Линия монжа. Значение монж, гаспар в словаре кольера. Краткий курс лекций

Метод Монжа использует метод прямоугольных проекций или метод ортогонального проецирования геометрического образа (точки, прямой, плоскости, поверхности) на две взаимно перпендикулярные и взаимно связанные плоскости проекции лучами перпендикулярными этим плоскостям проекций, в этом состоит сущность метода Монжа:

Рис. 18 Метод Монжа: H - горизонтальная плоскость проекции; V - фронтальная плоскость проекции; W - профильная плоскость проекции.

Линии пересечения плоскостей проекции называются осью проекции или осью координат:

А`- проекция точки А на плоскость H (горизонтальная проекция точки А);

А"- проекция точки А на плоскость V (фронтальная проекция точки А);

А"`- проекция точки А на плоскость W (профильная проекция точки А).

Методы проецирования с использованием одно-картинных чертежей позволяют решать прямую задачу (т.е. по данному оригиналу построить его проекцию). Однако, обратную задачу (т.е. по проекции воспроизвести оригинал) решить однозначно невозможно. Эта задача допускает бесчисленное множество решений, т.к. каждую точку Аб плоскости проекций б можно считать проекцией любой точки проецирующего луча SАб, проходящего через Аб.

Таким образом, рассмотренные одно-картинные чертежи не обладают свойством обратимости.

Для получения обратимых одно-картинных чертежей их дополняют необходимыми данными.

Существуют различные способы такого дополнения. Например, чертежи с числовыми отметками.

Способ заключается в том, что наряду с проекцией точки А1 задаётся высота точки, т.е. её расстояние от плоскости проекций. Задают, также, масштаб.

Такой способ используется в строительстве, архитектуре, геодезии и т. д. Однако, он не является универсальным для создания чертежей сложных пространственных форм.

Рис. 19

В 1798 году французский геометр-инженер Гаспар Монж, обобщив накопленные к этому времени теоретические знания и опыт, впервые дал научное обоснование общего метода построения изображений, предложив рассматривать плоский чертёж, состоящий из двух проекций, как результат совмещения с плоскостью двух взаимно связанных взаимно перпендикулярных плоскостей проекций.

Отсюда ведёт начало принцип построения чертежей, получивший название Метод Монжа, которым выше было сказано, что проекция точки не определяет положения точки в пространстве, и чтобы, имея проекцию точки, установить это положение, требуются дополнительные условия. Например, дана прямоугольная проекция точки на горизонтальной плоскости проекций и указано удаление этой точки от плоскости числовой отметкой; плоскость проекций принимается за «плоскость нулевого уровня», и числовая отметка считается положительной, если точка в пространстве выше плоскости нулевого уровня, и отрицательной, если точка ниже этой плоскости.

На этом основан метод проекций с числовыми отметками ").

В дальнейшем изложении определение положения точек в пространстве будет производиться по их прямоугольным проекциям на двух и более плоскостях проекций.

На рис. 20 изображены две взаимно перпендикулярные плоскости. Примем их за плоскости проекций. Одна из них, обозначенная буквой к1, расположена горизонтально; другая, обозначенная буквой я2,-- вертикально. Эту плоскость называют фронталыюй плоскостью проекций, пл. я, называют горизонтальной плоскостью проекций. Плоскости проекции Kj И Я2 образуют с истему Kj, я2.

Линия пересечения плоскостей проекций называется осью проекций. Ось проекций разделяет каждую из плоскостей Я! и я2 на полуплоскости. Для этой оси будем применять обозначение л или обозначение в виде дроби я2/яj. Из четырех двугранных углов, образованных плоскостями проекций, считается первым тот, грани которого на рис. 9 имеют обозначения Я! и я2.

На рис. 10 показано построение проекций некоторой точки А в системе я15 я2. Проведя из А перпендикуляры к itj и я2, получаем проекции точки А: горизонтальную, обозначенную А", и фронтальную, обозначенную А".

