Тригонометрические уравнения косинус х равен а. Тригонометрические уравнения. Основные методы решений. Решение уравнений, через переход к половинному углу

Вы можете заказать подробное решение вашей задачи !!!

Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

1. Уравнение `sin x=a`.

При `|a|>1` не имеет решений.

При `|a| \leq 1` имеет бесконечное число решений.

Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Уравнение `cos x=a`

При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

При `|a| \leq 1` имеет бесконечное множество решений.

Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`

Частные случаи для синуса и косинуса в графиках.

3. Уравнение `tg x=a`

Имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arctg a + \pi n, n \in Z`

4. Уравнение `ctg x=a`

Также имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arcctg a + \pi n, n \in Z`

Формулы корней тригонометрических уравнений в таблице

Для синуса:
Для косинуса:
Для тангенса и котангенса:
Формулы решения уравнений, содержащих обратные тригонометрические функции:

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения состоит из двух этапов:

  • с помощью преобразовать его до простейшего;
  • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

Рассмотрим на примерах основные методы решения.

Алгебраический метод.

В этом методе делается замена переменной и ее подстановка в равенство.

Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,

находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Разложение на множители.

Пример. Решить уравнение: `sin x+cos x=1`.

Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя , преобразуем и разложим на множители левую часть:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.

Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Приведение к однородному уравнению

Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:

`\frac {sin^2 x}{cos^2 x}+\frac{sin x cos x}{cos^2 x} — \frac{2 cos^2 x}{cos^2 x}=0`

`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Переход к половинному углу

Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Применив описанный выше алгебраический метод, получим:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Введение вспомогательного угла

В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt {a^2+b^2}`:

`\frac a{sqrt {a^2+b^2}} sin x +` `\frac b{sqrt {a^2+b^2}} cos x =` `\frac c{sqrt {a^2+b^2}}`.

Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a{sqrt {a^2+b^2}}=cos \varphi`, ` \frac b{sqrt {a^2+b^2}} =sin \varphi`, `\frac c{sqrt {a^2+b^2}}=C`, тогда:

`cos \varphi sin x + sin \varphi cos x =C`.

Подробнее рассмотрим на следующем примере:

Пример. Решить уравнение: `3 sin x+4 cos x=2`.

Решение. Разделим обе части равенства на `sqrt {3^2+4^2}`, получим:

`\frac {3 sin x} {sqrt {3^2+4^2}}+` `\frac{4 cos x}{sqrt {3^2+4^2}}=` `\frac 2{sqrt {3^2+4^2}}`

`3/5 sin x+4/5 cos x=2/5`.

Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

`cos \varphi sin x+sin \varphi cos x=2/5`

Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

`sin (x+\varphi)=2/5`,

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Дробно-рациональные тригонометрические уравнения

Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

Пример. Решить уравнение. `\frac {sin x}{1+cos x}=1-cos x`.

Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

`\frac {sin x}{1+cos x}=` `\frac {(1-cos x)(1+cos x)}{1+cos x}`

`\frac {sin x}{1+cos x}=` `\frac {1-cos^2 x}{1+cos x}`

`\frac {sin x}{1+cos x}=` `\frac {sin^2 x}{1+cos x}`

`\frac {sin x}{1+cos x}-` `\frac {sin^2 x}{1+cos x}=0`

`\frac {sin x-sin^2 x}{1+cos x}=0`

Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.

Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.


Примеры:

\(2\sin{⁡x} = \sqrt{3}\)
tg\({3x}=-\) \(\frac{1}{\sqrt{3}}\)
\(4\cos^2⁡x+4\sin⁡x-1=0\)
\(\cos⁡4x+3\cos⁡2x=1\)

Как решать тригонометрические уравнения:

Любое тригонометрическое уравнение нужно стремиться свести к одному из видов:

\(\sin⁡t=a\), \(\cos⁡t=a\), tg\(t=a\), ctg\(t=a\)

где \(t\) – выражение с иксом, \(a\) – число. Такие тригонометрические уравнения называются простейшими . Их легко решать с помощью () или специальных формул:


Инфографику о решении простейших тригонометрических уравнений смотри здесь: , и .

Пример . Решите тригонометрическое уравнение \(\sin⁡x=-\)\(\frac{1}{2}\).
Решение:

Ответ: \(\left[ \begin{gathered}x=-\frac{π}{6}+2πk, \\ x=-\frac{5π}{6}+2πn, \end{gathered}\right.\)\(k,n∈Z\)

Что означает каждый символ в формуле корней тригонометрических уравнений смотри в .

