молекулярное строение внутриклеточного пространства.

Исходя из лабораторных заключений, полученных по итогам многолетней работы ученых различных стран мира, выделяют следующую роль нуклеозидфосфатов:

  • универсальный источник жизненной энергии, за счет которой происходит питание клеток и соответственно поддерживается нормальная работа тканей, формирующих внутренние органы, биологические жидкости, эпителиальный покров, сосудистую систему;
  • являются транспортировщиками глюкозных мономеров в клетках любого типа (это одна из форм углеводного обмена, когда употребляемый сахар, под воздействием пищеварительных ферментов трансформируется в глюкозу, которая разносится в каждый уголок организма вместе с нуклеозидфосфатами);
  • выполняют функцию кофермента (витаминные и минеральные соединения, которые способствуют обеспечению клеток питательными веществами);
  • сложные и циклические мононуклеотиды являются биологическими проводниками гормонов, распространяющихся вместе с потоком крови, а также усиливают действие нейронных импульсов;
  • аллостерическим образом регулируют активность пищеварительных ферментов, вырабатываемых тканями поджелудочной железы.

Нуклеотиды входят в состав нуклеиновых кислот. Они соединены тремя и пятью связями фосфодиэфирного типа. Генетики и ученые, посвятившие свою жизнь молекулярной биологии, продолжают лабораторные исследования нуклеозидфосфатов, поэтому ежегодно мир узнает еще больше интересного о свойствах нуклеотидов.

Последовательность нуклеотидов – это разновидность генетического равновесия и баланса расположения аминокислот в структуре ДНК, своеобразный порядок размещения остатков эфира в составе нуклеиновых кислот.

Он определяется с помощью традиционного метода секвенирования отобранного для анализа биологического материала.

Т – тимин;

А – аденин;

G – гуанин;

С – цитозин;

R – GA аденин в комплексе с гуанином и основаниями пурина;

Y – TC пиримидиновые соединения;

K – GT нуклеотиды, содержащие кетогруппу;

M – AC входящие в аминогруппу;

S – GC мощные, отличающиеся тремя водородными соединениями;

W – AT неустойчивые, которые образуют только по две водородные связи.

Последовательность нуклеотидов может меняться, а обозначения латинскими буквами необходимы в тех случаях, когда порядок расположения эфирных соединений неизвестен, является несущественным либо уже имеются результаты первичных исследований.

Наибольшее количество вариантов и комбинаций нуклеозидфосфатов свойственно для ДНК. Для записи эфирных соединений РНК достаточно символов A, С, G, U. Последнее литерное обозначение является веществом уридин, которое встречается только в РНК. Последовательность символических обозначений всегда записывается без использования пробелов.

Полезное видео: нуклеиновые кислоты (ДНК и РНК)

Сколько нуклеотидов в ДНК

Для того, чтобы максимально подробно понимать, о чем идет речь, следует иметь четкое представление о самой ДНК. Это отдельный вид молекул, которые имеют вытянутую форму и состоят из структурных элементов, а именно – нуклеозидфосфатов. Какое количество нуклеотидов в ДНК? Существует 4 вида эфирных соединений данного типа, входящие в состав ДНК. Это аденин, тимин, цитозин и гуанин. Все они формируют единую цепочку, из которой и образовывается молекулярная структура ДНК.

Впервые строение ДНК было расшифровано в далеком 1953 году американскими учеными Френсисом Криком и Джеймсом Уотсоном. В одной молекуле дезоксирибонуклеиновой кислоты содержится по две цепочки нуклеозидфосфатов. Они размещены таким образом, что внешне напоминают спираль, закручивающуюся вокруг своей оси.

Обратите внимание! Количество нуклеотидов в ДНК неизменное и ограничивается только четырьмя видами — данное открытие приблизило человечество к расшифровке полного генетического кода человека.

При этом строение молекулы имеет одну важную особенность. Все нуклеотидные цепочки обладают свойством комплементарности. Это означает, что друг напротив друга размещаются только эфирные соединения определенного вида. Известно, что напротив тимина всегда расположен аденин. Напротив цитозина не может находится никакое другое вещество кроме гуанина. Такие нуклеотидные пары формируют принцип комплементарности и являются неразделимыми.