Проецирующие прямые, соответственно перпендикулярные к л, и я2, определяют плоскость, перпендикулярную к плоскостям и к оси проекций. Эта плоскость в пересечении с я, и я2 образует две взаимно перпендикулярные прямые А"АХ и А"АХ, пересекающиеся в точке Ах на оси проекций. Следовательно, проекции некоторой точки получаются расположенными на прямых, перпендикулярных к оси проекций и пересекающих эту ось в одной и той же точке.

Метод проекций с числовыми отметками в программу излагаемого курса не входит. Интересующихся отсылаем к книгам по начертательной геометрии для строительных и архитектурных специальностей.

Если даны проекции А" и А" некоторой точки А (рис. 21), то, проведя перпендикуляры -- через А" к пл. TCj и через А" к пл. л2 -- получим в пересечении этих перпендикуляров определенную точку. Итак, две проекции точки вполне определяют ее положение в пространстве относительно данной системы плоскостей проекций.

Повернув пл. Kj вокруг оси проекций на угол 90° (как это показано на рис. 22), получим одну плоскость -- плоскость чертежа; проекции А" и А" расположатся на одном перпендикуляре к оси проекций -- на линии связи. В результате указанного совмещения плоскостей я, и л2 получается чертеж, известный под названием эпюр ") (эпюр Монжа). Это чертеж в системе 2 (или в системе двух прямоугольных проекций).

Перейдя к эпюру, мы утратили пространственную картину расположения плоскостей проекций и точки. Но, как увидим дальше, эпюр обеспечивает точность и удобоизмеримость изображений при значительной простоте построений. Чтобы представить по нему пространственную картину, требуется работа воображения.

Так как при наличии оси проекций положение точки А относительно плоскостей проекций Tij и п2 установлено, то отрезок А"АХ выражает расстояние точки А от плоскости проекций л2, а отрезок А"АХ -- расстояние точки А от плоскости проекций п^ Так же можно определить расстояние точки А от оси проекций. Оно выражается гипотенузой треугольника, построенного по катетам А"АХ и А"АХ (рис. 23): откладывая на эпюре отрезок А"А, равный А"АХ, перпендикулярно к А"АХ, получаем гипотенузу ААХ, выражающую искомое расстояние.

Следует обратить внимание на необходимость проведения линии связи между проекциями точки: только при наличии этой линии, взаимосвязывающей проекции, получается возможность установить положение определяемой ими точки.

Условимся в дальнейшем эпюр Монжа, а также проекционные чертежи, в основе которых лежит метод Монжа (см. § 3), называть одним словом -- чертеж и понимать это только в указанном смысле. В других случаях применения слова «чертеж» оно будет сопровождаться соответствующим определением (перспективный чертеж, аксонометрический чертеж и т. п.).

Ёриге (франц.) -- чертеж, проект. Иногда вместо «эпюр» пишут и произносят «эпюра», что соответствует не произношению слова ёриге, а женскому роду этого слова во французском языке.

Если информацию о расстоянии точки относительно плоскости проекции дать не с помощью числовой отметки, а с помощью второй проекции точки, построенной на второй плоскости проекций, то чертеж называют двухкартинным или комплексным. Основные принципы построения таких чертежей изложены Г. Монжем.

Изложенный Монжем метод - метод ортогонального проецирования, причем берутся две проекции на две взаимно перпендикулярные плоскости проекций, - обеспечивая выразительность, точность и удобоизмеримость изображений предметов на плоскости, был и остается основным методом составления технических чертежей.

Модель трех плоскостей проекций показана на рисунке. Третья плоскость, перпендикулярная и П1, и П2, обозначается буквой П3 и называется профильной. Проекции точек на эту плоскость обозначаются заглавными буквами или цифрами с индексом 3. Плоскости проекций, попарно пересекаясь, определяют три оси 0x, 0y и 0z, которые можно рассматривать как систему декартовых координат в пространстве с началом в точке 0. Три плоскости проекций делят пространство на восемь трехгранных углов - октантов. Как и прежде, будем считать, что зритель, рассматривающий предмет, находится в первом октанте. Для получения эпюра точки в системе трех плоскостей проекций плоскости П1 и П3 вращают до совмещения с плоскостью П2. При обозначении осей на эпюре отрицательные полуоси обычно не указывают. Если существенно только само изображение предмета, а не его положение относительно плоскостей проекций, то оси на эпюре не показывают. Координатами называют числа, которые ставят в соответствие точке для определения ее положения в пространстве или на поверхности. В трехмерном пространстве положение точки устанавливают с помощью прямоугольных декартовых координат x , y и z (абсцисса, ордината и аппликата).

