Система линейных алгебраических уравнений и их решение. Решение систем линейных алгебраических уравнений, методы решения, примеры. Линейные уравнения с двумя переменными

24.04.2020 Досуг 

Системой m линейных уравнений с n неизвестными называется система вида

где a ij и b i (i =1,…,m ; b =1,…,n ) – некоторые известные числа, а x 1 ,…,x n – неизвестные. В обозначении коэффициентов a ij первый индекс i обозначает номер уравнения, а второй j – номер неизвестного, при котором стоит этот коэффициент.

Коэффициенты при неизвестных будем записывать в виде матрицы , которую назовём матрицей системы .

Числа, стоящие в правых частях уравнений, b 1 ,…,b m называются свободными членами.

Совокупность n чисел c 1 ,…,c n называется решением данной системы, если каждое уравнение системы обращается в равенство после подстановки в него чисел c 1 ,…,c n вместо соответствующих неизвестных x 1 ,…,x n .

Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

Система линейных уравнений, имеющая хотя бы одно решение, называется совместной . В противном случае, т.е. если система не имеет решений, то она называется несовместной .

Рассмотрим способы нахождения решений системы.


МАТРИЧНЫЙ МЕТОД РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы и матрицы столбцы неизвестных и свободных членов

Найдем произведение

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

или короче A X=B .

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением .

Пусть определитель матрицы отличен от нуля |A | ≠ 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A -1 , обратную матрице A : . Поскольку A -1 A = E и E X = X , то получаем решение матричного уравнения в виде X = A -1 B .

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных . Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A -1 B .

Примеры. Решить системы уравнений.

ПРАВИЛО КРАМЕРА

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

называется определителем системы .

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

Тогда можно доказать следующий результат.

Теорема (правило Крамера). Если определитель системы Δ ≠ 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство . Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A 11 элемента a 11 , 2-ое уравнение – на A 21 и 3-е – на A 31 :

Сложим эти уравнения:

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Таким образом, заметим, что если определитель системы Δ ≠ 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

Примеры. Решить систему уравнений


МЕТОД ГАУССА

Ранее рассмотренные методы можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений. Он заключается в последовательном исключении неизвестных из уравнений системы.

Вновь рассмотрим систему из трёх уравнений с тремя неизвестными:

.

Первое уравнение оставим без изменения, а из 2-го и 3-го исключим слагаемые, содержащие x 1 . Для этого второе уравнение разделим на а 21 и умножим на –а 11 , а затем сложим с 1-ым уравнением. Аналогично третье уравнение разделим на а 31 и умножим на –а 11 , а затем сложим с первым. В результате исходная система примет вид:

Теперь из последнего уравнения исключим слагаемое, содержащее x 2 . Для этого третье уравнение разделим на , умножим на и сложим со вторым. Тогда будем иметь систему уравнений:

Отсюда из последнего уравнения легко найти x 3 , затем из 2-го уравнения x 2 и, наконец, из 1-го – x 1 .

При использовании метода Гаусса уравнения при необходимости можно менять местами.

Часто вместо того, чтобы писать новую систему уравнений, ограничиваются тем, что выписывают расширенную матрицу системы:

и затем приводят её к треугольному или диагональному виду с помощью элементарных преобразований.

К элементарным преобразованиям матрицы относятся следующие преобразования:

  1. перестановка строк или столбцов;
  2. умножение строки на число, отличное от нуля;
  3. прибавление к одной строке другие строки.

Примеры: Решить системы уравнений методом Гаусса.


Таким образом, система имеет бесконечное множество решений.

Тема 2. Решение систем линейных алгебраических уравнений прямыми методами.

Системами линейных алгебраических уравнений (сокращенно - СЛАУ) называются системы уравнений вида

или, в матричном виде,

A × x = B , (2.2)

A - матрица коэффициентов системы размерности n ´ n

x - вектор неизвестных, состоящий из n компонент

B - вектор правых частей системы, состоящий из n компонент.

A = x = B = (2.3)

Решением СЛАУ является такой набор из n чисел, который будучи подставленным вместо значений x 1 , x 2 , … , x n в систему (2.1) обеспечивает равенство левых частей правым во всех уравнениях.