Масса и длина

С помощью сложных математических подсчетов и лабораторных исследований, ученым удалось установить точные физико-биологические свойства эфирных соединений, формирующих молекулярную структуру дезоксирибонуклеиновой кислоты.

Известно, что протяжная длина одного внутриклеточного остатка, состоящего из аминокислот в единой полипептидной цепи – 3,5 ангстрем. Средняя масса одного молекулярного остатка равна 110 а.е.м.

Кроме этого, еще выделяют мономеры нуклеотидного типа, которые сформированы не только из аминокислот, но имеют и эфирные составляющие. Это мономеры ДНК и РНК. Их линейная длина измеряется непосредственно внутри нуклеиновой кислоты и составляет не менее 3,4 ангстрем. Молекулярный вес одного нуклеозидфосфата находится в пределах 345 а.е.м. Это исходные данные, которые используются в практической лабораторной работе, посвященной опытам, генетическим исследованиям и прочей научной деятельности.

Медицинские обозначения

Генетика, как наука, развивалась еще в период, когда не было исследований строения ДНК человека и других живых существ на молекулярном уровне. Поэтому в период домолекулярной генетики нуклеотидные связи обозначались, как наименьший элемент в структуре молекулы ДНК. Как ранее, так и в настоящее время, эфирные вещества данного типа были подвержены . Она могла быть спонтанной или индуцированной, потому для обозначения нуклеозидфосфатов с поврежденной структурой еще используют термин «рекон».

Для определения понятия наступления возможной мутации в азотистых соединениях нуклеотидных связей, применяют термин «мутон». Данные обозначения больше востребованы в лабораторной работе с биологическим материалом. Также используются учеными генетиками, которые изучают устройство молекул ДНК, пути передачи наследственной информации, способы ее шифрования и возможные комбинации генов, получаемых в результате слияния генетического потенциала двух половых партнеров.

Вконтакте

К 1944 г. О. Эйвери и его коллеги К. Маклеод и М. Маккарти открыли трансформирующую активность ДНК у пневмококков. Эти авторы продолжили работу Гриффита, описавшего феномен трансформации (передачи наследственных признаков) у бактерий. О. Эйвери, К. Маклеод, М. Маккарти показали, что при удалении белков, полисахаридов и РНК трансформация бактерий не нарушается, а при воздействии на индуцирующее вещество ферментом дезоксирибонуклеазой трансформирующая активность исчезает.

В этих экспериментах впервые была продемонстрирована генетическая роль молекулы ДНК. В 1952 г. А. Херши и М. Чейз подтвердили генетическую роль молекулы ДН К в опытах на бактериофаге Т2. Пометив его белок радиоактивной серой, а ДНК-радиоактивным фосфором,они инфицировали этим бактериальным вирусом кишечную палочку Е. coli. В потомстве фага было выявлено большое количество радиоактивного фосфора и лишь следы S. Отсюда следовало, что именно ДНК, а не белок фага проникает в бактерию, а затем после репликации передается фаговому потомству.

  1. Строение нуклеотида днк. Типы нуклеотидов.

Нуклеотид ДНК состоит из

Азотистого основания (в ДНК 4 типа: аденин, тимин, цитозин, гуанин)

Моносахара дезоксирибозы

Фосфорной кислоты

Молекула нуклеотида состоит из трех частей - пятиуглеродного сахара, азотистого основания и фосфорной кислоты.

Сахар, входящий в состав нуклеотида , содержит пять углеродных атомов, т. е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два типа нуклеиновых кислот - рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дезоксирибозу. В дезоксирибозе - ОН-группа при 2-м атоме углерода заменена на атом Н, т. е. в ней на один атом кислорода меньше, чем в рибозе.

В обоих типах нуклеиновых кислот содержатся основания четырех разных видов: два из них относятся к классу пуринов и два - к классу пиримидинов. Основной характер этим соединениям придает включенный в кольцо азот. К числу пуринов относятся аденин (А) и гуанин (Г), а к числу пиримидинов - цитозин (Ц) и тимин (Т) или урацил (У) (соответственно в ДНК или РНК). Тимин химически очень близок к урацилу (он представляет собой 5-метилурацил, т. е. урацил, в котором у 5-го углеродного атома стоит метильная группа). В молекуле пуринов имеется два кольца, а в молекуле пиримидинов - одно.