Внимание! Уравнения \(\sin⁡x=a\) и \(\cos⁡x=a\) не имеют решений, если \(a ϵ (-∞;-1)∪(1;∞)\). Потому что синус и косинус при любых икс больше или равны \(-1\) и меньше или равны \(1\):

\(-1≤\sin x≤1\) \(-1≤\cos⁡x≤1\)

Пример . Решить уравнение \(\cos⁡x=-1,1\).
Решение: \(-1,1<-1\), а значение косинуса не может быть меньше \(-1\). Значит у уравнения нет решения.
Ответ : решений нет.


Пример . Решите тригонометрическое уравнение tg\(⁡x=1\).
Решение:

Решим уравнение с помощью числовой окружности. Для этого:
1) Построим окружность)
2) Построим оси \(x\) и \(y\) и ось тангенсов (она проходит через точку \((0;1)\) параллельно оси \(y\)).
3) На оси тангенсов отметим точку \(1\).
4) Соединим эту точку и начало координат - прямой.
5) Отметим точки пересечения этой прямой и числовой окружности.
6)Подпишем значения этих точек: \(\frac{π}{4}\) ,\(\frac{5π}{4}\)
7) Запишем все значения этих точек. Так как они находятся друг от друга на расстоянии ровно в \(π\), то все значения можно записать одной формулой:

Ответ: \(x=\)\(\frac{π}{4}\) \(+πk\), \(k∈Z\).

Пример . Решите тригонометрическое уравнение \(\cos⁡(3x+\frac{π}{4})=0\).
Решение:


Опять воспользуемся числовой окружностью.
1) Построим окружность, оси \(x\) и \(y\).
2) На оси косинусов (ось \(x\)) отметим \(0\).
3) Проведем перпендикуляр к оси косинусов через эту точку.
4) Отметим точки пересечения перпендикуляра и окружности.
5) Подпишем значения этих точек: \(-\)\(\frac{π}{2}\),\(\frac{π}{2}\) .
6)Выпишем все значение этих точек и приравняем их к косинуса (к тому что внутри косинуса).

\(3x+\)\(\frac{π}{4}\) \(=±\)\(\frac{π}{2}\) \(+2πk\), \(k∈Z\)

\(3x+\)\(\frac{π}{4}\) \(=\)\(\frac{π}{2}\) \(+2πk\) \(3x+\)\(\frac{π}{4}\) \(=-\)\(\frac{π}{2}\) \(+2πk\)

8) Как обычно в уравнениях будем выражать \(x\).
Не забывайте относиться к числам с \(π\), так же к \(1\), \(2\), \(\frac{1}{4}\) и т.п. Это такие же числа, как и все остальные. Никакой числовой дискриминации!

\(3x=-\)\(\frac{π}{4}\) \(+\)\(\frac{π}{2}\) \(+2πk\) \(3x=-\)\(\frac{π}{4}\) \(+\)\(\frac{π}{2}\) \(+2πk\)
\(3x=\)\(\frac{π}{4}\) \(+2πk\) \(|:3\) \(3x=-\)\(\frac{3π}{4}\) \(+2πk\) \(|:3\)
\(x=\)\(\frac{π}{12}\) \(+\)\(\frac{2πk}{3}\) \(x=-\)\(\frac{π}{4}\) \(+\)\(\frac{2πk}{3}\)

Ответ: \(x=\)\(\frac{π}{12}\) \(+\)\(\frac{2πk}{3}\) \(x=-\)\(\frac{π}{4}\) \(+\)\(\frac{2πk}{3}\) , \(k∈Z\).

Сводить тригонометрические уравнения к простейшим – задача творческая, тут нужно использовать и , и особые методы решений уравнений:
- Метод (самый популярный в ЕГЭ).
- Метод .
- Метод вспомогательных аргументов.


Рассмотрим пример решения квадратно-тригонометрического уравнения

Пример . Решите тригонометрическое уравнение \(2\cos^2⁡x-5\cos⁡x+2=0\)
Решение:

\(2\cos^2⁡x-5\cos⁡x+2=0\)

Сделаем замену \(t=\cos⁡x\).

Наше уравнение превратилось в типичное . Можно его решить с помощью .

\(D=25-4 \cdot 2 \cdot 2=25-16=9\)

\(t_1=\)\(\frac{5-3}{4}\) \(=\)\(\frac{1}{2}\) ; \(t_2=\)\(\frac{5+3}{4}\) \(=2\)

Делаем обратную замену.

