Как решать уравнения с 3 неизвестными. Решение системы линейных уравнений с тремя неизвестными методом крамера. Виды систем линейных уравнений

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 7

РЕШЕНИЕ СИСТЕМЫ 3 ЛИНЕЙНЫХ УРАВНЕНИЙ

С ТРЕМЯ ПЕРЕМЕННЫМИ

Цель:

Развить умение преобразования матриц;

Сформировать навыки решения системы 3 линейных уравнений с тремя переменными методом Крамера ;

Закрепить знания о свойствах определителей 2 и 3 порядка;

Материально – техническое обеспечение: методические указания по выполнению работы;

Время выполнения: 2 академических часа;

Ход занятия:

    Изучить краткие теоретические сведения;

    Выполнить задания;

    Сделать вывод по работе;

    Подготовить защиту работы по контрольным вопросам.

Краткие теоретические сведения:

Матрицей называется квадратная или прямоугольная таблица , заполненная числами . Эти числа называются элементами матрицы .

Элементы матрицы , расположенные по горизонталям , образуют строки матрицы . Элементы матрицы , расположенные по вертикалям , образуют столбцы матрицы .

Строки нумеруются слева направо , начиная с номера 1, столбцы нумеруются сверху вниз , начиная с номера 1.

Матрица A , имеющая m строк и n столбцов , называется матрицей размера m на n и обозначается А m∙n . Элемент a i j матрицы A = { a ij } стоит на пересечении i - ой строки и j- го столбца .

Главной диагональю квадратной матрицы называется диагональ, ведущая из левого верхнего угла матрицы в правый нижний угол. Побочной диагональю квадратной матрицы называется диагональ, ведущая из левого нижнего угла матрицы в правый верхний угол.

Две матрицы считаются равными, если они имеют одинаковую размерность и их соответствующие элементы равны.

Каждую матрицу можно умножить на любое число, причем, если k – число, то k A ={ k a ij }.

Матрицы одного и того же размера A m ∙n и B m∙ n можно складывать, причем A m ∙n + B m∙ n = { a ij + b i j }.

Операция сложения матриц обладает свойствами A + B = B + A , A +( B + C ) = ( A + B ) + C .

Пример 1. Выполнив действия над матрицами, найдите матрицу С= 2A - B, где, .

Решение.

Вычислим матрицу 2A размерности 3x3:

Вычислим матрицу С = 2A - В размерности 3x3:

C = 2 A - B .

Определителем матрицы третьего порядка называется число, определяемое равенством:

.

Это число представляет алгебраическую сумму, состоящую из шести слагаемых. В каждое слагаемое входит ровно по одному элементу из каждой строки и каждого столбца матрицы. Каждое слагаемое состоит из произведения трех сомножителей.

Рис.1.1. Рис.1.2.

Знаки, с которыми члены определителя входят в формулу нахождения определителя третьего порядка можно определить, пользуясь приведенной схемой, которая называется правилом треугольников или правилом Сарруса. Первые три слагаемые берутся со знаком плюс и определяются из рисунка (1.1.), а последующие три слагаемые берутся со знаком минус и определяются из рисунка (1.2).

Пример 2. Вычислить определитель третьего порядка по правилу Сарруса:

Решение:

Пример 3. Вычислить определитель третьего порядка методом разложения по элементам первой строки:

Решение:

Используем формулу:

3 -2 +2 = 3(-5 + 16) – 2(1+32) + 2(2 +20) = 33 – 66 + 44 = 11.

Рассмотрим основные свойства определителей:

    Определитель с нулевой строкой (столбцом) равен нулю.

    Если у матрицы умножить любую строку (любой столбец) на какое-либо число, то определитель матрицы умножится на это число.

    Определитель не меняется при транспонировании матрицы.

    Определитель меняет знак при перестановке любых двух строк (столбцов) матрицы.

    Определитель матрицы с двумя одинаковыми строками (столбцами) равен нулю.

    Определитель не меняется, если к какой-нибудь строке прибавить любую другую строку, умноженную на любое число. Аналогичное утверждение справедливо и для столбцов.

Свойства матриц и определителей широко применяют при решении системы трёх линейных уравнений с тремя неизвестными:

,

где х 1 , х 2 , х 3 – переменные, а 11 , а 12 ,…, а 33 - числовые коэффициенты. Следует помнить, что при решении системы возможен один из трёх вариантов ответа:

1) система имеет единственное решение – (х 1 ; х 2 ; х 3 );

2) система имеет бесконечно много решений (не определена);

3) система не имеет решений (несовместна).