Каждая СЛАУ в зависимости от значений матриц A и B может иметь

Одно решение

Бесконечно много решений

Ни одного решения.

В данном курсе будем рассматривать только те СЛАУ, которые имеют единственное решение. Необходимым и достаточным условием этого является неравенство нулю определителя матрицы A .

Для поиска решений над системами линейных алгебраических уравнений могут проводиться некоторые преобразования, не изменяющие ее решений. Эквивалентными преобразованиями системы линейных уравнений называются такие ее преобразования, которые не изменяют ее решения. К их числу относятся:

Перестановка местами двух любых уравнений системы (следует отиетить, что в некоторых случаях, рассматриваемых ниже, это преробразование использовать нельзя);

Умножение (или деление) какого-либо уравнения системы на число, не равное нулю;

Прибавление к одному уравнению системы другого ее уравнения, умноженного (или разделенного) на некоторое не равное нулю число.

Методы решения СЛАУ делятся на две больших группы, называемые - прямые методы и итерационные методы . Имеется также способ сведения задачи решения СЛАУ к задаче поиска экстремума функции нескольких переменных с последующем решением ее методами поиска экстремума (об этом подробнее - при прохождении соответствующей темы). Прямые методы обеспечивают получение точного решения системы (если оно существует) за один шаг. Итерационные методы (если при этом обеспечена их сходимость) позволяют многократно улучшать некоторое начальное приближение к искомому решению СЛАУ и, вообще говоря, точного решения не дадут никогда. Однако, учитывая то, что прямые методы решения из-за неизбежных ошибок округления на промежуточных этапах расчетов тоже дают не идеально точные решения, итерационные методы могут тоже обеспечить примерно такой же результат.

Прямые методы решения СЛАУ. Наиболее часто используемыми прямыми методами решения СЛАУ являются:

Метод Крамера,

Метод Гаусса (и его модификация - метод Гаусса-Жордана)

Матричный метод (с использованием обращения матрицы A ).

Метод Крамера основан на вычислении определителя основной матрицы A и определителей матриц A 1 , A 2 , …, A n , которые получаются из матрицы A заменой в ней одного (i -го) столбца (i = 1, 2,…, n ) на столбец, содержащий элементы вектора B . После этого решения СЛАУ определяются как частное от деления значений этих определителей. Точнее, расчетные формулы имеют такой вид

(2.4)

Пример 1 . Найдем методом Крамера решение СЛАУ, у которой

A = , B = .

Имеем

A 1 = , A 2 = , A 3 = , A 4 = .

Вычислим значения определителей всех пяти матриц (c использованием функции МОПРЕД среды Excel ). Получим

Так как определитель матрицы A не равен нулю - система имеет единственное решение. Тогда определим его по формуле (2.4). Получим

Метод Гаусса. Решение СЛАУ этим методом предполагает составление расширенной матрицы системы A * . Расширенная матрица системы - это матрица размером в n строк и n +1 столбцов, включающая в себя исходную матрицу A c присоединенным к ней справа столбцом, содержащим вектор B .

A* = (2.4)

Здесь a in+1 =b i (i = 1, 2, …, n ).

Суть метода Гаусса состоит в приведении (посредством эквивалентных преобразований ) расширенной матрицы системы к треугольному виду (так, чтобы ниже ее главной диагонали находились только нулевые элементы).

A * =

Тогда, начиная с последней строки и двигаясь вверх, можно последовательно определить значения всех компонент решения.

Начало преобразований расширенной матрицы системы к необходимому виду заключается в просмотре значений коэффициентов при x 1 и выборе строки, в которой он имеет максимальное по абсолютной величине значение (это необходимо для уменьшения величины вычислительной ошибки при последующих вычислениях). Эту строку расширенной матрицы необходимо поменять местами с первой ее строкой (или же, что лучше, сложить (или вычесть) с первой строкой и результат поместить на место первой строки). После этого все элементы этой новой первой строки (в том числе и в последнем ее столбце) необходимо разделить на этот коэффициент. После этого вновь полученный коэффициент a 11 станет равным единице. Дальше от каждой из оставшихся строк матрицы необходимо вычесть ее первую строку, умноженную на значение коэффициента при x 1 в этой строке (т.е. на величину a i 1 , где i =2, 3, … n ). После этого во всех строках, начиная со второй коэффициенты при x 1 (т.е. все коэффициенты a i 1 (i =2, …, n ) будут равными нулю. Поскольку мы выполняли только эквивалентные преобразования - решение вновь полученной СЛАУ не будет отличаться от исходной системы.