\(\cos⁡x=\)\(\frac{1}{2}\); \(\cos⁡x=2\)

Первое уравнение решаем с помощью числовой окружности.
Второе уравнение не имеет решений т.к. \(\cos⁡x∈[-1;1]\) и двум быть равен не может ни при каких иксах.

Запишем все числа, лежащие на в этих точках.

Ответ: \(x=±\)\(\frac{π}{3}\) \(+2πk\), \(k∈Z\).

Пример решения тригонометрического уравнения с исследованием ОДЗ:

Пример(ЕГЭ) . Решите тригонометрическое уравнение \(=0\)

\(\frac{2\cos^2⁡x-\sin{⁡2x}}{ctg x}\) \(=0\)

Есть дробь и есть котангенс – значит надо записать . Напомню, что котангенс это фактически дробь:

ctg\(x=\)\(\frac{\cos⁡x}{\sin⁡x}\)

Потому ОДЗ для ctg\(x\): \(\sin⁡x≠0\).

ОДЗ: ctg\(x ≠0\); \(\sin⁡x≠0\)

\(x≠±\)\(\frac{π}{2}\) \(+2πk\); \(x≠πn\); \(k,n∈Z\)

Отметим «нерешения» на числовой окружности.

\(\frac{2\cos^2⁡x-\sin{⁡2x}}{ctg x}\) \(=0\)

Избавимся в уравнении от знаменателя, умножив его на ctg\(x\). Мы можем это сделать, так как выше написали, что ctg\(x ≠0\).

\(2\cos^2⁡x-\sin⁡{2x}=0\)

Применим формулу двойного угла для синуса: \(\sin⁡{2x}=2\sin⁡x\cos⁡x\).

\(2\cos^2⁡x-2\sin⁡x\cos⁡x=0\)

Если у вас руки потянулись поделить на косинус – одерните их! Делить на выражение с переменной можно если оно точно не равно нулю (например, такие: \(x^2+1,5^x\)). Вместо этого вынесем \(\cos⁡x\) за скобки.

\(\cos⁡x (2\cos⁡x-2\sin⁡x)=0\)

«Расщепим» уравнение на два.

\(\cos⁡x=0\); \(2\cos⁡x-2\sin⁡x=0\)

Первое уравнение с решим с помощью числовой окружности. Второе уравнение поделим на \(2\) и перенесем \(\sin⁡x\) в правую часть.

\(x=±\)\(\frac{π}{2}\) \(+2πk\), \(k∈Z\). \(\cos⁡x=\sin⁡x\)

Корни, которые получились не входят в ОДЗ. Поэтому их в ответ записывать не будем.
Второе уравнение типичное . Поделим его на \(\sin⁡x\) (\(\sin⁡x=0\) не может быть решением уравнения т.к. в этом случаи \(\cos⁡x=1\) или \(\cos⁡x=-1\)).

Опять используем окружность.


\(x=\)\(\frac{π}{4}\) \(+πn\), \(n∈Z\)

Эти корни не исключаются ОДЗ, поэтому можно их записывать в ответ.

Ответ: \(x=\)\(\frac{π}{4}\) \(+πn\), \(n∈Z\).

Глава 15. Тригонометрические уравнения

15.6. Решение более сложных тригонометрических уравнений

В предыдущих пунктах 3-5 приведены решения простейших тригонометрических уравнений , , и . К ним посредством тождественных преобразований или решением вспомогательного алгебраического уравнения сводятся более сложные тригонометрические уравнения, содержащие несколько тригонометрических функций одинаковых или различных аргументов.

Общий прием решения таких уравнений состоит в замене всех входящих в уравнение тригонометрических функций через одну функцию на основании формул, связывающих эти функции. При решении уравнения стремимся делать такие преобразования, которые приводят к уравнениям, равносильным данному. В противном случае нужно сделать проверку полученных корней.

Потеря корней является распространенной грубой ошибкой. Другими такими ошибками являются неточное знание формул решений простейших уравнений, а также неумение правильно найти нужное значение аркфункции.

Рассмотрим примеры.

Решить уравнение .

Пример 2. (пример на приведение к одному аргументу).

Решить уравнение .

Решение:
Целесообразно перейти к аргументу . Произведение напоминает о формуле синуса двойного аргумента: .
Подставив в уравнение, получим: .
В левой части еще раз применим формулу синуса двойного аргумента, но сначала умножим обе части уравнения на .
; ; .
Получили простейшее уравнение типа и весь аргумент приравняем решению простейшего уравнения:
, откуда .