Рассмотрим решение системы трёх линейных уравнений с тремя неизвестными методом Крамера, который позволяет найти единственное решение системы, опираясь на умение вычислять определители третьего порядка:

Пример 3. Найти решение системы трёх линейных уравнений с тремя неизвестными по формулам Крамера:

Решение. Находим определители третьего порядка, используя правило Сарруса или разложение по элементам первой строки :

Находим решение системы по формулам:

Ответ: (- 152; 270; -254)

Задания для самостоятельного выполнения:

I . Найти матрицу преобразования.

II . Вычислить определитель III порядка.

III . Решить систему методом Крамера .

Вариант 1.

1. C = A +3 B , если, . 2. .

Вариант 2.

1. C =2 A - B ,если, . 2. .

Вариант 3.

1. C = 3 A + B , если, . 2. .

Вариант 4.

1. C = A - 4 B , если, . 2. .

Вариант 5.

1. C = 4 A - B , если, . 2. .

Вариант 6.

1. C = A +2 B , если, . 2. .

Вариант 7.

1. C =2 A + B , если, . 2. .

Вариант 8.

1. C =3 A - B , если, . 2. .

Вариант 9.

1. C = A - 3 B , если, . 2. .

Вариант 10.

1. C = A - 2 B , если, . 2. .

Вариант 11.

1. C = A +4 B , если, . 2. .

Вариант 12.

1. C =4 A + B , если, . 2. .

Вариант 13.

1. C = A +3 B , если, . 2. .

Вариант 14.

1. C =2 A - B , если, . 2. .

Вариант 15.

1. C =3 A + B , если, . 2. .

Вопросы для самоконтроля:

    Что называется матрицей?

    Правила вычисления определителей третьего порядка?

    Запишите формулы Крамера для решения системы трёх линейных уравнений с тремя переменными.

Уравнение с одним неизвестным, которое после раскрытия скобок и приведения подобных членов принимает вид

aх + b = 0 , где a и b произвольные числа, называется линейным уравнением с одним неизвестным. Cегодня разберёмся, как эти линейные уравнения решать.

Например, все уравнения:

2х + 3= 7 – 0,5х; 0,3х = 0; x/2 + 3 = 1/2 (х – 2) - линейные.

Значение неизвестного, обращающее уравнение в верное равенство называется решением или корнем уравнения .

Например, если в уравнении 3х + 7 = 13 вместо неизвестного х подставить число 2 , то получим верное равенство 3· 2 +7 = 13. Значит, значение х = 2 есть решение или корень уравнения.

А значение х = 3 не обращает уравнение 3х + 7 = 13 в верное равенство, так как 3· 2 +7 ≠ 13. Значит, значение х = 3 не является решением или корнем уравнения.

Решение любых линейных уравнений сводится к решению уравнений вида

aх + b = 0.

Перенесем свободный член из левой части уравнения в правую, изменив при этом знак перед b на противоположный, получим

Если a ≠ 0, то х = ‒ b/a .

Пример 1. Решите уравнение 3х + 2 =11.

Перенесем 2 из левой части уравнения в правую, изменив при этом знак перед 2 на противоположный, получим
3х = 11 – 2.

Выполним вычитание, тогда
3х = 9.

Чтобы найти х надо разделить произведение на известный множитель, то есть
х = 9: 3.

Значит, значение х = 3 является решением или корнем уравнения.

Ответ: х = 3 .

Если а = 0 и b = 0 , то получим уравнение 0х = 0. Это уравнение имеет бесконечно много решений, так как при умножении любого числа на 0 мы получаем 0,но b тоже равно 0. Решением этого уравнения является любое число.

Пример 2. Решите уравнение 5(х – 3) + 2 = 3 (х – 4) + 2х ‒ 1.

Раскроем скобки:
5х – 15 + 2 = 3х – 12 + 2х ‒ 1.


5х – 3х ‒ 2х = – 12 ‒ 1 + 15 ‒ 2.

Приведем подобные члены:
0х = 0.

Ответ: х - любое число .

Если а = 0 и b ≠ 0 , то получим уравнение 0х = - b. Это уравнение решений не имеет, так как при умножении любого числа на 0 мы получаем 0, но b ≠ 0 .

Пример 3. Решите уравнение х + 8 = х + 5.

Сгруппируем в левой части члены, содержащие неизвестные, а в правой ‒ свободные члены:
х – х = 5 ‒ 8.

Приведем подобные члены:
0х = ‒ 3.

Ответ: нет решений.

На рисунке 1 изображена схема решения линейного уравнения

Составим общую схему решения уравнений с одной переменной. Рассмотрим решение примера 4.