Дальше, оставляя неизменной первую строку матрицы, проделаем все вышеописанные действия с остальными строками матрицы и, в результате, вновь полученный коэффициент a 22 станет равным единице, а все коэффициенты a i 2 (i =3, 4, …, n ) станут равными нулю. Продолжая аналогичные действия, мы в конечном итоге приведем нашу матрицу к виду, в котором все коэффициенты a ii = 1 (i =1, 2, …, n ), а все коэффициенты a ij = 0 (i =2, 3, …, n , j < i ). Если же на каком-то шаге при поиске наибольшего по абсолютной величине коэффициента при x j мы не сможем найти не равного нулю коэффициента - это будет значить, что исходная система не имеет единственного решения. В этом случае процесс решения необходимо прекратить.

Если процесс эквивалентных преобразований закончился успешно, то полученная в результате «треуголиная» расширенная матрица будет соответствовать такой системе линейных уравнений:

Из последнего уравнения этой системы найдем значение x n . Далее, подставляя это значение в предпоследнее уравнение, найдем значение x n -1 . После этого, подставляя оба эти найденных значения в третье снизу уравнение системы, найдем значение x n -2 . Продолжая так далее и продвигаясь по уравнением этой системы снизу вверх, будем последовательно находить значения других корней. И, наконец, подставляя найденные значения x n , x n -1 , x n -2 , x 3 и x 2 в первое уравнение системы найдем значение х 1 . Такая процедура поиска значений корней по найденной треугольной матрице называется обратным ходом. Процесс приведения исходной расширенной матрицы эквивалентными преобразованиями к треугольному виду назавают прямым ходом метода Гаусса..

Достаточно подробный алгоритм решения СЛАУ методом Гаусса приведен на рис. .2.1 и рис. 2.1а.

Пример 2 . Найти методом Гаусса решение той же СЛАУ, которую мы уже решали методом Крамера. Составим сначала ее расширенную матрицу. Получим

A * = .

Сначала переставим местами первую и третью строки этой матрицы (так как в ее первом столбце находится наибольший по абсолютной величине элемент), а затем разделим все элементы этой новой первой строки на значение 3. Получим

A * = .

A * =

Дальше переставим местами вторую и третью строки этой матрицы, разделим вторую строку переставленной матрицы на 2.3333 и, аналогично вышеописаному, обнулим коэффициенты во втором столбце третьей и четвертой строк матрицы. Получим

A * = .

После выполнения подобных действий над третьей и четвертой строками матрицы получим

A * = .

Разделив теперь четвертую строку на -5.3076, закончим проведение расширенной матрицы системы к диагональному виду. Получим




Рис. 2.1. Алгоритм решения систем линейных алгебраических уравнений методом Гаусса



Рис. 2.1а. Макроблок “Расчет значений решения”.

A * = .

Из последней строки сразу получим x 4 = 0.7536. Поднимаясь теперь вверх по строкам матрицы и выполняя расчеты, последовательно получим x 3 = 0.7971, x 2 =- 0.1015 и x 1 = 0.3333. Сравнивая полученное этим методом решение с решением, полученным методом Крамера, нетрудно убедиться в их совпадении.

Метод Гаусса-Жордана. Этот метод решения СЛАУ во многом похож на метод Гаусса. Основным отличием является то, что используя эквивалентные преобразования расширенная матрица системы уравнений приводится не к треугольному виду, а к диагональному виду, на главной диагонали которой находятся единицы, а вне нее (кроме последнего n +1 столбца) - нули. После окончания такого преобразования - последний столбец расширенной матрицы будет содержать решение исходной СЛАУ (т,е. . x i = a i n +1 (i = 1, 2, … , n ) в полученной матрице). Обратный ход (как в методе Гаусса) для окончательных расчетов значений компонент решения - не нужен.