Нуклеотиды соединяются между собой прочной ковалентной связью через сахар одного нуклеотида и фосфорную кислоту другого. Получаетсяполинуклеотидная цепь . На одном ее конце – свободная фосфорная кислота (5’-конец), на другом – свободный сахар (3’-конец). (ДНК-полимераза может присоединять новые нуклеотиды только к 3’-концу.)

Две полинуклеотидные цепи соединяются друг с другом слабыми водородными связями между азотистыми основаниями. Соблюдаются 2 правила:

    принцип комплементарности: напротив аденина всегда стоит тимин, напротив цитозина – гуанин (они подходят друг другу по форме и числу водородных связей – между А и Г две связи, между Ц и Г – 3).

    принцип антипараллельности: там, где у одной полинуклеотидной цепи 5’-конец, у другой – 3’-конец, и наоборот.

Получается двойная цепь ДНК.

Она скручивается в двойную спираль , один виток спирали имеет длину 3,4 нм, содержит 10 пар нуклеотидов. Азотистые основания (хранители генетической информации) находятся внутри спирали, защищенные.

Нуклеотидный состав, т.е. набор и соотношение нуклеотидных компонентов, служит очень важной характеристикой нуклеиновых кислот. Один из основных путей установления состава нуклеиновых кислот основан на исследовании продуктов их гидролитического расщепления. Поскольку межнуклеотидные связи в полинуклеотидах являются сложноэфирными, то полинуклеотидные цепи способны гидролизоваться как в кислой, так и щелочной среде.

Химический гидролиз ДНК почти не используется из-за осложнения его побочными процессами. Более предпочтителен ферментативный гидролиз ДНК под действием нуклеаз. Обычно для этой цели используют змеиный яд, в котором содержатся ферменты, расщепляющие сложноэфирную связь с фосфорной кислотой (фосфодиэстеразы и фосфомоноэстеразы). Нуклеазы проявляют специфичность по отношению к типу нуклеиновых кислот; их делят на рибонуклеазы и дезоксирибонуклезы.

Выделение и идентификацию компонентов нуклеиновых кислот производят с помощью физико-химических методов. Очень важную роль в разделении сложных смесей играют хроматографические методы. Пиримидиновые и пуриновые основания, обладающие вследствие ароматического характера заметным поглощением около 260 нм, обычно идентифицируют с помощью УФ-спектроскопии. Поскольку нуклеотиды имеют кислотный характер и способны находиться в ионизированном состоянии, то для их идентификации используют также электрофорез.

Наряду с определением нуклеотидного состава важнейшая задача состоит и в установлении нуклеотидной последовательности, т.е. порядка чередования нуклеотидных звеньев. Общий подход заключается в использовании блочного метода: сначала полинуклеотидную цепь направленно расщепляют на более мелкие блоки – олигомеры и определяют в них нуклеотидную последовательность. Такой анализ повторяют дважды, используя во второй раз такие расщепляющие агенты, которые делят цель на фрагменты в иных местах по сравнению с первым разом. Полинуклеотидную цепь расщепляют на довольно короткие фрагменты. Более длинные олигонуклеотиды пока еще трудно поддаются изучению.

Первичная структура нуклеиновых кислот определяется природой и последовательностью нуклеотидных звеньев, связанных сложноэфирными связями между пентозами и фосфатными группами (рис 13).

Рис. 13. Первичная структура участка цепи нуклеиновых кислот

В составе молекулы ДНК выделено значительно большее число нуклеотидных остатков, чем в молекуле РНК. Молекулярная мас­са ДНК порядка 10 млн; ДНК в условиях клетки нерастворима. Длина молекул ДНК человека состав­ляет примерно 3 - 5 см; молекула РНК значительно короче - менее 0,01 см.

Вторичная структура нуклеиновых кислот. Согласно вторичной структуре полинуклеотидная цепь ДНК представляет собой двойную спираль, в которой пуриновые и пиримидиновые основания направлены внутрь. Между пуриновым основаниями одной цепи и пиримидиновым основанием другой цепи имеются водородные связи, стабилизирующие такую структуру. Основания, образующие пары, связанные водородными связями,называются комплементарными . В ДНК комплементарными будут: аденин – тимин, образующие между собой две водородные связи, и гуанин – цитозин, связанные тремя водородными связями (рис 14). Это означает, что пуриновым основаниям аденину и гуанину в одной цепи будут соответствовать пиримидиновые основания тимин и цитозин в другой цепи. Полинуклеотидные цепи, образующие двойную спираль, не идентичны, но комплементарны между собой.