Пример 4. Пусть надо решить уравнение

1) Умножим все члены уравнения на наименьшее общее кратное знаменателей, равное 12.

2) После сокращения получим
4 (х – 4) + 3·2 (х + 1) ‒ 12 = 6·5 (х – 3) + 24х – 2 (11х + 43)

3) Чтобы отделить члены, содержащие неизвестные и свободные члены, раскроем скобки:
4х – 16 + 6х + 6 – 12 = 30х – 90 + 24х – 22х – 86 .

4) Сгруппируем в одной части члены, содержащие неизвестные, а в другой – свободные члены:
4х + 6х – 30х – 24х + 22х = ‒ 90 – 86 + 16 – 6 + 12.

5) Приведем подобные члены:
‒ 22х = ‒ 154.

6) Разделим на – 22 , Получим
х = 7.

Как видим, корень уравнения равен семи.

Вообще такие уравнения можно решать по следующей схеме :

а) привести уравнение к целому виду;

б) раскрыть скобки;

в) сгруппировать члены, содержащие неизвестное, в одной части уравнения, а свободные члены ‒ в другой;

г) привести подобные члены;

д) решить уравнение вида aх = b,которое получили после приведения подобных членов.

Однако эта схема не обязательна для всякого уравнения. При решении многих более простых уравнений приходится начинать не с первого, а со второго (Пример. 2 ), третьего (Пример. 1, 3 ) и даже с пятого этапа, как в примере 5.

Пример 5. Решите уравнение 2х = 1/4.

Находим неизвестное х = 1/4: 2,
х = 1/8
.

Рассмотрим решение некоторых линейных уравнений, встречающихся на основном государственном экзамене.

Пример 6. Решите уравнение 2 (х + 3) = 5 – 6х.

2х + 6 = 5 – 6х

2х + 6х = 5 – 6

Ответ: ‒ 0, 125

Пример 7. Решите уравнение – 6 (5 – 3х) = 8х – 7.

– 30 + 18х = 8х – 7

18х – 8х = – 7 +30

Ответ: 2,3

Пример 8. Решите уравнение

3(3х – 4) = 4 · 7х + 24

9х – 12 = 28х + 24

9х – 28х = 24 + 12

Пример 9. Найдите f(6), если f (x + 2) = 3 7-х

Решение

Так как надо найти f(6), а нам известно f (x + 2),
то х + 2 = 6.

Решаем линейное уравнение х + 2 = 6,
получаем х = 6 – 2, х = 4.

Если х = 4, тогда
f(6) = 3 7-4 = 3 3 = 27

Ответ: 27.

Если у Вас остались вопросы, есть желание разобраться с решением уравнений более основательно, записывайтесь на мои уроки в РАСПИСАНИИ . Буду рада Вам помочь!

Также TutorOnline советует посмотреть новый видеоурок от нашего репетитора Ольги Александровны, который поможет разобраться как с линейными уравнениями, так и с другими.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Системой m линейных уравнений с n неизвестными называется система вида

где a ij и b i (i =1,…,m ; b =1,…,n ) – некоторые известные числа, а x 1 ,…,x n – неизвестные. В обозначении коэффициентов a ij первый индекс i обозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы .

Числа, стоящие в правых частях уравнений, b 1 ,…,b m называются свободными членами.

Совокупность n чисел c 1 ,…,c n называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c 1 ,…,c n вместо соответствующих неизвестных x 1 ,…,x n .

Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной . В противном случае, т.е. если система не имеет решений, то она называется несовместной .

Рассмотрим способы нахождения решений системы.


МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов

Найдем произведение

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

или короче A X=B .

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением .

Пусть определитель матрицы отличен от нуля |A | ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A -1 , обратную матрице A : . Поскольку A -1 A = E и E X = X , то получаем решение матричного уравнения в виде X = A -1 B .

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных . Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B .

Примеры. Решить системы уравнений.

ПРАВИЛО КРАМЕРА

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

называется определителем системы .

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

Тогда можно доказать следующий результат.

Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство . Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A 11 элемента a 11 , 2-ое уравнение – на A 21 и 3-е – на A 31 :

Сложим эти уравнения:

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

Примеры. Решить систему уравнений


МЕТОД ГАУССА

Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.

Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

.

Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x 1 . Для этого второе уравнение разделим на а 21 и умножим на –а 11 , а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а 31 и умножим на –а 11 , а затем сложим с первым. В результате исходная система примет вид:

Теперь из последнего уравнения исключим слагаемое, содержащее x 2 . Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:

Отсюда из последнего уравнения легко найти x 3 , затем из 2-го уравнения x 2 и, наконец, из 1-го – x 1 .