Приведение матрицы к диагональному виду проводится, в основном, также как и в методе Гаусса. Если в строке i коэффициент при x i (i = 1, 2, … , n ) по абсолютной величине мал, то производится поиск строки j , в которой коэффициент при x i будет наибольшим по абсолютной величине эта (j -я) строка прибавляется поэлементно к i - й строке. Затем все элементы i - й строки делятся на значение элемента x i Но, в отличие от метода Гаусса, после этого идет вычитание из каждой строки с номером j строки с номером i ,умноженной на a ji , но условие j > i заменено на другоеВ методе Гаусса-Жордана идет вычитание из каждой строки с номером j , причем j # i , строки с номером i ,умноженной на a ji . Т.е. производится обнуление коэффициентов как ниже, так и выше главной диагонали.

Достаточно подробный алгоритм решения СЛАУ методом Гаусса–Жордана приведен на рис. 2.2.

Пример 3 . Найти методом Гаусса-Жордана решение той же СЛАУ, которую мы уже решали методами Крамера и Гаусса.

Полностью аналогично методу Гаусса составим расширенную матрицу системы. Затем переставим местами первую и третью строки этой матрицы (так как в ее первом столбце находится наибольший по абсолютной величине элемент), а затем разделим все элементы этой новой первой строки на значение 3. Дальше проведем вычитание из каждой строки матрицы (кроме первой) элементов первой строки, умноженных на коэффициент в первом столбце этой строки. Получим то же, что и в методе Гаусса

A * = .

Дальше переставим местами вторую и третью строки этой матрицы, разделим вторую строку переставленной матрицы на 2.3333 и (уже в отличие от метода Гаусса ) обнулим коэффициенты во втором столбце первой, третьей и четвертой строк матрицы. Получим

Решение систем линейных алгебраических уравненийявляется одной из основных задач линейной алгебры. Эта задача имеет важное прикладное значение при решении научных и технических проблем, кроме того является вспомогательной при реализации многих алгоритмов вычислительной математики, математической физики, обработки результатов экспериментальных исследований.

Системой линейных алгебраических уравнений называют систему уравнений вида: (1)

где неизвестные; – свободные члены.

Решением системы уравнений (1) называют всякую совокупность чисел которая будучи поставлена в систему (1) на место неизвестных обращает все уравнения системы в верные числовые равенства.

Систему уравнений называют совместной , если она имеет хотя бы одно решение, и несовместной , если не имеет решений.

Совместную систему уравнений называют определенной , если она имеет одно единственное решение, и неопределенной , если она имеет, по крайней мере, два различных решения.

Две системы уравнений называют равносильными или эквивалентными , если они имеют одно и то же множество решений.

Систему (1) называют однородной , если свободные члены равны нулю:

Однородная система всегда является совместной - она имеет решение (возможно, не единственное).

Если в системе (1) , то имеем систему n линейных уравнений с n неизвестными: где неизвестные; – коэффициенты при неизвестных, – свободные члены.

Линейная система может иметь единственное решение, бесконечно много решений или не иметь ни одного решения.

Рассмотрим систему двух линейных уравнений с двумя неизвестными

Если то система имеет единственное решение;

если то система не имеет решений;

если то система имеет бесконечное множество решений.

Пример. Система имеет единственное решение пару чисел

Система имеет бесконечное множество решений. Например, решениями данной системы являются пары чисел и т.д.

Система не имеет решений, так как разность двух чисел не может принимать двух различных значений.

Определение. Определителем второго порядка называют выражение вида:

Обозначают определитель символом D.

Числа а 11, …, а 22 называют элементами определителя.

Диагональ, образованную элементами а 11 ; а 22 называют главной, диагональ, образованную элементами а 12 ; а 21 − побочной.

Таким образом, определитель второго порядка равен разности произведений элементов главной и побочной диагоналей.

Заметим, что в ответе получается число.