Решить уравнение .

Решение:
По одной из формул понижения степени получим .

После подстановки в уравнение имеем

Решите уравнение .

Решение:
Перенося в правую часть, получим , что равно :
; ; .
Здесь пришлось идти путем повышения степени уравнения, зато мы получили возможность применить хороший прием решения - перенести все члены в одну часть и разложить полученное выражение на множители:
.
Приравнивая нулю каждый множитель отдельно, получим совокупность уравнений,

которая, как правило, равносильна данному уравнению (исключение из этого правила рассмотрено в следующем примере).
Решаем уравнение , имеем
, и .
Решаем уравнение или , имеем , и .

Решить уравнение .

Включение в ответ постороннего корня считается грубой ошибкой. Чтобы избежать ее, надо убедиться, что полученные корни не обращают в нуль ни одну из функций, находящихся в знаменателе дроби данного уравнения (если там есть дроби) и что при этих корнях не теряет смысла ни одна из функций , в первоначальном уравнении (если они туда входят). Следует помнить, при каких значениях аргумента функция обращается в нуль и область определения каждой тригонометрической функции.По аналогии говорят об области определения уравнения (области допустимых значений, или ОДЗ, неизвестного). Область определения тригонометрического уравнения - общая часть (пересечение) областей определения левой и правой частей данного уравнения. Если полученный корень не принадлежит области определения уравнения, то он посторонний и его нужно отбросить.

Решить уравнение
.

Решение:
Перейдем к одной функции. Если выразить через , то получим иррациональное уравнение, что нежелательно. Заменим через :
; .
Решим полученное уравнение как квадратное относительно .
или .
Уравнение не имеет корней.
Для уравнения имеем:
. Но и означают одни и те же нечетные числа, поэтому решение запишем проще: .

Решить уравнение
.

Для получения однородного уравнения (все члены одной и той же степени - второй) умножим правую часть на выражение , которое равно .
;
.
Так как корни уравнения не являются корнями исходного уравнения (в этом легко убедиться подстановкой), то, чтобы перейти к одной функции, разделим обе части уравнения на .

Решаем квадратное уравнение относительно .
или .
Для уравнения имеем: .
Для уравнения получим .

Решить уравнение .

Выразим через и , получим
. Здесь должен быть отличен от нуля (в противном случае уравнение теряет смысл), поэтому область определениения уравнения составляют все . Так как , то умножим обе части уравнения на , чтобы освободиться от дробей.
;
;
.
Для уравнения имеем

Простейшими тригонометрическими уравнениями называют уравнения

Cos (x) = a, sin (x) = a, tg (x) = a, ctg (x) =a

Уравнение cos (x) = a

Объяснение и обоснование

  1. Корни уравнения cosx = а. При | a | > 1 уравнение не имеет корней, по-скольку | cosx | < 1 для любого x (прямая y = а при а > 1 или при а < -1 не пересекает график функцииy = cosx).

Пусть | а | < 1. Тогда прямая у = а пересекает график функции

у = cos х. На промежутке функция y = cos x убы-вает от 1 до -1. Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение cos x = а имеет на этом промежутке только один корень, который по опреде-лению арккосинуса равен: x 1 = arccos а (и для этого корня cos x = а).

Косинус — четная функция, поэтому на промежутке [-п; 0] уравнение cos x = а также имеет только один корень — число, противоположное x 1 , то есть

x 2 = -arccos а.

Таким образом, на промежутке [-п; п] (длиной 2п) уравнение cos x = а при | а | < 1 имеет только корни x = ±arccos а.

Функция y = cos x периодическая с периодом 2п, поэтому все остальные корни отличаются от найденных на 2пп (n € Z). Получаем следующую фор-мулу корней уравнения cos x = а при

x = ±arccos а + 2пп, n £ Z.

  1. Частные случаи решения уравнения cosx = а.

Полезно помнить специальные записи корней уравнения cos x = а при

а = 0, а = -1, а = 1, которые можно легко получить, используя как ори-ентир единичную окружность.

Поскольку косинус равен абсциссе соответствующей точки единичной окружности, получаем, что cos x = 0 тогда и только тогда, когда соответ-ствующей точкой единичной окружности является точка A или точка B.

Аналогично cos x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C, следовательно,

x = 2πп, k € Z.