Лекция 7, СРСП-7

2. Расположение прямой относительно плоскостей проекций.

3. Взаимное расположение точки и прямой, двух прямых.

Проецирование прямой

Для определения положения прямой в пространстве существуют следующие методы: 1.Двумя точками (А и В). Рассмотрим две точки в пространстве А и В (рис.). Через эти точки можно провести прямую линию получим отрезок . Для того чтобы найти проекции этого отрезка на плоскости проекций необходимо найти проекции точек А и В и соединить их прямой. Каждая из проекций отрезка на плоскости проекций меньше самого отрезка: <; <; <.

2. Двумя плоскостями (a; b). Этот способ задания определяется тем что две непараллельные плоскости пересекаются в пространстве по прямой линии (этот способ подробно рассматривается в курсе элементарной геометрии).

3. Точкой и углами наклона к плоскостям проекций. Зная координаты точки принадлежащей прямой и углы наклона ее к плоскостям проекций можно найти положение прямой в пространстве.

Взависимости от положения прямой по отношению к плоскостям проекций она может занимать как общее, так и частные положения. 1. Прямая не параллельная ни одной плоскости проекций называется прямой общего положения (рис.).

2. Прямые параллельные плоскостям проекций, занимают частное положение в прострнстве и называются прямыми уровня. В зависимости от того, какой плоскости проекций параллельна заданная прямая, различают:

2.1. Прямые параллельные горизонтальной плоскости проекций называются горизонтальными или горизонталями (рис.).

2.2. Прямые параллельные фронтальной плоскости проекций называются фронтальными или фронталями(рис.).

2.3. Прямые параллельные профильной плоскости проекций называются профильными (рис.).

3. Прямые, перпендикулярные плоскостям проекций, называются проецирующими. Прямая перпендикулярная одной плоскости проекций, параллельна двум другим. В зависимости от того, какой плоскости проекций перпендикулярна исследуемая прямая, различают:

3.1. Фронтально-проецирующая прямая - АВ (рис.).

3.2. Профильно проецирующая прямая - АВ (рис.).

Великие люди сами воздвигают

себе пьедестал; статую

воздвигнет будущее.

В. Гюго

Фундамент науки был уже давно заложен, идеи и методы ее широко использовались в промышленности в 18 в., Монж сумел свести их в стройную систему, которая дошла до нас практически без изменений, лишь с дополнениями. Вклад Монжа в начертательную геометрию можно сравнить с вкладом Евклида в свое время.

Жизнь этого человека весьма разнообразна и могла бы послужить сюжетом для увлекательного романа.

Гаспар Монж родился в 1746 г. небольшом городишке Боне, что в Бургундии, был старшим из пяти детей. Отец его был торговцем скобяными товарами. Нужно отдать ему должное, он знал, что лучшее, что он мог дать своим детям - это образование. И дети не подвели Жака Монжа: все трое его сыновей впоследствии стали профессорами.

С шести лет Гаспар был определен в школу ораторианцев в родном городе. Мальчик отличался трудолюбием. Гордость школы (его экзаменационная работа (1762 г.) храниться в магистрате города), Гаспар был рекомендован в колледж св. Троицы в Лионе, там ему, шестнадцатилетнему, доверили преподавать физику.

Одно юношеское увлечение круто перевернуло его судьбу. Летом 1764 г. он искусно вычертил план родного города, применяя при этом различные угломерные инструменты. Об этой работе узнал подполковник инженерной службы дю Виньо, проездом оказавшегося в Боне. И тот делает предложение Монжу поступить в королевскую военно-инженерную школу в Мезьере, но т. к. он не был дворянин, теоретическое офицерское отделение было для него закрыто, он был зачислен на отделение кондукторов- мастеров. Здесь изучали элементы алгебры, геометрии, черчение, технику изготовления моделей сводов и резки камней - стереотомию, весьма важную в фортификации.