Пример. Вычислим определители:

Рассмотрим систему двух линейных уравнений с двумя неизвестными: где х 1, х 2 неизвестные; а 11 , …, а 22 – коэффициенты при неизвестных, b 1 , b 2 – свободные члены.


Если система двух уравнений с двумя неизвестными имеет единственное решение, то его можно найти с помощью определителей второго порядка.

Определение. Определитель, составленный из коэффициентов при неизвестных, называют определителем системы: D= .

В столбцах определителя D стоят коэффициенты соответственно при х 1 и при , х 2 . Введем два дополнительных определителя, которые получаются из определителя системы заменой одного из столбцов столбцом свободных членов: D 1 = D 2 = .

Теорема 14 (Крамера, для случая n=2). Если определитель D системы отличен от нуля (D¹0), то система имеет единственное решение, которое находят по формулам:

Данные формулы называют формулами Крамера.

Пример. Решим систему по правилу Крамера:

Решение. Найдем числа

Ответ.

Определение. Определителем третьего порядка называют выражение вида:

Элементы а 11; а 22 ; а 33 – образуют главную диагональ.

Числа а 13; а 22 ; а 31 – образуют побочную диагональ.

В запись с плюсом входят: произведение элементов на главной диагонали, остальные два слагаемых являются произведением элементов, расположенных в вершинах треугольников с основаниями, параллельными главной диагонали. Слагаемые с минусом образуют по той же схеме относительно побочной диагонали.

Пример. Вычислим определители:

Рассмотрим систему трех линейных уравнений с тремя неизвестными: где неизвестные; – коэффициенты при неизвестных, – свободные члены.

В случае единственного решения систему 3-х линейных уравнений с тремя неизвестными можно решить с помощью определителей 3-го порядка.

Определитель системы D имеет вид:

Введем три дополнительных определителя:

Теорема 15 (Крамера, для случая n=3). Если определитель D системы отличен от нуля, то система имеет единственное решение, которое находят по формулам Крамера:

Пример. Решим систему по правилу Крамера.

Решение. Найдем числа

Воспользуемся формулами Крамера и найдем решение исходной системы:

Ответ.

Заметим, что теорема Крамера применима, когда число уравнений равно числу неизвестных и когда определитель системы D отличен от нуля.

Если определитель системы равен нулю, то в этом случае система может либо не иметь решений, либо иметь бесчисленное множество решений. Эти случаи исследуются особо.

Отметим только один случай. Если определитель системы равен нулю (D=0), а хотя бы один из дополнительных определителей отличен от нуля, то система решений не имеет, то есть является несовместной.

Теорему Крамера можно обобщать для системы n линейных уравнений с n неизвестными: где неизвестные; – коэффициенты при неизвестных, – свободные члены.

Если определитель системы линейных уравнений с неизвестными то единственное решение системы находят по формулам Крамера:

Дополнительный определитель получают из определителя D, если в нем столбец коэффициентов при неизвестном x i заменить столбцом свободных членов.

Заметим, что определители D, D 1 , … , D n имеют порядок n .

Метод Гаусса решения систем линейных уравнений

Одним из наиболее распространенных методов решения систем линейных алгебраических уравнений является метод последовательного исключения неизвестных −метод Гаусса . Данный метод представляет собой обобщение метода подстановки и состоит в последовательном исключении неизвестных до тех пор, пока не останется одно уравнение с одним неизвестным.

Метод основан на некоторых преобразованиях системы линейных уравнений, в результате которых получается система, равносильная исходной системе. Алгоритм метода состоит из двух этапов.

Первый этап называют прямым ходом метода Гаусса. Он заключается в последовательном исключении неизвестных из уравнений. Для этого на первом шаге делят первое уравнение системы на ( в противном случае осуществляют перестановку уравнений системы). Обозначают коэффициенты полученного приведенного уравнения, домножают его на коэффициент и вычитают из второго уравнения системы, исключая, тем самым, из второго уравнения (обнуляя коэффициент ).

Аналогично поступают с остальными уравнениями и получают новую систему, во всех уравнениях которой, начиная со второго коэффициенты при , содержатся только нули. Очевидно, что полученная при этом новая система, будет равносильна исходной системе.