Также cos х = —1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка D, таким образом, х = п + 2пn,

Уравнение sin (x) = a

Объяснение и обоснование

  1. Корни уравнения sinx = а. При | а | > 1 уравнение не имеет корней, по-скольку | sinx | < 1 для любого x (прямая y = а на рисунке при а > 1 или при а < -1 не пересекает график функции y = sinx).

Линия УМК Г. К. Муравина. Алгебра и начала математического анализа (10-11) (углуб.)

Линия УМК Г.К. Муравина, К.С. Муравина, О.В. Муравиной. Алгебра и начала математического анализа (10-11) (баз.)

Как научить решать тригонометрические уравнения и неравенства: методика преподавания

Курс математики корпорации «Российский учебник», авторства Георгия Муравина и Ольги Муравиной, предусматривает постепенный переход к решению тригонометрических уравнений и неравенств в 10 классе, а также продолжение их изучения в 11 классе. Представляем вашему вниманию этапы перехода к теме с выдержками из учебника «Алгебра и начало математического анализа» (углубленный уровень).

1. Синус и косинус любого угла (пропедевтика к изучению тригонометрических уравнений)

Пример задания. Найти приближенно углы, косинусы которых равны 0,8.

Решение. Косинус - это абсцисса соответствующей точки единичной окружности. Все точки с абсциссами, равными 0,8, принадлежат прямой, параллельной оси ординат и проходящей через точку C (0,8; 0). Эта прямая пересекает единичную окружность в двух точках: P α ° и P β ° , симметричных относительно оси абсцисс.

С помощью транспортира находим, что угол α° приближенно равен 37°. Значит, общий вид углов поворота с конечной точкой P α°:

α° ≈ 37° + 360°n , где n - любое целое число.

В силу симметрии относительно оси абсцисс точка P β ° - конечная точка поворота на угол –37°. Значит, для нее общий вид углов поворота:

β° ≈ –37° + 360°n , где n - любое целое число.

Ответ: 37° + 360°n , –37° + 360°n , где n - любое целое число.

Пример задания. Найти углы, синусы которых равны 0,5.

Решение. Синус - это ордината соответствующей точки единичной окружности. Все точки с ординатами, равными 0,5, принадлежат прямой, параллельной оси абсцисс и проходящей через точку D (0; 0,5).

Эта прямая пересекает единичную окружность в двух точках: P φ и P π–φ , симметричных относительно оси ординат. В прямоугольном треугольнике OKP φ катет KP φ равен половине гипотенузы OP φ, значит,

Общий вид углов поворота с конечной точкой P φ :

где n - любое целое число. Общий вид углов поворота с конечной точкой P π–φ :


где n - любое целое число.

Ответ: где n - любое целое число.

2. Тангенс и котангенс любого угла (пропедевтика к изучению тригонометрических уравнений)

Пример 2.

Пример задания. Найти общий вид углов, тангенс которых равен –1,2.

Решение. Отметим на оси тангенсов точку C с ординатой, равной –1,2, и проведем прямую OC . Прямая OC пересекает единичную окружность в точках P α ° и P β° - концах одного и того же диаметра. Углы, соответствующие этим точкам, отличаются друг от друга на целое число полуоборотов, т.е. на 180°n (n - целое число). С помощью транспортира находим, что угол P α° OP 0 равен –50°. Значит, общий вид углов, тангенс которых равен –1,2, следующий: –50° + 180°n (n - целое число)

Ответ: –50° + 180°n , n ∈ Z.

По синусу и косинусу углов 30°, 45° и 60° легко найти их тангенсы и котангенсы. Например,

Перечисленные углы довольно часто встречаются в разных задачах, поэтому полезно запомнить значения тангенса и котангенса этих углов.

3. Простейшие тригонометрические уравнения

Вводятся обозначения: arcsin α, arccos α, arctg α, arcctg α. Не рекомендуется торопиться с введением объединенной формулы. Две серии корней значительно удобнее записывать, особенно, когда нужно отбирать корни на интервале.

При изучении темы «простейшие тригонометрические уравнения», уравнения чаще всего сводятся к квадратам.

4. Формулы приведения

Формулы приведения являются тождествами, т. е. они верны для любых допустимых значений φ . Анализируя полученную таблицу, можно заметить, что:

1) знак в правой части формулы совпадает со знаком приводимой функции в соответствующей четверти, если считать φ острым углом;

2) название меняют только функции углов и

φ + 2πn

5. Свойства и график функции y = sin x

Простейшие тригонометрические неравенства решаются либо по графику, либо на окружности. При решении тригонометрического неравенства на окружности важно не перепутать, какую точку указывать первой.