Одна из таких задач была решена Монжем в рекордно короткий срок, ее даже не стали сперва рассматривать. Новый подход - это заявка на новую науку. Успех решения задачи дал новый толчок росту его карьере: двадцатитрехлетний Гаспар был назначен ассистентом кафедр математики и физики, а через год он возглавил эти кафедры. Монж известен французскому математическому миру. Его работы по начертательной геометрии имели большой интерес для военных, поэтому печатать их ему было запрещено.

Его математические работы того времени дали основание для избрания его в 1772 г. членом-корреспондентом Парижской академии наук. Круг его интересов возрастает: физика, химия, теория поверхностей, приложения к начертательной геометрии. В 1780 г. Монж - член Парижской академии наук. Участие в комиссиях Академии заставляет его заняться более широким фронтом работ, в 1781 г. Монж как физик принимает участие в редактировании «Энциклопедии», толковом словаре наук.

14 июля 1789 г. взорвало Францию, падение Бастилии расшатало французский трон. Монархия была уничтожена. В составе первого революционного правительства Монж был как морской министр. Ему были дороги идеи демократии. Монж пытается навести порядок в деморализованном французском флоте, разрабатывает способы добычи селитры, организует производство оружия. Совместно с Бертолле и Вандермондом он пишет «Наставление для рабочих металлистов о производстве стали» (1793 г.), в 1974 г. читает лекции в созданной им школе оружейников и издает «Описание способа производства пушек».

Молодой республике были нужны молодые кадры, и в 1794 г. была организованна Центральная школа общественных работ. Вторым президентом в ней стал Монж. В курс обучения входила начертательная геометрия! В 1795 г. была открыта Нормальная школа для подготовки преподавателей. Начертательную геометрию первый курс прочел Монж. Стенограммы лекций были напечатаны в «Журнале» Нормальной школы (рис.), а самостоятельной книгой вышли в 1799 г. Первый учебник начертательной геометрии! В 1795 г. Центральная школа была преобразована в Политехническую школу - любимое детище Монжа.

«Монж и Наполеон… Ученый и завоеватель. Республиканец и император. Что связывает два этих имени? Где и как срослись их пути?»

В 1795 г. Монж был послан с комиссией в Италию для осмотра и отбора в странах, покоренных победоносными армиями Республики, всех достижений искусства и науки, которые он посчитает достойными включить в музее и библиотеки Франции.

Там он и знакомится с молодым командующим армией Бонапартом. А тот умел внушать доверие и привязанность к себе как отдельным людям, так и целым армиям. В 1798 г. Монж принял предложение Бонапарта об участии в составе большой экспедиции в египетской экспедиции. Что нам известно об этой экспедиции: взятие Александрии и Каира, разгром французской эскадры под Абукиром, восстание египтян, переход через Синайскую пустыню, тяжелое отступление из Сирии, бегство на двух кораблях во Францию. Научный результат этой экспедиции - основание Египетского института.

Монж вернулся в свою политехническую школу. Он разработал ее устав и программу. Первый курс включал курсы чистого и прикладного анализа - 85 лекций, начертательной геометрии - 120!, элементов машин - 18 лекций. В 1799 г. Монж уходит с поста директора Политехнической школы, оставив за собой место профессора, т. к. он был назначен пожизненным сенатором.

Научные интересы его лежат сейчас в области воздухоплавания и теории машин.

Судьбы Наполеона и Монжа тесно переплетаются: взлет императора для Монжа явился творческим подъемом, падение императора - угасанием:

«1804 г. Первым из гражданских лиц, получившим орден Почетного легиона, Наполеон называет Монжа.

  • 1805 г. Монж работает над проектом канала между Маасом и Энной.
  • 1806 г. Монж назначается сроком на один год президентом Сената. Он получает титул графа Пелузского, 1000 000 франков для покупки имения и майорат в Пруссии.
  • 1808 г. Монж консультирует проект воздушного десанта в Англию.
  • 1811 г.Монж ставит химические опыты с Бертолле и Лапласом, опять занимается вопросами металлургии.