Рис. 14. Водородные связи в паре оснований гуанин -цитозин (а), аденин – тимин (б)

Макромолекулы ДНК связаны между собой попарно при помощи водородных связей в виде двойной спирали постоян­ного диаметра (рис. 15). Остатки нуклеи­новых оснований направлены внутрь спи­рали, диаметр которой равен примерно 2 нм.

На один виток спирали приходится 10 пар оснований. Для обеспечения наи­большей устойчивости этой структуры во­дородных связей должно быть максималь­но много. Только при выполнении это­го условия обеспечивается экспериментально доказанное постоянство суммарных размеров боковых групп и неизменность диаметра двойной спирали на всем ее протяже­нии. В этой взаимной обусловленности последовательности звень­ев в обеих цепях заключается принцип комплементарности.

Комплементарность цепей и последовательность звеньев со­ставляют химическую основу важнейших функций нуклеиновых кислот: ДНК - хранение и передача наследственной информа­ции, а РНК - непосредственное участие в биосинтезе белка. Мо­лекулярная масса ДНК варьирует от нескольких миллионов до десятка миллиардов, у РНК - от десятка тысяч до нескольких миллионов.

Комплементарность оснований лежит в основе закономерностей, сформулированных Э. Чаргаффом, которым подчиняется нуклеотидный состав ДНК различного происхождения.

Правила Чаргаффа:

1) количество пуриновых оснований равно количеству пиримидиновых оснований, т.е. (А+Г)=(Ц+Т).

2) Количество аденина равно количеству тимина (А=Т); аналогично количество гуанина равно количеству цитозина (Г=Ц).

3) Количество оснований, содержащих аминогруппу в положении 4 пиримидинового и положении 6 пуринового ядра, равно количеству оснований, содержащих в этих же положениях оксогруппу. Это означает, что А+Ц=Г+Т.

Для РНК правила Чаргаффа либо не выполняются, либо выполняются с некоторым приближением. Это обусловлено тем, что в составе РНК содержится много минорных оснований.

Сравнение макромолекулы ДНК с винтовой лестницей наводит на мысль об ее хиральности. Действительно, природные ДНК обладают оптической активностью. В то же время смеси нуклеотидов, составляющих ДНК, а также разупорядоченные полинуклеотические цепи оптически неактивны. Это свидетельствует о том, что оптическая активность природных ДНК связана с хиральностью их вторичной структуры.

Каркас спирали образован чередующимися углеводными и фосфатными остатками. Окружающая водная среда контактирует с гидрофильной частью спирали, а внутренняя часть спирали (основания) с водой не контактирует.

Молекула ДНК, в отличие от молекулы РНК, в большинстве случаев состоит из двух комплементарных взаимозакрученных цепей. В зависимости от длины витка и угла спирали, а также ряда других ее геометрических параметров, различают, более де­сяти разнообразных упорядоченных спиральных структур ДНК. В стабилизации этих структур наряду с водородными связями, действующими поперек спирали, большую роль играют межмо­лекулярные взаимодействия, направленные вдоль спирали между соседними пространственно сближенными азотистыми основа­ниями. Поскольку эти взаимодействия направлены вдоль стоп­ки азотистых оснований молекулы ДНК, их называют стэкинг-взаимодействиями. Таким образом, взаимодействия азотистых оснований между собой скрепляют двойную спираль молекулы ДНК и вдоль, и поперек ее оси.

Сильное стэкинг-взаимодействие всегда усиливает водород­ные связи между основаниями, способствуя уплотнению спира­ли. Вследствие этого молекулы воды из окружающего раствора связываются в основном с пентозофосфатным остовом ДНК, по­лярные группы которого находятся на поверхности спирали. При ослаблении стэкинг-взаимодействия молекулы воды, про­никая внутрь спирали, конкурентно взаимодействуют с поляр­ными группами оснований, инициируют дестабилизацию и спо­собствуют дальнейшему распаду двойной спирали. Все это сви­детельствует о динамичности вторичной структуры ДНК под воздействием компонентов окружающего раствора. Двойная спираль характерна для большинства молекул ДНК. Однако ДНК может иметь и другие формы. В некоторых вирусах содержится одноцепочечная ДНК, встречаются также кольцевые формы.