При использовании метода Гаусса уравнения при необходимости можно менять местами.

Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

К элементарным преобразованиям матрицы относятся следующие преобразования:

  1. перестановка строк или столбцов;
  2. умножение строки на число, отличное от нуля;
  3. прибавление к одной строке другие строки.

Примеры: Решить системы уравнений методом Гаусса.


Таким образом, система имеет бесконечное множество решений.

Система линейных уравнений имеет вид

где - коэффициенты; - свободные члены; - неизвестные величины.

Решением этой системы называется совокупность чисел которые, будучи подставлены вместо неизвестных в уравнения, обращают эти уравнения в тождества. Система уравнений называется совместной, если она имеет хотя бы одно решение. Если же система не имеет ни одного решения, то она называется несовместной.

Совместная система называется определенной, если она имеет только одно решение, и неопределенной, если она имеет более одного решения.

называются соответственно матрицей и расширенной матрицей системы (2).

Теорема Кронекера-Капелли. Для совместности системы (2) необходимо и достаточно, чтобы ранг матрицы этой системы был равен рангу расширенной матрицы:

Правило Крамера. Если ранг матрицы совместной системы равен числу ее неизвестных, то система является определенной. Если число неизвестных системы (2) совпадает с числом уравнений и матрица системы невырожденная то система имеет единственное решение, которое находится по правилу Крамера:

В этих формулах - определитель системы, а - определитель, полученный из определителя системы заменой столбца столбцом свободных членов

Матричное решение системы. Система линейных уравнений (2) может быть записана в матричной форме

где А - матрица системы; X - матрица-столбец неизвестных; В - матрица-столбец свободных членов. Если матрица А квадратная и невырожденная, то решение системы (3) может быть записано в матричной форме:

Равносильные системы уравнений. Две системы линейных уравнений называются равносильными, если множества их решений совпадают. Нахождение решений системы линейных уравнений основано на переходе к равносильной системе, которая проще исходной. Укажем простейшие операции, которые приводят к равносильной системе:

1) перемена местами двух уравнений в системе;

2) умножение какого-либо уравнения системы на действительное число (отличное от нуля);

3) прибавление к одному уравнению другого уравнения, умноженного на произвольное число.

Неизвестное называется разрешенным или базисным, если какое-нибудь уравнение системы содержит его с коэффициентом 1, а во все остальные уравнения не входит.

Если каждое уравнение системы содержит разрешенное неизвестное, то такая система называется разрешенной. Ее неизвестные, не являющиеся базисными, называются свободными.

Для отыскания всех решений совместной системы линейных уравнений достаточно найти равносильную ей разрешенную систему. Если все неизвестные окажутся базисными, то разрешенная система дает значения этих неизвестных, составляющие единственное решение исходной системы. В противном случае выражают базисные неизвестные через свободные.

Метод Жордана - Гаусса. Запишем систему линейных уравнений (2) в виде таблицы

Жордановым преобразованием системы с разрешающим элементом называется следующая последовательность действий:

1) умножение строки таблицы на число ;

2) прибавление к первой строке таблицы ее строки (полученной после первого действия), умноженной на -

3) прибавление ко второй строке строки, умноженной на - и т. д.

После этих преобразований неизвестное станет разрешенным, все коэффициенты столбца будут равны нулю, кроме

Проводя последовательно жордановы преобразования с разрешающими элементами, взятыми в различных строках, получим разрешенную систему, равносильную исходной.

Если в результате преобразований все коэффициенты при неизвестных в какой-нибудь строке окажутся равными нулю, а свободный член этой строки не будет равным нулю, то данная система уравнений несовместна. Если же получится строка, состоящая из одних нулей, то она вычеркивается из таблицы.

Пример 1. Решить систему уравнений

Решение. Запишем эту систему в виде таблицы и проведем ее преобразование к разрешенному виду в шесть шагов.

Рассмотрим систему трех линейных уравнений с тремя неизвестными

а 11 , a 12 , …, a 33 – коэффициенты при неизвестных,

b 1 , b 2 , b 3 – свободные члены.

Решить систему (2.4) – значит найти такую упорядоченную тройку чисел x 1 =c 1 , x 2 =c 2 , x 3 =c 3 , при подстановке которых в уравнения системы последние обращаются в тождества.

Система уравнений, имеющая решения (единственное или бесчисленное множество), называется совместной , система уравнений, не имеющая решений, – несовместной .

Приведем три способа решений системы (2.4).