Снова широкий спектр проблем, правда с явной общей тенденцией - военных нужд: Наполеону нужна была сильная, технически вооруженная армия. А кризис приближался.

В 1816 г. Монж был исключен из Академии, лишен титулов и прав… вот расплата Реставрации с великим ученым так много сделавшим для Франции и с такой искренней верой связавшем свою судьбу с легендарным императором!

28 июля 1818 г. Гаспар Монж скончался. В последний путь его провожали старые друзья - Бертолле, Лаплас, ученики Политехнической школы - его «сыновья». Угас Монж, но Не угасли его идеи.»

Вот история жизни, судьба гениального человека, который собственными силами и умом пробил себе дорогу в жизнь.

Метод Монжа, или метод проекций является методом параллельного проецирования, причем берутся прямоугольные проекции на две взаимно перпендикулярные плоскости проекций. Плоскость, расположенная горизонтально называется горизонтальной плоскостью проекций (обозначаем П1), а плоскость, расположенная вертикально, называется фронтальной плоскостью проекций (обозначаем П2).

Линия пересечения плоскостей проекций называется осью проекций. Ось проекций разделяет каждую из плоскостей П1 и П2 на полуплоскости. Для этой оси применяется обозначение X (рисунок 3). На рисунке 4 показано построение проекций некоторой точки А в системе П1, П2.

Рисунок 3 Рисунок 4

Проекцию точки А на горизонтальную плоскость проекций получают с помощью проецирующего луча, который проводят через точку А перпендикулярно П1 до пересечения с ней. Точка пересечения называется горизонтальной проекцией точки А и обозначается А1.

Фронтальная проекция точки А получается при пересечении проецирующего луча, проведенного через точку А перпендикулярно П2 и обозначается А2.

Очень часто рассматриваются и профильные проекции точек и прямых. Профильная плоскость проекций (П3) располагается перпендикулярно к обеим плоскостям проекций (рисунок 5).

Линии пересечения плоскостей проекций называют осями проекций. Всего осей - три: ось ОХ, ось ОУ и ось ОZ.

Рисунок 5 Рисунок 6

Если точку А спроецировать на все три плоскости проекций, то получим три проекции точки А – горизонтальную А1, фронтальную А2 и профильную А3 (рисунок 6). Если нужно построить комплексный чертеж или эпюр Монжа (это одно и то же) для точки А, то пространственное или наглядное изображение нужно преобразовать в плоскостное. На рисунке 7, показано, как при разворачиваются плоскости проекций: фронтальная плоскость остается на месте, горизонтальная преобразуется поворотом на 90 градусов вокруг оси ОХ до совмещения с фронтальной плоскостью, а профильная поворачивается на 90 градусов вправо вокруг оси ОZ до совмещения с фронтальной. При этом ось проекций ОУ как бы раздваивается - она участвует в образовании горизонтальной плоскости проекций и необходима для профильной плоскости проекций.

Рисунок 7 Рисунок 8

Таким образом, эпюр точки будет выглядеть как на рисунке 8. Причем, надо обратить внимание на то, что расстояние от точки А до плоскости П1 будет выражаться координатой Z, расстояние от точки А до плоскости П2 будет выражаться координатой У, а до плоскости П3 - координатой Х.

Биография

От ученика до академика

Гаспар Монж родился 10 мая 1746 г. в небольшом городке Боне на востоке Франции (в пределах современного департамента Кот л’Ор) в семье местного торговца. Он был старшим из пяти детей, которым отец, несмотря на низкое происхождение и относительную бедность семьи, постарался обеспечить самое лучшее образование из доступного в то время для выходцев из незнатного сословия. Его второй сын, Луи, стал профессором математики и астрономии , младший - Жан также профессором математики, гидрографии и навигации . Гаспар получил первоначальное образование в городской школе ордена ораторианцев . Окончив её в 1762 году лучшим учеником, он поступил в колледж г. Лиона , также принадлежавший ораторианцам. Вскоре Гаспару доверяют там преподавание физики .