Биспиральные структуры в молекулах РНК возникают в пре­делах одной и той же цепи в тех зонах, где расположены комплементарные азотистые основания аденин - урацил и гуанин - цитозин (рис. 16). В результате вторичная структура молеку­лы РНК содержит биспиральные участки и петли, число и раз­меры которых определяются первичной структурой молекулы и составом окружающего раствора.

Рис. 16. Вторичная структура молекулы РНК

Третичная структура нуклеиновых кислот. Двойная спираль молекул ДНК существует в виде линейной, кольцевой, суперкольцевой и компактных клубковых форм. Между этими формами совершаются взаимные переходы при действии особой группы ферментов – топоизомераз, изменяющих пространственную структуру (рис 17).


Рис. 17. Третичная структура молекулы ДНК:

а -линейная, б - кольцевая, в - суперкольцевая, г - компактный клубок

Третичная структура многих молекул РНК пока еще требует окончательного выяснения, но уже установлено, что она зависит не только от первичной и вторичной структуры, но и от состава окружающего раствора.

- это сложные мономеры, из которых собраны гетерополимерные молекулы. ДНК и РНК. Свободные нуклеотиды участвуют в сигнальных и энергетических процессах жизнедеятельности. ДНК-нуклеотиды и РНК-нуклеотиды имеют общий план строения, но различаются по строению сахара-пентозы. В ДНК-нуклеотидах используется сахар дезоксирибоза, а в РНК-нуклеотидах - рибоза.

Структура нуклеотида

В каждом нуклеотиде можно выделить 3 части:

1. Углевод - это пятичленный сахар-пентоза (рибоза или дезоксирибоза).

2. Фосфорный остаток (фосфат) - это остаток фосфорной кислоты.

3. Азотистое основание - это соединение, в котором много атомов азота. В нуклеиновых кислотах используется всего 5 видов азотистых оснований: Аденин, Тимин, Гуанин, Цитозин, Урацил. В ДНК - 4 вида: Аденин, Тимин, Гуанин, Цитозин. В РНК - тоже 4 вида: Аденин, Урацил, Гуанин, Цитозин, Легко заметить, что в РНК происходит замещение Тимина на Урацил по сравнению с ДНК.

Общая структурная формула пентозы (рибозы или дезоксирибозы), молекулы которой образуют "скелет" нуклеиновых кислот:

Если Х заменить на Н (Х = Н) - то получаются дезоксирибонуклеозиды; если Х заменить на ОН (Х = ОН) - то получаются рибонуклеозиды. Если вместо R подставить азотистое основание (пуриновое или пиримидиновое) - то получится конкретный нуклеотид.

Важно обратить внимание на те положения атомов углерода в пентозе, которые обозначены как 3" и 5". Нумерация атомов углерода начинается от атома кислорода вверху и идёт по часовой стрелке. Последним получается атом углерода (5"), который располагается за пределами пентозного кольца и образует, можно сказать, "хвостик" у пентозы. Так вот, при наращивании цепочки из нуклеотидов фермент может присоединить новый нуклеотид только к углероду 3" и ни к какому другому. Поэтому 5"-конец нуклеотидной цепочки никогда не сможет иметь продолжения, удлинняться может только 3"-конец.


Сравните нуклеотид для РНК с нуклеотидом для ДНК.

Попробуйте узнать, какой это нуклеотид, в таком представлении:

АТФ - свободный нуклеотид

цАМФ - "закольцованная" молекула АТФ

Схема строения нуклеотида


Обратите внимание на то, что активированный нуклеотид, способный наращивать цепочку ДНК или РНК, имеет "трифосфатный хвостик". Именно этим "энергонасыщенным" хвостиком он может присоединиться к уже имеющейся цепочке растущей нуклеиновой кислоты. Фосфатный хвостик сидит на 5-м атоме углерода, так что это положение углерода уже занято фосфатами и предназнено для прикрепления. К чему же его прикрепить? Только к углероду в положении 3". После прикрепления данный нуклеотид сам станет мишенью дла прикрепления следующего нуклеотида. "Принимающая сторона" предоставляет углерод в положении 3", а "прибывающая сторона" цепляется к нему фосфатным хвостиком, находящимся в положении 5". В целом цепочка растёт со стороны 3".