Правило Крамера

Составим определитель системы из коэффициентов при неизвестных

(2.5)

Если , то система (2.4) имеет единственное решение, которое находится по формулам Крамера:

где , , получены из определителя заменой соответственно первого, второго, третьего столбца столбцом из свободных членов системы (2.4).

(2.7)

Пример 7. Решить систему

Вычисляем определитель системы (2.5) и определители , , (2.6).

следовательно, система имеет единственное решение.

По формулам Крамера (2.6) находим:

Можно сделать проверку, подставив значения неизвестных в уравнения системы.

Итак, x 1 =x 2 =x 3 =1 – решение системы.

Метод Гаусса

Рассмотрим систему (2.4):

Метод Гаусса, иначе метод последовательного исключения неизвестных, состоит в следующем. Пусть Исключим из 2-го и 3-го уравнений системы x 1 . Получим систему:

Получим систему треугольного вида. Из 3-го уравнения найдем x 3 , подставляя его во 2-ое уравнение, найдем x 2 , затем из 1-го уравнения найдем x 1 , подставляя в него x 2 и x 3 .

Пример 8. Решить систему

Переставим 3-е и 1-ое уравнения, чтобы в 1-ом уравнении коэффициент при x 1 был равен 1.

Исключим x 1 из 2-го и 3-его уравнений. Для этого умножим 1-ое уравнение на (-4) и сложим его со 2-м уравнением; затем умножим 1-ое уравнение на (-6) и сложим с 3-м уравнением. Получим систему:

Исключим x 2 из 3-его уравнения. Для этого умножим 2-ое уравнение на (-13/10) и сложим с 3-м уравнением. Получим систему:

Из последнего уравнения находим x 3 = -1, подставляем во 2-ое уравнение:

10x 2 - 13(-1) = -7, -10x 2 = - 20, x 2 = 2.

Подставляя x 2 и x 3 в 1-ое уравнение, получим

Итак, решение системы: x 1 = 1, x 2 = 2, x 3 = -1.

Решение системы с помощью обратной матрицы

Дана система: (2.8)

Составим матрицу А из коэффициентов при неизвестных, матрицу-столбец Х – из неизвестных, матрицу-столбец В – из свободных членов.

,

Систему (2.8) можно записать в матричной форме так:

Матрица-решение Х находится по формуле:

А -1 – обратная матрица для матрицы А , она составляется из алгебраических дополнений элементов матрицы А по формуле (2.3):

– детерминант или определитель матрицы А , .

Пример 9. Решить систему:

Введем матрицы: ,

Обратная матрица вычислена в примере 6. По формуле (2.9) находим решение системы

Итак, x 1 =1, x 2 =1, x 3 =1.

Элементы векторной алгебры

Вектор – направленный отрезок; обозначается или . А – начало вектора, В – конец.

Длина или модуль вектора обозначается .

Рис. 21.

В координатном пространстве 0xyz вектор может быть представлен в виде

(3.1)

Эта формула дает разложение вектора по базису векторов , , ; , , - прямоугольные декартовые координаты вектора (иначе проекции вектора на оси координат).

Формулу (3.1) можно записать так:

– вектор имеет координаты , , .

Длина (модуль) вектора находится по формуле:

. (3.2)

Если вектор задан задан координатами начала A(x 1 ,y 1 ,z 1) и конца B(x 2 ,y 2 ,z 2) , то координаты находятся по формулам:

Если известны разложения векторов и по осям координат , то при сложении (вычитании) векторов их одноименные координаты складываются (вычитаются), при умножении вектора на число координаты вектора умножаются на это число, т.е.

(3.4)

Скалярным произведением векторов и , обозначается , называется число, равное произведению длин этих векторов на косинус угла между ними

. (3.5)

Если , , то

. (3.6)

Если векторы и коллинеарны (параллельны), то

. (3.7)

Если векторы и ортогональны (перпендикулярны), то

Или (3.8)

Пример 10. Даны точки А 1 (1,0,-1), A 2 (2,-1,1), A 3 (0,1,-2). Средствами векторной алгебры, учитывая, что найти:

1) координаты векторов и .

Используем формулу (3.3):

2) Координаты вектора

Используя формулы (3.4) и (3.5), получим

Или 1.2. По правилу треугольников: , и длину вектора . Отв.:

3. Даны точки А(0,-2,3), В(2,1,4), С(3,4,5). Найти:

а) координаты (проекции) векторов и

б) координаты вектора

с) длину вектора

4. Даны векторы Найти скалярное произведение векторов .

5. Доказать, что векторы и коллинеарны.

6. Доказать, что векторы ортогональны.