Летом 1764 года Монж составил замечательный по точности план родного города Бона. Необходимые при этом способы и приборы для измерения углов и черчения линий были изобретены самим составителем. Во время обучения в Лионе получил предложение вступить в орден и остаться преподавателем колледжа, однако, вместо этого, проявив большие способности к математике, черчению и рисованию, сумел поступить в Мезьерскую школу военных инженеров , но (из-за происхождения) только на вспомогательное унтер-офицерское отделение и без денежного содержания. Тем не менее, успехи в точных науках и оригинальное решение одной из важных задач фортификации (о размещении укреплений в зависимости от расположения артиллерии противника) позволили ему в 1769 году стать ассистентом (помощником преподавателя) математики, а затем и физики, причём уже с приличным жалованием в 1800 ливров в год.

Гаспар Монж 1797-1799 (экспозиция в Политехнической школе)

В Мезьерской школе Монж преподавал 20 лет. Там обучали геометрии , физике, фортификации, строительному делу с упором на практические занятия. Эта школа стала прообразом знаменитой в будущем Политехнической школы . Кроме основ начертательной геометрии, Монж разрабатывал и другие математические методы, в том числ,е теорию развёрток, вариационное исчисление и другие. Несколько докладов, с большим успехом сделанных им на заседаниях Парижской академии наук , и рекомендации академиков Даламбера , Кондорсе и Боссю обеспечили Монжу в 1772 году избрание в число двадцати «associés» членов Академии («присоединённых», то есть членов-корреспондентов Академии), а в 1780 году он уже избран академиком. Монж переезжает в Париж, сохраняя за собой должность в Мезьерской школе. Кроме этого, он преподаёт гидродинамику и гидрографию в Парижской Морской школе, а впоследствии занимает должность экзаменатора морских школ. Однако, работа и проживание по полгода поочерёдно в Париже и Мезьере со временем стало для него весьма утомительным и не устраивало руководство Мезьерской школы. В 1783 году Монж прекращает преподавание в школе и в 1784 году окончательно переселяется в Париж.

Избранный в академики, Монж, кроме исследований по математическому анализу , представленных в ряде мемуаров в изданиях Академии, занимался вместе с Бертолле и Вандермондом изучением различных состояний железа, производил опыты над капиллярностью , делал наблюдения над оптическими явлениями, работал над построением теории главных метеорологических явлений, независимо от Лавуазье и Кавендиша обнаружил, что вода представляет соединение водорода и кислорода, в 1781 году издал «Мемуар о выемках и насыпях» , в 1786-1788 гг. подготовил учебник по практической механике и теории машин «Трактат по статике для морских колледжей» . Этот курс переиздавался восемь раз, последний - в 1846 году, и неоднократно переводился на другие языки, в том числе на русский .

В годы революции

Порученный Монжу флот находился в тяжёлом состоянии: не хватало офицеров и матросов, боеприпасов и продовольствия. Франция потерпела уже несколько поражений на море, а в скором времени ей предстояло вступить в войну с Англией. Несмотря на скудность государственной казны, Монжу удалось отчасти пополнить опустевшие арсеналы и приступить к возведению на берегах необходимых укреплений. Во время полугодового исполнения обязанностей президента Совета ему пришлось принять два важнейших политических решения - он поставил свою подпись под приговором о казни Людовика XVI и объявлением войны с Англией. Тем не менее, у него не было необходимого административного и военного опыта, он тяготился министерской работой и уже в апреле 1793 года ушёл в отставку, продолжая работать во имя Революции.