Наращивание нуклеотидной цепочки ДНК

Наращивание цепочки за счёт "продольных" связей между нуклеотидами может идти только в одном направлении: от 5" ⇒ к 3", т.к. новый нуклеотид можно присоединить только к 3"-концу цепочки, но не к 5"-концу.

Пары нуклеотидов, связанные "поперечными" комплементарными связями своих азотистых оснований

Участок двойной спирали ДНК

Найдите признаки антипараллельности двух цепей ДНК.

Найдите пары нуклеотидов с двойными и тройными комплементарными связями.

Дезоксирибонуклеимновая кислотам (ДНК) -- макромолекула (одна из трёх основных, две другие -- РНК и белки), обеспечивающаяхранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.

В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов.

С химической точки зрения ДНК -- это длинная полимерная молекула, состоящая из повторяющихся блоков -- нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи). В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».

Расшифровка структуры ДНК (1953 г.) стала одним из поворотных моментов в истории биологии. За выдающийся вклад в это открытие Фрэнсису Крику, Джеймсу Уотсону и Морису Уилкинсу была присуждена Нобелевская премия по физиологии или медицине 1962 г. Розалинд Франклин, которая получила рентгенограммы, без которых Уотсон и Крик не имели бы возможность сделать выводы о структуре ДНК, умерла в 1958 г. от рака, а Нобелевскую премию не дают посмертно.

Рибонуклеимновая кислотам (РНК) -- одна из трёх основных макромолекул (две другие -- ДНК и белки), которые содержатся в клетках всех живых организмов.

Так же, как ДНК (дезоксирибонуклеиновая кислота), РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом. Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.

Клеточные РНК образуются в ходе процесса, называемого транскрипцией, то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами -- РНК-полимеразами. Затем матричные РНК (мРНК) принимают участие в процессе, называемомтрансляцией. Трансляция -- это синтез белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

Для одноцепочечных РНК характерны разнообразные пространственные структуры, в которых часть нуклеотидов одной и той же цепи спарены между собой. Некоторые высокоструктурированные РНК принимают участие в синтезе белка клетки, например, транспортные РНК служат для узнавания кодонов и доставки соответствующих аминокислот к месту синтеза белка, а рибосомные РНК служат структурной и каталитической основой рибосом.

Однако функции РНК в современных клетках не ограничиваются их ролью в трансляции. Так, малые ядерные РНК принимают участие в сплайсинге эукариотических матричных РНК и других процессах.

Помимо того, что молекулы РНК входят в состав некоторых ферментов (например, теломеразы), у отдельных РНК обнаружена собственная ферментативная активность: способность вносить разрывы в другие молекулы РНК или, наоборот, «склеивать» два РНК-фрагмента. Такие РНК называются рибозимами.

Геномы ряда вирусов состоят из РНК, то есть у них она играет роль, которую у высших организмов выполняет ДНК. На основании разнообразия функций РНК в клетке была выдвинута гипотеза, согласно которой РНК -- первая молекула, которая была способна к самовоспроизведению в добиологических системах.

Между ДНК и РНК есть три основных отличия:

  • 1. ДНК содержит сахар дезоксирибозу, РНК -- рибозу, у которой есть дополнительная, по сравнению с дезоксирибозой, гидроксильная группа. Эта группа увеличивает вероятность гидролиза молекулы, то есть уменьшает стабильность молекулы РНК.
  • 2. Нуклеотид, комплементарный аденину, в РНК не тимин, как в ДНК, а урацил -- неметилированная форма тимина.
  • 3. ДНК существует в форме двойной спирали, состоящей из двух отдельных молекул. Молекулы РНК, в среднем, гораздо короче и преимущественно одноцепочечные.

Структурный анализ биологически активных молекул РНК, включая тРНК, рРНК, мяРНК и другие молекулы, которые не кодируют белков, показал, что они состоят не из одной длинной спирали, а из многочисленных коротких спиралей, расположенных близко друг к другу и образующих нечто, похожее на третичную структуру белка. В результате этого РНК может катализировать химические реакции, например, пептидил-трансферазный центр рибосомы, участвующий в образовании пептидной связи белков, полностью состоит из РНК