6. Свойства и график функции y = cos x

Задачу построения графика функции y = cos x можно свести к построению графика функции y = sin x . Действительно, поскольку график функции y = cos x можно получить из графика функции y = sin x сдвигом последнего вдоль оси абсцисс влево на

7. Свойства и графики функций y = tg x и y = ctg x

Область определения функции y = tg x включает в себя все числа, кроме чисел вида где n Z . Как и при построении синусоиды, сначала постараемся получить график функции y = tg x на промежутке


В левом конце этого промежутка тангенс равен нулю, а при приближении к правому концу значения тангенса неограниченно увеличиваются. Графически это выглядит так, как будто график функции y = tg x прижимается к прямой уходя вместе с ней неограниченно вверх.

8. Зависимости между тригонометрическими функциями одного и того же аргумента

Равенства и выражают соотношения между тригонометрическими функциями одного и того же аргумента φ. С их помощью, зная синус и косинус некоторого угла, можно найти его тангенс и котангенс. Из этих равенств легко получить, что тангенс и котангенс связаны между собой следующим равенством.

tg φ · ctg φ = 1

Есть и другие зависимости между тригонометрическими функциями.

Уравнение единичной окружности с центром в начале координат x 2 + y 2 = 1 связывает абсциссу и ординату любой точки этой окружности.

Основное тригонометрическое тождество

cos 2 φ + sin 2 φ = 1

9. Синус и косинус суммы и разности двух углов

Формула косинуса суммы

cos (α + β) = cos α cos β – sin α sin β

Формула косинуса разности

cos (α – β) = cos α cos β + sin α sin β

Формула синуса разности

sin (α – β) = sin α cos β – cos α sin β

Формула синуса суммы

sin (α + β) = sin α cos β + cos α sin β

10. Тангенс суммы и тангенс разности двух углов

Формула тангенса суммы

Формула тангенса разности

Учебник входит в УМК по математике для 10–11 классов, изучающих предмет на базовом уровне. Теоретический материал разделен на обязательный и дополнительный, система заданий дифференцирована по уровню сложности, каждый пункт главы завершается контрольными вопросами и заданиями, а каждая глава - домашней контрольной работой. В учебник включены темы проектов и сделаны ссылки на интернет-ресурсы.

11. Тригонометрические функции двойного угла

Формула тангенса двойного угла

cos2α = 1 – 2sin 2 α cos2α = 2cos 2 α – 1

Пример задания. Решить уравнение

Решение.

13. Решение тригонометрических уравнений

В большинстве случаев исходное уравнение в процессе решения сводится к простейшим тригонометрическим уравнениям. Однако для тригонометрических уравнений не существует единого метода решения. В каждом конкретном случае успех зависит от знания тригонометрических формул и от умения выбрать из них нужные. При этом обилие различных формул иногда делает этот выбор довольно трудным.

Уравнения, сводящиеся к квадратам

Пример задания. Решить уравнение 2 cos 2 x + 3 sinx = 0

Решение . С помощью основного тригонометрического тождества это уравнение можно свести к квадратному относительно sinx :

2cos 2 x + 3sinx = 0, 2(1 – sin 2 x ) + 3sinx = 0,

2 – 2sin 2 x + 3sinx = 0, 2sin 2 x – 3sinx – 2 = 0

Введем новую переменную y = sin x , тогда уравнение примет вид: 2y 2 – 3y – 2 = 0.

Корни этого уравнения y 1 = 2, y 2 = –0,5.

Возвращаемся к переменной x и получаем простейшие тригонометрические уравнения:

1) sin x = 2 – это уравнение не имеет корней, так как sin x < 2 при любом значении x ;

2) sin x = –0,5,

Ответ :

Однородные тригонометрические уравнения

Пример задания. Решить уравнение 2sin 2 x – 3sinx cosx – 5cos 2 x = 0.

Решение. Рассмотрим два случая:

1) cosx = 0 и 2) cosx ≠ 0.

Случай 1. Если cos x = 0, то уравнение принимает вид 2sin 2 x = 0, откуда sinx = 0. Но это равенство не удовлетворяет условию cosx = 0, так как ни при каком x косинус и синус одновременно в нуль не обращаются.

Случай 2. Если cos x ≠ 0, то можно разделить уравнение на cos 2 x «Алгебра и начало математического анализа. 10 класс» , как и многие другие издания, можно на платформе LECTA. Для этого воспользуйтесь предложением .

#ADVERTISING_INSERT#