В феврале 1798 года Монжа снова посылают в Италию в составе комиссии для выяснения событий, происходящих в Риме. 20 марта там была провозглашена республики, свергнута папская власть . Монж, однако, пробыл в Риме совсем недолго - вместе с Бертолле, Фурье , Малюсом и другими академиками он участвует в египетском походе Бонапарта, который очень рассчитывал на помощь учёных в постройке дорог, каналов, плотин, составлении карт, организации производства пороха, ружей и пушек, а также в создании на завоёванных территориях новых научных учреждений по типу французских. 29 августа 1798 года в Каире членами этой экспедиции и некоторыми военными, к числу которых принадлежал и сам Бонапарт, был учреждён Египетский институт наук и искусств, устроенный по образцу Французского и избравший своим президентом на первый триместр Монжа, вице-президентом Бонапарта, непременным секретарём Фурье. Монж продолжал научную работу, печатался в издаваемом Институтом научном и литературном сборнике «Египетские декады» («Décade Égyptienne»). В нём в первый раз был напечатан его мемуар с простым объяснением явления миража, который пугал солдат в пустыне . Временами Монжу приходилось вспоминать своё недолгое военное прошлое - он руководил в октябре 1798 года обороной Института против восставшего каирского населения, в 1799 году участвовал в неудачном походе Бонапарта в Сирию. Получив сведения о сложной обстановке во Франции, 18 августа 1799 года Бонапарт в сопровождении Монжа и Бертолле тайно выехал из Каира и после трудного и опасного двухмесячного пути они добрались до Парижа.

Последний взлёт и падение

Сосредоточивший в своих руках всю власть Бонапарт назначил Монжа пожизненным сенатором, в Политехнической школе он читает курсы приложения алгебры и анализа к геометрии , составляет устав и план работы школы. В августе 1803 года Монж назначен вице-президентом Сената, а в сентябре - сенатором Льежа с поручением организовать там производство пушек. Преданность новой власти и заслуги перед Империей были вознаграждены - он получил высшую степень ордена Почетного легиона , в 1806 году назначен президентом Сената на очередной годичный срок, ещё через год получил титул графа Пелузского и 100 000 франков для покупки имения. Однако вскоре его начало подводить здоровье, у него на время отнялась рука. Монж прекращает преподавание в Политехнической школе, но продолжает научную работу и консультирует предлагаемые технические проекты. Так, в 1805 году император поручает ему изучить возможность проведения канала от реки Урк для снабжения Парижа водой. В 1808 году его привлекли к оценке возможности десанта в Англию на 100 больших аэростатах, каждый из которых должен был поднимать 1000 солдат и снаряжение для них.

События 1812-1814 гг. закончились поражением Франции и ссылкой Бонапарта. Монж оставался приверженцем Империи и в период всех Ста дней по-прежнему был на стороне Бонапарта. После восстановления власти Бурбонов Монж был лишён званий, наград и пенсии, исключён (правда, всего лишь на год) из Политехнической школы. Распоряжением правительства в 1816 году он и Карно были исключены из преобразованного на новый лад Института и замещены Коши и Брегетом. Как один из «цареубийц», Монж мог ждать и более серьёзных репрессий. От всех этих ударов судьбы, довершённых ссылкой его зятя Эшассерио, как бывшего члена Конвента, Монж заболел и вскоре скончался. Его похоронили на кладбище Пер-Лашез . Жена Монжа пережила его на 24 года.

Научная деятельность

Создание «Начертательной геометрии », трактат которой вышел в свет только в 1799 году под заглавием «Géométrie descriptive », послужило началом и основой работ, позволивших новой Европе овладеть геометрическими знаниями Древней Греции; работы же по теории поверхностей , помимо своего непосредственного значения, привели к выяснению важного принципа непрерывности и к раскрытию смысла той обширной неопределенности, которая возникает при интегрировании уравнений с частными производными , произвольными постоянными и тем более с появлением произвольных функций.

Принцип непрерывности в том виде, в каком он сформулирован Монжем, может быть изложен следующим образом. Всякое свойство фигуры, выражающее отношения положения и оправдывающееся в бесчисленном множестве непрерывно связанных между собой случаев, может быть распространено на все фигуры одного и того же рода, хотя бы оно допускало доказательство только при предположении, что построения, осуществимые не иначе как в известных пределах, могут быть произведены на самом деле. Такое свойство имеет место даже в тех случаях, когда вследствие полного исчезновения некоторых необходимых для доказательства промежуточных величин предполагаемые построения не могут быть произведены в действительности.