Если новые коэффициенты, при , не все равны нулю, можнотаким же образом исключить из третьего и последующих уравнений. Продолжая эту операцию для следующих неизвестных, приводят систему к так называемому треугольному виду:

Здесь символами и обозначены изменившиеся в результате преобразований числовые коэффициенты и свободные члены.

Из последнего уравнения системы единственным образом определяют , а затем последовательной подстановкой – остальные неизвестные.

Замечание. Иногда, в результате преобразований, в каком-либо из уравнений все коэффициенты и правая часть обращаются в ноль, то есть уравнение превращается в тождество 0=0. Исключив такое уравнение из системы, уменьшают число уравнений по сравнению с числом неизвестных. Такая система не может иметь единственного решения.

Если же в процессе применения метода Гаусса какое-нибудь уравнение превратится в равенство вида 0=1 (коэффициенты при неизвестных обратились в 0, а правая часть приняла ненулевое значение), то исходная система не имеет решения, так как подобное равенство является неверным при любых значениях неизвестных.

Рассмотрим систему трех линейных уравнений с тремя неизвестными:

где неизвестные; – коэффициенты при неизвестных, – свободные члены. , подставляя найденное

Решение. Применив к этой системе метод Гаусса, получим

Откуда Последнее равенство является неверным при любых значениях неизвестных, следовательно, система не имеет решения.

Ответ. Система не имеет решений.

Заметим, что рассмотренный ранее метод Крамера можно применять при решении только тех систем, в которых число уравнений совпадает с числом неизвестных, причём определитель системы должен быть отличен от нуля. Метод Гаусса является более универсальным и пригоден для систем с любым числом уравнений.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

В общем случае линейное уравнение имеет вид:

Уравнение имеет решение: если хотя бы один из коэффициентов при неизвестных отличен от нуля. В этом случае любой -мерный вектор называется решением уравнения, если при подстановке его координат уравнение обращается в тождество.

Общая характеристика разрешенной системы уравнений

Пример 20.1

Дать характеристику системе уравнений .

Решение :

1. Входит ли в состав противоречивое уравнение? (Если коэффициенты, в этом случае уравнение имеет вид: и называется противоречивым .)

  • Если система содержит противоречивое, то такая система несовместна и не имеет решения

2. Найти все разрешенные переменные . (Неизвестная называется разрешенной для системы уравнений, если она входит в одно из уравнений системы с коэффициентом +1, а в остальные уравнения не входит (т.е. входит с коэффициентом, равным нулю).

3. Является ли система уравнений разрешенной? (Система уравнений называется разрешенной , если каждое уравнение системы содержит разрешенную неизвестную, среди которых нет совпадающих)

Разрешенные неизвестные, взятые по одному из каждого уравнения системы, образуют полный набор разрешенных неизвестных системы. (в нашем примере это )

Разрешенные неизвестные, входящие в полный набор, называют также базисными (), а не входящие в набор — свободными ().

В общем случае разрешенная система уравнений имеет вид:

На данном этапе главное понять что такое разрешенная неизвестная (входящая в базис и свободная).

Общее Частное Базисное решения

Общим решением разрешенной системы уравнений называется совокупность выражений разрешенных неизвестных через свободные члены и свободные неизвестные:

Частным решением называется решение, получающиеся из общего при конкретных значениях свободных переменных и неизвестных.

Базисным решением называется частное решение, получающееся из общего при нулевых значениях свободных переменных.

  • Базисное решение (вектор) называется вырожденным , если число его координат, отличных от нуля, меньше числа разрешенных неизвестных.
  • Базисное решение называется невырожденным , если число его координат, отличных от нуля, равно числу разрешенных неизвестных системы, входящих в полный набор.

Теорема (1)

Разрешенная система уравнений всегда совместна (потому что она имеет хотя бы одно решение); причем если система не имеет свободных неизвестных, (то есть в системе уравнений все разрешенные входят в базис) то она определена (имеет единственное решение); если же имеется хотя бы одна свободная переменная, то система не определена (имеет бесконечное множество решений).