Из других, менее значительных вкладов Монжа в науку следует назвать теорию полярных плоскостей применительно к поверхностям второго порядка; открытие круговых сечений гиперболоидов и гиперболического параболоида ; открытие двоякого способа образования поверхностей этих же тел с помощью прямой линии; создание первого представления о линиях кривизны поверхностей; установление начал теории взаимных поляр, разработанной впоследствии Понселе , доказательство теоремы о том, что геометрическое место вершины трёхгранного угла с прямыми плоскими углами, описанного около поверхности второго порядка, есть шар, и, наконец, теорию построения ортогональных проекций трехмёрных объектов на плоскости, получившую название эпюр Монжа (Épure - от фр. чертёж, проект ).

Многочисленные мемуары Монжа издавались в трудах парижской и туринской академий, выходили в «Journaux de l’Ecole Polytechnique et de l’Ecole Normale », в «Dictionnaire de Physique », «Методической энциклопедии » Дидро и д’Аламбера , в «Annales de Chimie » и в «Décade Egyptienne », издавались отдельно: «Dictionnaire de Physique » ( -), составленный при сотрудничестве Кассини, «Avis aux ouvriers en fer sur la fabrication de l’acier » (), составленный вместе с Бертолле, и др. В содержатся библиография трудов Монжа (72 наим.) и перечень публикаций о его жизни и деятельности (73 наим.).

Имя Гаспара Монжа внесено в список 72 величайших учёных Франции , помещённый на первом этаже Эйфелевой башни .

Примечания

Эпонимы

Библиография

В переводе:

  • Монж Г. Начальные основания статики или равновесия твёрдых тел для водоходных училищ. - СПб., 1803. - 151 с.
  • Монж Г. Искусство лить пушки. - СПб., 1804.
  • Монж Г. Начальные основания статики. - СПб., 1825. - 208 с.
  • Монж Гаспар. Приложение анализа к геометрии / Под ред. М. Я. Выгодского . - М. - Л.: Объединённое научно-техническое издательство (ОНТИ) НКТП СССР , 1936. - 700 с. - (Классики естествознания). - 7 000 экз. (в пер.)
  • Монж Гаспар. Начертательная геометрия / Под ред. проф. Д. И. Каргина. - М.: Изд. АН СССР, 1947. - 292 с.

Литература

  • Launay Louis de. Monge fondateur de l ́École polytechnique. - Paris, 1933. - 380 р.
На русском языке
  • Араго Ф. Биографии знаменитых астрономов, физиков и геометров. - СПб., 1859. - Т. 1. - С. 499-589.
  • Старосельская-Никитина О. Очерки по истории науки и техники периода Французской буржуазной революции 1789-1794. - М.-Л., 1946. - 274 с.
  • Гаспар Монж. Сборник статей к 200-летию со дня рождения / Отв. ред. В. И. Смирнов. - Л. : Изд. АН СССР, 1947. - 85 с. - 5 000 экз.
  • Каргин Д. И. Гаспар Монж и его «Начертательная геометрия» / В кн.: Гаспар Монж. Начертательная геометрия. - М.: Изд. АН СССР, 1947. - С. 245-257
  • Каргин Д. И. Гаспар Монж - творец начертательной геометрии. !746-1818. К 200-летию со дня рождения // Природа, - 1947. - № 2. - С. 65-73
  • Вавилов С. И. Наука и техника в период французской революции / Собрание сочинений. - М.: АН СССР, 1956. - Т. 3. С. 176-190. - 3 000 экз.
  • Боголюбов А. Н. Гаспар Монж, 1746-1818 / Под ред. акад. И. И. Артоболевского . - М .: Наука , 1978. - 184 с. - (Научно-биографическая серия). - 30 000 экз.
  • Демьянов В. П. Геометрия и Марсельеза . - М .: Знание , 1979. - 224, с. - (Творцы науки и техники). - 100 000 экз. (в пер.)
  • Демьянов В. П. Геометрия и Марсельеза: О французском математике и революционере Г. Монже / Отв. ред. В. И. Смирнов. - М .: Знание , 1986. - 256 с. - (Творцы науки и техники). - 100 000 экз. (в пер.)