Пример 1. Найти общее, базисное и какое-либо частное решение системы уравнений:

Решение :

1. Проверяем является ли система разрешенной?

  • Система является разрешенной (т.к. каждое из уравнений содержит в себе разрешенную неизвестную)

2. Включаем в набор разрешенные неизвестные — по одному из каждого уравнения .

3. Записываем общее решение в зависимости от того какие разрешенные неизвестные мы включили в набор .

4. Находим частное решение . Для этого приравниваем свободные переменные, которые мы не включили в набор приравнять к произвольным числам.

Ответ: частное решение (один из вариантов)

5. Находим базисное решение . Для этого приравниваем свободные переменные, которые мы не включили в набор к нулю.

Элементарные преобразования линейных уравнений

Системы линейных уравнений приводятся к равносильным разрешенным системам с помощью элементарных преобразований.

Теорема (2)

Если какое-либо уравнение системы умножить на некоторое отличное от нуля число , а остальные уравнения оставить без изменения, то . (то есть если умножить левую и правую часть уравнения на одно и то же число то получится уравнение, равносильное данному)

Теорема (3)

Если к какому-либо уравнению системы прибавить другое , а все остальные уравнения оставить без изменения, то получится система, равносильная данной . (то есть если сложить два уравнения (сложив их левые и правые части) то получится уравнение равносильное данным)

Следствие из Теорем (2 и 3)

Если к какому-либо уравнению прибавить другое, умноженное на некоторое число , а все остальные уравнения оставить без изменения, то получится система, равносильная данной .

Формулы пересчета коэффициентов системы

Если у нас есть система уравнений и мы хотим преобразовать ее в разрешенную систему уравнений в этом нам поможет метод Жордана-Гаусса.

Преобразование Жордана с разрешающим элементом позволяет получить для системы уравнений разрешенную неизвестную в уравнении с номером . (пример 2).

Преобразование Жордана состоит из элементарных преобразований двух типов:

Допустим мы хотим сделать неизвестную в нижнем уравнении разрешенной неизвестной. Для этого мы должны разделить на , так чтобы сумма .

Пример 2 Пересчитаем коэффициенты системы

При делении уравнения с номером на , его коэффициенты пересчитываются по формулам:

Чтобы исключить из уравнения с номером , нужно уравнение с номером умножить на и прибавить к этому уравнению.

Теорема (4) О сокращении числа уравнений системы.

Если система уравнений содержит тривиальное уравнение, то его можно исключить из системы, при этом получится система равносильная исходной.

Теорема (5) О несовместимости системы уравнений.

Если система уравнений содержит противоречивое уравнение, то она несовместна.

Алгоритм метода Жордана-Гаусса

Алгоритм решения систем уравнений методом Жордана-Гаусса состоит из ряда однотипных шагов, на каждом из которых производятся действия в следующем порядке:

  1. Проверяется, не является ли система несовместной. Если система содержит противоречивое уравнение, то она несовместна.
  2. Проверяется возможность сокращения числа уравнений. Если в системе содержится тривиальное уравнение, его вычеркивают.
  3. Если система уравнений является разрешенной, то записывают общее решение системы и если необходимо — частные решения.
  4. Если система не является разрешенной, то в уравнении, не содержащем разрешенной неизвестной, выбирают разрешающий элемент и производят преобразование Жордана с этим элементом.
  5. Далее заново переходят к пункту 1
Пример 3 Решить систему уравнений методом Жордана-Гаусса.

Найти : два общих и два соответствующих базисных решения

Решение :

Вычисления приведены в нижеследующей таблице:

Справа от таблицы изображены действия над уравнениями. Стрелками показано к какому уравнению прибавляется уравнение с разрешающим элементом, умноженное на подходящий множитель.

В первых трех строках таблицы помещены коэффициенты при неизвестных и правые части исходной системы. Результаты первого преобразования Жордана с разрешающим элементом равным единице приведены в строках 4, 5, 6. Результаты второго преобразования Жордана с разрешающим элементом равным (-1) приведены в строках 7, 8, 9. Так как третье уравнение является тривиальным, то его можно не учитывать.